Generic placeholder image

Mini-Reviews in Organic Chemistry

Editor-in-Chief

ISSN (Print): 1570-193X
ISSN (Online): 1875-6298

Mini-Review Article

Applications of Polymethylhydrosiloxane (PMHS) in Organic Synthesis- Covering up to March 2022

Author(s): Mohammed Mujahid Alam, Vittal Seema, Narsimhaswamy Dubasi*, Mohan Kurra and Ravi Varala*

Volume 20, Issue 7, 2023

Published on: 21 November, 2022

Page: [708 - 734] Pages: 27

DOI: 10.2174/1570193X20666221021104906

Price: $65

Abstract

Based on the type of metal or non-metal catalyst used, the authors of this paper have clearly highlighted the different applications of air-stable, commercially viable, and environmentally friendly polymethylhydrosiloxane (PMHS) in organic synthesis or other allied reactions. The importance of PMHS was emphasised for the particular organic transformation's success. In addition to its wellknown use as a reducing agent, it has also been demonstrated in a variety of other applications, including ring cleavage, the cotton industry, functional material for microfluidic chips, and the dehydroaromatization of bio-oils. The article tries to compile the most noteworthy cases of highly successful PMHS catalysis over the past two decades or so.

Keywords: PMHS, transition metal, catalysis, organic synthesis, applications, functional group conversions, environmental standards.

Graphical Abstract
[1]
Brown, H.C.; Ramachandran, P.V. In reductions in organic synthesis: recent advances and practical applications; Abdel-Magid, A. F. Ed.; American Chemical Society: Washington DC, 1996, pp. 1-30.
[2]
Sauer, R.O.; Scheiber, W.J.; Brewer, S.D. Derivatives of the Methylchlorosilanes. V. Polysiloxanes from methyldichlorosilane. J. Am. Chem. Soc., 1946, 68(6), 962-963.
[http://dx.doi.org/10.1021/ja01210a014]
[3]
Lipowitz, J.; Bowman, S.A. Use of polymethylhydrosiloxane as a selective, neutral reducing agent for aldehydes, ketones, olefins, and aromatic nitro compounds. J. Org. Chem., 1973, 38(1), 162-165.
[http://dx.doi.org/10.1021/jo00941a039]
[4]
Lavis, J.M.; Maleczka, R.E. Polymethylhydrosiloxane. Encyclopedia of Reagents for Organic Synthesis; John Wiley & Sons: New Jersey, 2003.
[http://dx.doi.org/10.1002/047084289X.rn00062]
[5]
Lipowitz, J.; Bowman, S. The use of polymethylhydrosiloxane (PMHS) as a reducing agent for organic compounds. Aldrichim Acta, 1973, 6, 1-6.
[6]
Jiang, X.; Han, B.; Xue, Y.; Duan, M.; Gui, Z.; Wang, Y.; Zhu, S. Nickel-catalysed migratory hydroalkynylation and enantioselective hydroalkynylation of olefins with bromoalkynes. Nat. Commun., 2021, 12(1), 3792-3780.
[http://dx.doi.org/10.1038/s41467-021-24094-9] [PMID: 34145283]
[7]
Manolikakes, G.; Gavryushin, A.; Knochel, P. An efficient silane-promoted nickel-catalyzed amination of aryl and heteroaryl chlorides. J. Org. Chem., 2008, 73(4), 1429-1434.
[http://dx.doi.org/10.1021/jo702219f] [PMID: 18211086]
[8]
Hethcox, J.C.; Sifri, R.J. Air-tolerant nickel-catalyzed cyanation of (hetero)aryl halides enabled by polymethylhydrosiloxane, a green reductant. J. Org. Chem., 2022, 87(7), 4951-4954.
[http://dx.doi.org/10.1021/acs.joc.1c02939] [PMID: 35316048]
[9]
Linford-Wood, T.G.; Coles, N.T.; Webster, R.L. Room temperature iron catalyzed transfer hydrogenation using n-butanol and poly(methylhydrosiloxane). Green Chem., 2021, 23(7), 2703-2709.
[http://dx.doi.org/10.1039/D0GC04175K]
[10]
Das, S.; Das, H.S.; Singh, B.; Haridasan, R.K.; Das, A.; Mandal, S.K. Catalytic reduction of nitriles by polymethylhydrosiloxane using a phenalenyl-based iron(III) complex. Inorg. Chem., 2019, 58(17), 11274-11278.
[http://dx.doi.org/10.1021/acs.inorgchem.9b01377] [PMID: 31429280]
[11]
Buitrago, E.; Tinnis, F.; Adolfsson, H. Efficient and selective hydrosilylation of carbonyl compounds catalyzed by iron acetate and n ‐hydroxyethylimidazolium salts. Adv. Synth. Catal., 2012, 354(1), 217-222.
[http://dx.doi.org/10.1002/adsc.201100606]
[12]
Volkov, A.; Buitrago, E.; Adolfsson, H. Direct hydrosilylation of tertiary amides to amines by an in situ formed iron/n-heterocyclic carbene catalyst. Eur. J. Org. Chem., 2013, 2013(11), 2066-2070.
[http://dx.doi.org/10.1002/ejoc.201300010]
[13]
Zotto, C.D.; Virieux, D.; Campagne, J-M. FeCl3-catalyzed reduction of ketones and aldehydes to alkane compounds. Synlett, 2009, 33, 276-278.
[14]
Zhou, S.; Junge, K.; Addis, D.; Das, S.; Beller, M. A convenient and general iron-catalyzed reduction of amides to amines. Angew. Chem. Int. Ed., 2009, 48(50), 9507-9510.
[http://dx.doi.org/10.1002/anie.200904677] [PMID: 19784999]
[15]
Lu, D.; Lu, P.; Lu, Z. Cobalt‐catalyzed asymmetric 1,4‐reduction of β,β‐ Dialkyl α β ‐unsaturated esters with PMHS. Eur. J. Org. Chem., 2021, 2021(34), 4861-4864.
[http://dx.doi.org/10.1002/ejoc.202100856]
[16]
Bhanage, B.; Nale, D. N-Substituted formamides as C1-sources for the synthesis of benzimidazole and benzothiazole derivatives by using zinc catalysts. Synlett, 2015, 26(20), 2835-2842.
[http://dx.doi.org/10.1055/s-0035-1560319]
[17]
Kovalenko, O.O.; Volkov, A.; Adolfsson, H. Mild and selective Et2Zn-catalyzed reduction of tertiary amides under hydrosilylation conditions. Org. Lett., 2015, 17(3), 446-449.
[http://dx.doi.org/10.1021/ol503430t] [PMID: 25587664]
[18]
Rahaim, R.J., Jr; Maleczka, R.E., Jr Pd-catalyzed silicon hydride reductions of aromatic and aliphatic nitro groups. Org. Lett., 2005, 7(22), 5087-5090.
[http://dx.doi.org/10.1021/ol052120n] [PMID: 16235964]
[19]
Rahaim, R.J., Jr; Maleczka, R.E., Jr C-O hydrogenolysis catalyzed by Pd-PMHS nanoparticles in the company of chloroarenes. Org. Lett., 2011, 13(4), 584-587.
[http://dx.doi.org/10.1021/ol102757v] [PMID: 21247081]
[20]
Gallagher, W.P.; Maleczka, R.E., Jr PMHS-mediated couplings of alkynes or benzothiazoles with various electrophiles: application to the synthesis of (-)-akolactone A. J. Org. Chem., 2003, 68(17), 6775-6779.
[http://dx.doi.org/10.1021/jo034463+] [PMID: 12919047]
[21]
Chandrasekhar, S.; Basu, D.; Reddy, Ch.R. Reduction of N-(tert-Butoxycarbonyl)indoles by Polymethylhiydrosiloxane. Synthesis, 2007, 10, 1509-1512.
[http://dx.doi.org/10.1055/s-2007-966029]
[22]
Madhavachary, R.; Mallik, R.; Ramachary, D.B. Organocatalytic enantiospecific total synthesis of butenolides. Molecules, 2021, 26(14), 4320-4320.
[http://dx.doi.org/10.3390/molecules26144320] [PMID: 34299595]
[23]
Dey, S.; Gadakh, S.K.; Ahuja, B.B.; Kamble, S.P.; Sudalai, A. Pd-catalyzed reductive cleavage of NN bond in dibenzyl-1-alkylhydrazine-1,2-dicarboxylates with PMHS: application to a formal enantioselective synthesis of (R)-sitagliptin. Tetrahedron Lett., 2016, 57(6), 684-687.
[http://dx.doi.org/10.1016/j.tetlet.2015.12.116]
[24]
Nayal, O.S.; Bhatt, V.; Sharma, S.; Kumar, N. Chemoselective reductive amination of carbonyl compounds for the synthesis of tertiary amines using SnCl2·2H2O/PMHS/MeOH. J. Org. Chem., 2015, 80(11), 5912-5918.
[http://dx.doi.org/10.1021/acs.joc.5b00156] [PMID: 25938581]
[25]
Cheng, L.J.; Mankad, N.P. Cu-Catalyzed hydrocarbonylative C–C coupling of terminal alkynes with alkyl iodides. J. Am. Chem. Soc., 2017, 139(30), 10200-10203.
[http://dx.doi.org/10.1021/jacs.7b05205] [PMID: 28700224]
[26]
Han, J.T.; Jang, W.J.; Kim, N.; Yun, J. Asymmetric synthesis of borylalkanes via copper-catalyzed enantioselective hydroallylation. J. Am. Chem. Soc., 2016, 138(46), 15146-15149.
[http://dx.doi.org/10.1021/jacs.6b11229] [PMID: 27808507]
[27]
Yun, J.; Jang, W.; Han, J. NHC-copper-catalyzed tandem hydrocupration and allylation of alkenyl boronates. Synthesis, 2017, 49(21), 4753-4758.
[http://dx.doi.org/10.1055/s-0036-1588811]
[28]
Nishikawa, D.; Sakae, R.; Miki, Y.; Hirano, K.; Miura, M. Copper-catalyzed regioselective ring-opening hydroamination of methylenecyclopropanes. J. Org. Chem., 2016, 81(24), 12128-12134.
[http://dx.doi.org/10.1021/acs.joc.6b02483] [PMID: 27978715]
[29]
Nishikawa, D.; Hirano, K.; Miura, M. Asymmetric synthesis of α-aminoboronic acid derivatives by copper-catalyzed enantioselective hydroamination. J. Am. Chem. Soc., 2015, 137(50), 15620-15623.
[http://dx.doi.org/10.1021/jacs.5b09773] [PMID: 26653275]
[30]
Huang, S.; Voigtritter, K.R.; Unger, J.B.; Lipshutz, B.H. Asymmetric CuH-catalyzed 1,4-reductions in water in at room temperature. Synlett, 2010, 13, 2041-2044.
[31]
Baker, B.A. Bošković Ž.V.; Lipshutz, B.H. (BDP)CuH: a “hot” Stryker’s reagent for use in achiral conjugate reductions. Org. Lett., 2008, 10(2), 289-292.
[http://dx.doi.org/10.1021/ol702689v] [PMID: 18092793]
[32]
Sekhri, L.; Nedjimi, M.S. A convenient procedure for the asymmetric reduction of prochiral ketones using tetrabutylammoniumfluoride, polymethylhydrosiloxane and biocatalysts, Baker’s yeast. Biomed. Pharmacol. J., 2009, 2, 287-292.
[33]
Whittaker, A.M.; Lalic, G. Monophasic catalytic system for the selective semireduction of alkynes. Org. Lett., 2013, 15(5), 1112-1115.
[http://dx.doi.org/10.1021/ol4001679] [PMID: 23427913]
[34]
Mailig, M.; Hazra, A.; Armstrong, M.K.; Lalic, G. Catalytic anti-markovnikov hydroallylation of terminal and functionalized internal alkynes: synthesis of skipped dienes and trisubstituted alkenes. J. Am. Chem. Soc., 2017, 139(20), 6969-6977.
[http://dx.doi.org/10.1021/jacs.7b02104] [PMID: 28449580]
[35]
Zhan, L.W.; Han, L.; Xing, P.; Jiang, B. Copper N-heterocyclic carbene: A catalyst for aerobic oxidation or reduction reactions. Org. Lett., 2015, 17(24), 5990-5993.
[http://dx.doi.org/10.1021/acs.orglett.5b02756] [PMID: 26633757]
[36]
Lee, D.; Kim, D.; Yun, J. Highly enantioselective conjugate reduction of β-disubstituted β-unsaturated nitriles. Angew. Chem. Int. Ed., 2006, 45(17), 2785-2787.
[http://dx.doi.org/10.1002/anie.200600184] [PMID: 16548030]
[37]
Jumbam, N.D.; Makaluza, S.; Masamba, W. PMHS reduction of carbonyl function catalyzed by titanium tetrachloride. Bull. Chem. Soc. Ethiop., 2018, 32, 179-184.
[http://dx.doi.org/10.4314/bcse.v32i1.18]
[38]
Fianu, G.D.; Schipper, K.C.; Flowers, R.A., II Catalytic carbonyl hydrosilylations via a titanocene borohydride–PMHS reagent system. Catal. Sci. Technol., 2017, 7(16), 3469-3473.
[http://dx.doi.org/10.1039/C7CY01088E]
[39]
Menche, D.; Arikan, F.; Li, J.; Rudolph, S. Directed reductive amination of β-hydroxy-ketones: convergent assembly of the ritonavir/lopinavir core. Org. Lett., 2007, 9(2), 267-270.
[http://dx.doi.org/10.1021/ol062715y] [PMID: 17217281]
[40]
Sousa, S.C.A.; Realista, S.; Royo, B. Bench‐stable manganese NHC complexes for the selective reduction of esters to alcohols with silanes. Adv. Synth. Catal., 2020, 362(12), 2437-2443.
[http://dx.doi.org/10.1002/adsc.202000148]
[41]
Pinto, M.; Friães, S.; Franco, F.; Lloret-Fillol, J.; Royo, B. Manganese N-heterocyclic carbene complexes for catalytic reduction of ketones with silanes. Chem. Cat. Com, 2018, 10(13), 2734-2740.
[42]
Dong, Z.; Yuan, J.; Xiao, Y.; Mao, P.; Wang, W. Room Temperature chemoselective deoxygenation of aromatic ketones and aldehydes promoted by a tandem Pd/TiO2+FeCl3 catalyst. J. Org. Chem., 2018, 83(18), 11067-11073.
[http://dx.doi.org/10.1021/acs.joc.8b01667] [PMID: 30126268]
[43]
Bai, X.F.; Ye, F.; Zheng, L.S.; Lai, G.Q.; Xia, C.G.; Xu, L.W. Hydrosilane and bismuth-accelerated palladium catalyzed aerobic oxidative esterification of benzylic alcohols with air. Chem. Commun. (Camb.), 2012, 48(68), 8592-8594.
[http://dx.doi.org/10.1039/c2cc34117d] [PMID: 22814568]
[44]
Yao, W.; He, L.; Han, D.; Zhong, A. Sodium triethylborohydride-catalyzed controlled reduction of unactivated amides to secondary or tertiary amines. J. Org. Chem., 2019, 84(22), 14627-14635.
[http://dx.doi.org/10.1021/acs.joc.9b02211] [PMID: 31663738]
[45]
Giordano, M.; Iadonisi, A. Polymethylhydrosiloxane (PMHS): A convenient option for synthetic applications of the iodine/silane combined reagent - Straightforward entries to 2-hydroxyglycals and useful building-blocks of glucuronic acid and glucosamine. Eur. J. Org. Chem., 2013, 2013(1), 125-131.
[http://dx.doi.org/10.1002/ejoc.201201084]
[46]
Patel, J.P.; Li, A.H.; Dong, H.; Korlipara, V.L.; Mulvihill, M.J. Polymethylhydrosiloxane (PMHS)/trifluoroacetic acid (TFA): a novel system for reductive amination reactions. Tetrahedron Lett., 2009, 50(44), 5975-5977.
[http://dx.doi.org/10.1016/j.tetlet.2009.08.048]
[47]
Tönjes, J.; Longwitz, L.; Werner, T. Poly(methylhydrosiloxane) as a reductant in the catalytic base-free Wittig reaction. Green Chem., 2021, 23(13), 4852-4857.
[http://dx.doi.org/10.1039/D1GC00953B]
[48]
Longwitz, L.; Spannenberg, A.; Werner, T. Phosphetane oxides as redox cycling catalysts in the catalytic wittig reaction at room temperature. ACS Catal., 2019, 9(10), 9237-9244.
[http://dx.doi.org/10.1021/acscatal.9b02456]
[49]
Nykaza, T.V.; Li, G.; Yang, J.; Luzung, M.R.; Radosevich, A.T. PIII/PV=O catalyzed cascade synthesis of n‐functionalized azaheterocycles. Angew. Chem. Int. Ed., 2020, 59(11), 4505-4510.
[http://dx.doi.org/10.1002/anie.201914851] [PMID: 31869510]
[50]
Lenstra, D.C.; Lenting, P.E. Mecinović J. Sustainable organophosphorus-catalysed Staudinger reduction. Green Chem., 2018, 20(19), 4418-4422.
[http://dx.doi.org/10.1039/C8GC02136H]
[51]
Li, X.Y.; Zheng, S.S.; Liu, X.F.; Yang, Z.W.; Tan, T.Y.; Yu, A.; He, L.N. Waste recycling: Ionic liquid-catalyzed 4-electron reduction of CO2 with amines and polymethylhydrosiloxane combining experimental and theoretical study. ACS Sustain. Chem.& Eng., 2018, 6(7), 8130-8135.
[http://dx.doi.org/10.1021/acssuschemeng.8b02352]
[52]
Li, G.; Chen, J.; Zhu, D.Y.; Chen, Y.; Xia, J.B. DBU-catalyzed selective n -methylation and N -formylation of amines with CO2 and polymethylhydrosiloxane. Adv. Synth. Catal., 2018, 360(12), 2364-2369.
[http://dx.doi.org/10.1002/adsc.201800140]
[53]
Paridala, K.; Lu, S.M.; Wang, M.M.; Li, C. Tandem one-pot CO2 reduction by PMHS and silyloxycarbonylation of aryl/vinyl halides to access carboxylic acids. Chem. Commun. (Camb.), 2018, 54(82), 11574-11577.
[http://dx.doi.org/10.1039/C8CC06820H] [PMID: 30259918]
[54]
Motokura, K.; Takahashi, N.; Kashiwame, D.; Yamaguchi, S.; Miyaji, A.; Baba, T. Copper-diphosphine complex catalysts for N-formylation of amines under 1 atm of CO2 with polymethylhydrosiloxane. Catal. Sci. Technol., 2013, 9, 2392-2396.
[55]
Yu, Z.; Wu, W.; Li, H.; Yang, S. Highly selective reduction of bio-based furfural to furfuryl alcohol catalyzed by supported KF with Polymethylhydrosiloxane (PMHS). J. Chem., 2020, 2020, 1-10.
[http://dx.doi.org/10.1155/2020/4809127]
[56]
Yadav, M.S.; Singh, A.S.; Agrahari, A.K.; Mishra, N.; Tiwari, V.K. Silicon industry waste polymethylhydrosiloxane-mediated benzotriazole ring cleavage: A practical and green synthesis of diverse benzothiazoles. ACS Omega, 2019, 4(4), 6681-6689.
[http://dx.doi.org/10.1021/acsomega.9b00343] [PMID: 31459794]
[57]
Lee, S.J.; Goedert, M.; Matyska, M.T.; Ghandehari, E.M.; Vijay, M.; Pesek, J.J. Polymethylhydrosiloxane (PMHS) as a functional material for microfluidic chips. J. Micromech. Microeng., 2008, 18(2)025026
[http://dx.doi.org/10.1088/0960-1317/18/2/025026]
[58]
Döhlert, P.; Enthaler, S. Conversion of Poly(methylhydrosiloxane) waste to useful commodities. Catal. Lett., 2016, 146(2), 345-352.
[http://dx.doi.org/10.1007/s10562-015-1665-6]
[59]
Lin, H.; Hu, Q.; Liao, T.; Zhang, X.; Yang, W.; Cai, S. Highly hydrophobic cotton fabrics modified by Poly(methylhydrogen)-siloxane and Fluorinated Olefin: Characterization and applications. Polymers (Basel), 2020, 12(4), 833-845.
[http://dx.doi.org/10.3390/polym12040833] [PMID: 32268497]
[60]
Wang, Z.; Yao, S.; Pan, S.; Su, J.; Fang, C.; Hou, X.; Zhan, M. Synthesis of silver particles stabilized by a bifunctional SiHx–NHy –PMHS oligomer as recyclable nanocatalysts for the catalytic reduction of 4-nitrophenol. RSC Advances, 2019, 9(53), 31013-31020.
[http://dx.doi.org/10.1039/C9RA04711E] [PMID: 35529395]
[61]
Di Francesco, D.; Subbotina, E.; Rautiainen, S.; Samec, J.S.M. Ductile Pd-catalyzed hydrodearomatization of Phenol-Containing Bio-oils into either ketones or alcohols using PMHS and H2O as hydrogen source. Adv. Synth. Catal., 2018, 360(20), 3924-3929.
[http://dx.doi.org/10.1002/adsc.201800614]
[62]
Hein, N.M.; Seo, Y.; Lee, S.J.; Gagné, M.R. Harnessing the reactivity of poly(methylhydrosiloxane) for the reduction and cyclization of biomass to high-value products. Green Chem., 2019, 21(10), 2662-2669.
[http://dx.doi.org/10.1039/C9GC00705A]
[63]
Zhang, C.; Huo, R.; Wang, X.; Zhang, J.; Cheng, J.; Shi, L. In-situ encapsulation of flaky aluminum pigment with poly(methylhydrosiloxane) anti-corrosion film for high-performance waterborne coatings. J. Ind. Eng. Chem., 2020, 89, 239-249.
[http://dx.doi.org/10.1016/j.jiec.2020.05.020]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy