Generic placeholder image

Cardiovascular & Hematological Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5257
ISSN (Online): 1875-6182

Mini-Review Article

New Era: Mavacamten for Obstructive Hypertrophic Cardiomyopathy

Author(s): Ma’Lik Woodland and Rami A. Al-Horani*

Volume 21, Issue 2, 2023

Published on: 22 December, 2022

Page: [78 - 83] Pages: 6

DOI: 10.2174/1871525721666221019095218

Price: $65

conference banner
Abstract

Obstructive hypertrophic cardiomyopathy results from asymmetric septal hypertrophy, which eventually obstructs the outflow of the left ventricle. Obstructive hypertrophic cardiomyopathy is linked to mutations in genes that encode for sarcomere proteins, including actin, β-myosin heavy chain, titin, and troponin. The mutations lead to structural abnormalities in myocytes and myofibrils, causing conduction irregularities and abnormal force generation. Obstructive hypertrophic cardiomyopathy is a chronic disease that worsens over time, and patients become at higher risk of developing atrial fibrillation, heart failure, and stroke. Up until recently, there were no disease- specific medications for obstructive hypertrophic cardiomyopathy. Nevertheless, the US Food and Drug Administration approved mavacamten on April 28, 2022, for the treatment of symptomatic obstructive hypertrophic cardiomyopathy (New York Heart Association class II to III) in adults to improve functional capacity and symptoms. Its approval was based on data from EXPLORER- HCM and EXPLORER-LTE (NCT03723655). Mavacamten is a novel, first-in-class, orally active, allosteric inhibitor of cardiac myosin ATPase, which decreases the formation of actin- myosin cross-bridges, and thus, it reduces myocardial contractility, and it improves myocardial energetics. It represents a paradigm-shifting pharmacological treatment of obstructive hypertrophic cardiomyopathy. In this review, we describe its chemical and mechanistic aspects as well as its pharmacokinetics, adverse effects and warnings, potential drug-drug interactions, and contraindications.

Keywords: Cardiomyopathy, mavacamten, heart failure, actin-myosin cross-bridge, stenosis, hypertrophy.

Graphical Abstract
[1]
Czimbalmos, C.; Csecs, I.; Toth, A.; Kiss, O.; Suhai, F.I.; Sydo, N.; Dohy, Z.; Apor, A.; Merkely, B.; Vago, H. The demanding grey zone: Sport indices by cardiac magnetic resonance imaging differentiate hypertrophic cardiomyopathy from athlete’s heart. PLoS One, 2019, 14(2), e0211624.
[http://dx.doi.org/10.1371/journal.pone.0211624] [PMID: 30763323]
[2]
Aljeaid, D.; Sanchez, A.I.; Wakefield, E.; Chadwell, S.E.; Moore, N.; Prada, C.E.; Zhang, W. Prevalence of pathogenic and likely pathogenic variants in the RASopathy genes in patients who have had panel testing for cardiomyopathy. Am. J. Med. Genet. A., 2019, 179(4), 608-614.
[http://dx.doi.org/10.1002/ajmg.a.61072] [PMID: 30762279]
[3]
Song, C.; Wang, S.; Guo, Y.; Zheng, X.; Lu, J.; Fang, X.; Wang, S.; Huang, X. Preoperative NT‐proBNP predicts midterm outcome after septal myectomy. J. Am. Heart Assoc., 2019, 8(4), e011075.
[http://dx.doi.org/10.1161/JAHA.118.011075] [PMID: 30760079]
[4]
Borer, J.; Atar, D.; Marciniak, T.; Kim, M.; Serebruany, V. Atrial fibrillation and stroke in patients with hypertrophic cardiomyopathy: Important new insights. Thromb. Haemost., 2019, 119(3), 355-357.
[http://dx.doi.org/10.1055/s-0039-1678724] [PMID: 30759487]
[5]
Fernández-Ruiz, I. Modulating myosin function to treat hypertrophic cardiomyopathy. Nat. Rev. Cardiol., 2019, 16(4), 201.
[http://dx.doi.org/10.1038/s41569-019-0170-9] [PMID: 30755739]
[6]
van Driel, B.; Nijenkamp, L.; Huurman, R.; Michels, M.; van der Velden, J. Sex differences in hypertrophic cardiomyopathy. Curr. Opin. Cardiol., 2019, 34(3), 254-259.
[http://dx.doi.org/10.1097/HCO.0000000000000612] [PMID: 30747730]
[7]
Marrocco, V.; Bogomolovas, J.; Ehler, E.; dos Remedios, C.G.; Yu, J.; Gao, C.; Lange, S. PKC and PKN in heart disease. J. Mol. Cell. Cardiol., 2019, 128, 212-226.
[http://dx.doi.org/10.1016/j.yjmcc.2019.01.029] [PMID: 30742812]
[8]
Raj, M.A.; Ranka, S.; Goyal, A. Hypertrophic obstructive cardiomyopathy. In: StatPearls; StatPearls Publishing: Treasure Island, FL, 2022.
[9]
Zaiser, E.; Sehnert, A.J.; Duenas, A.; Saberi, S.; Brookes, E.; Reaney, M. Patient experiences with hypertrophic cardiomyopathy: A conceptual model of symptoms and impacts on quality of life. J. Patient. Rep. Outcomes, 2020, 4(1), 102.
[http://dx.doi.org/10.1186/s41687-020-00269-8] [PMID: 33259041]
[10]
Jain, S.S.; Li, S.S.; Xie, J.; Sutton, M.B.; Fine, J.T.; Edelberg, J.M.; Gao, W.; Spertus, J.A.; Cohen, D.J. Clinical and economic burden of obstructive hypertrophic cardiomyopathy in the United States. J. Med. Econ., 2021, 24(1), 1115-1123.
[http://dx.doi.org/10.1080/13696998.2021.1978242] [PMID: 34493144]
[11]
Gersh, B.J.; Maron, B.J.; Bonow, R.O.; Dearani, J.A.; Fifer, M.A.; Link, M.S.; Naidu, S.S.; Nishimura, R.A.; Ommen, S.R.; Rakowski, H.; Seidman, C.E.; Towbin, J.A.; Udelson, J.E.; Yancy, C.W. 2011 ACCF/AHA guideline for the diagnosis and treatment of hypertrophic cardiomyopathy: Executive summary: A report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. J. Am. Coll. Cardiol., 2011, 58(25), 2703-2738.
[http://dx.doi.org/10.1016/j.jacc.2011.10.825] [PMID: 22075468]
[12]
Khouzam, R.N.; Naidu, S.S. Current status and future perspectives on alcohol septal ablation for hypertrophic obstructive cardiomyopathy. Curr. Cardiol. Rep., 2014, 16(5), 478.
[http://dx.doi.org/10.1007/s11886-014-0478-3] [PMID: 24633648]
[13]
Naidu, S.S. Expert analysis: Diagnosis and management of hypertrophic cardiomyopathy. 2015. Available from: https://www.acc.org/latest-in-cardiology/articles/2015/02/10/11/41/diagnosis-and-management-of-hypertrophic-cardiomyopathy (Accessed on: May 1, 2022).
[14]
Green, E.M.; Wakimoto, H.; Anderson, R.L.; Evanchik, M.J.; Gorham, J.M.; Harrison, B.C.; Henze, M.; Kawas, R.; Oslob, J.D.; Rodriguez, H.M.; Song, Y.; Wan, W.; Leinwand, L.A.; Spudich, J.A.; McDowell, R.S.; Seidman, J.G.; Seidman, C.E. A small-molecule inhibitor of sarcomere contractility suppresses hypertrophic cardiomyopathy in mice. Science, 2016, 351(6273), 617-621.
[http://dx.doi.org/10.1126/science.aad3456] [PMID: 26912705]
[15]
Stern, J.A.; Markova, S.; Ueda, Y.; Kim, J.B.; Pascoe, P.J.; Evanchik, M.J.; Green, E.M.; Harris, S.P. A small molecule inhibitor of sarcomere contractility acutely relieves left ventricular outflow tract obstruction in feline hypertrophic cardiomyopathy. PLoS One, 2016, 11(12), e0168407.
[http://dx.doi.org/10.1371/journal.pone.0168407] [PMID: 27973580]
[16]
Varian, K.; Tang, W.H.W. Therapeutic strategies targeting inherited cardiomyopathies. Curr. Heart Fail. Rep., 2017, 14(4), 321-330.
[http://dx.doi.org/10.1007/s11897-017-0346-8] [PMID: 28660543]
[17]
Kawas, R.F.; Anderson, R.L.; Ingle, S.R.B.; Song, Y.; Sran, A.S.; Rodriguez, H.M. A small-molecule modulator of cardiac myosin acts on multiple stages of the myosin chemomechanical cycle. J. Biol. Chem., 2017, 292(40), 16571-16577.
[http://dx.doi.org/10.1074/jbc.M117.776815] [PMID: 28808052]
[19]
FDA Label: Mavacamten. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2022/214998s000lbl.pdf (Accessed on: May 1, 2022).
[20]
Spertus, J.A.; Fine, J.T.; Elliott, P.; Ho, C.Y.; Olivotto, I.; Saberi, S.; Li, W.; Dolan, C.; Reaney, M.; Sehnert, A.J.; Jacoby, D. Mavacamten for treatment of symptomatic obstructive hypertrophic cardiomyopathy (EXPLORER-HCM): Health status analysis of a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet, 2021, 397(10293), 2467-2475.
[http://dx.doi.org/10.1016/S0140-6736(21)00763-7] [PMID: 34004177]
[21]
Desai, N.; Xie, J.; Wang, Y.; Sutton, M.B.; Whang, J.; Fine, J.T.; Garrison, L.P., Jr Projecting the long-term clinical value of mavacamten for the treatment of obstructive hypertrophic cardiomyopathy in the United States: An assessment of net health benefit. Clin. Ther., 2022, 44(1), 52-66.e2.
[http://dx.doi.org/10.1016/j.clinthera.2021.11.006] [PMID: 34911641]
[22]
Grillo, M.P.; Erve, J.C.L.; Dick, R.; Driscoll, J.P.; Haste, N.; Markova, S.; Brun, P.; Carlson, T.J.; Evanchik, M. In vitro and in vivo pharmacokinetic characterization of mavacamten, a first-in-class small molecule allosteric modulator of beta cardiac myosin. Xenobiotica, 2019, 49(6), 718-733.
[http://dx.doi.org/10.1080/00498254.2018.1495856] [PMID: 30044681]
[23]
Capilupi, M.J.; Frishman, W.H. Mavacamten: A novel disease-specific treatment for hypertrophic cardiomyopathy. Cardiol. Rev., 2023, 31(1), 45-51.
[http://dx.doi.org/10.1097/CRD.0000000000000433] [PMID: 35358098]
[24]
Pysz, P.; Rajtar-Salwa, R.; Smolka, G.; Olivotto, I.; Wojakowski, W.; Petkow-Dimitrow, P. Mavacamten - a new disease-specific option for pharmacological treatment of symptomatic patients with hypertrophic cardiomyopathy. Kardiol. Pol., 2021, 79(9), 949-954.
[http://dx.doi.org/10.33963/KP.a2021.0064] [PMID: 34268723]
[25]
Zampieri, M.; Argirò, A.; Marchi, A.; Berteotti, M.; Targetti, M.; Fornaro, A.; Tomberli, A.; Stefàno, P.; Marchionni, N.; Olivotto, I. Mavacamten, a novel therapeutic strategy for obstructive hypertrophic cardiomyopathy. Curr. Cardiol. Rep., 2021, 23(7), 79.
[http://dx.doi.org/10.1007/s11886-021-01508-0] [PMID: 34081217]
[26]
Tower-Rader, A.; Ramchand, J.; Nissen, S.E.; Desai, M.Y. Mavacamten: A novel small molecule modulator of β-cardiac myosin for treatment of hypertrophic cardiomyopathy. Expert Opin. Investig. Drugs, 2020, 29(11), 1171-1178.
[http://dx.doi.org/10.1080/13543784.2020.1821361] [PMID: 32897741]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy