Generic placeholder image

Current Stem Cell Research & Therapy

Editor-in-Chief

ISSN (Print): 1574-888X
ISSN (Online): 2212-3946

Review Article

Animal Models and Methods of Myocardial Infarction Induction and the Role of Tissue Engineering in the Regeneration of Damaged Myocardium

Author(s): Massoumeh Jabbari Fakhr, Mohammad Reza Mokhber Dezfouli and Sirous Sadeghian Chaleshtori*

Volume 18, Issue 5, 2023

Published on: 28 October, 2022

Page: [676 - 689] Pages: 14

DOI: 10.2174/1574888X17666221011085745

Price: $65

conference banner
Abstract

The introduction of an experimental animal model for myocardial infarction (MI) has particular importance. Research done on large animals provides valuable information for the researchers because of the similar characteristics of their hearts compared to humans, but the cost of purchasing and maintaining them is high. In comparison, using small animals has advantages, such as they are easy to work with and have low purchase and maintenance costs. However, in some of these animals, due to less similarity of the heart to humans, they cannot simulate the natural pathogenesis of human MI. Moreover, there are different methods for the induction of MI in animals; each has its own advantages and disadvantages. However, a method must be chosen to simulate the natural pathogenesis of MI with minimal complication. Currently, attempts are being made for myocardial regeneration after MI using the direct transplantation of stem cells or an engineered scaffold. The scaffold creates a 3D ambiance for the cultured cells. The task of tissue engineering is to optimize the scaffold with appropriate systems for the separation, proliferation, and differentiation of the desired cells until they are capable of promoting the threedimensional and appropriate growth of the tissue. The purpose of tissue engineering in cardiac is the use of scaffolds and cells in the damaged area, followed by the improvement of the heart function through automatic pulsation, communication with the host vessels, and electrical coupling with the myocardium, eventually creating a force to increase the heart function.

Keywords: Animal model, myocardial infarction, tissue engineering, scaffold, stem cells, Cardiovascular disorders.

Graphical Abstract
[1]
Syarifah ASAHNG, Jubri Z, Srijit D. Induction of myocardial infarction in experimental animals: A review. J Clin Diagn Res 2018; 12(11): AE01-5.
[2]
Alan SG, Dariush M, Véronique LR, et al. Heart disease and stroke statistics—2014 update a report from the american heart association. Circulation 2014; 129(3): e28-92.
[3]
Mozaffarian D, Benjamin EJ, Go AS, et al. Heart disease and stroke statistics--2015 update: A report from the american heart association. Circulation 2015; 131(4): e29-e322.
[http://dx.doi.org/10.1161/CIR.0000000000000152] [PMID: 25520374]
[4]
Nowbar AN, Howard JP, Finegold JA, Asaria P, Francis DP. 2014 Global geographic analysis of mortality from ischaemic heart disease by country, age and income: Statistics from World Health Organisation and United Nations. Int J Cardiol 2014; 174(2): 293-8.
[http://dx.doi.org/10.1016/j.ijcard.2014.04.096] [PMID: 24794549]
[5]
Mendis S, Puska P, Norrving B. World Health O, World Heart F, World Stroke O Global atlas on cardiovascular disease prevention and control. Geneva: World Health Organization 2011.
[6]
Anversa P, Kajstura J, Rota M, Leri A. Regenerating new heart with stem cells. J Clin Invest 2013; 123(1): 62-70.
[http://dx.doi.org/10.1172/JCI63068] [PMID: 23281411]
[7]
Bolli R, Chugh AR, D’Amario D, et al. Cardiac Stem Cells In Patients With Ischaemic Cardiomyopathy (SCIPIO): Initial results of a randomised phase 1 trial. Lancet 2011; 378(9806): 1847-57.
[http://dx.doi.org/10.1016/S0140-6736(11)61590-0] [PMID: 22088800]
[8]
Maximilian BL. Anatomy of the heart. In: Willerson JT, Wellen HJJ, Cohn JN, Holmes DR, Eds Cardiovascular Medicine. London: Springer London 2007; pp. 3-17.
[http://dx.doi.org/10.1007/978-1-84628-715-2_1]
[9]
Reddy K, Khaliq A, Henning RJ. Recent advances in the diagnosis and treatment of acute myocardial infarction. World J Cardiol 2015; 7(5): 243-76.
[http://dx.doi.org/10.4330/wjc.v7.i5.243] [PMID: 26015857]
[10]
Watanabe E, Smith DM Jr, Delcarpio JB, et al. Cardiomyocyte transplantation in a porcine myocardial infarction model. Cell Transplant 1998; 7(3): 239-46.
[http://dx.doi.org/10.1177/096368979800700302] [PMID: 9647433]
[11]
Fedak PW, Verma S, Weisel RD, Li RK. Cardiac remodeling and failure from molecules to man (Part II). Cardiovasc Pathol 2005; 14(2): 49-60.
[12]
Fedak PW, Verma S, Weisel RD, Li RK. Cardiac remodeling and failure: From molecules to man (Part I). Cardiovasc Pathol 2005; 14(1): 1-11.
[13]
Spotnitz HM. Macro design, structure, and mechanics of the left ventricle. J Thorac Cardiovasc Surg 2000; 119(5): 1053-77.
[14]
Bolognese L, Neskovic AN, Parodi G, et al. Left ventricular remodeling after primary coronary angioplasty: Patterns of left ventricular dilation and long-term prognostic implications. Circulation 2002; 106(18): 2351-7.
[http://dx.doi.org/10.1161/01.CIR.0000036014.90197.FA] [PMID: 12403666]
[15]
Houser SR, Margulies KB, Murphy AM, et al. Animal models of heart failure: A scientific statement from the American Heart Association. Circ Res 2012; 111(1): 131-50.
[http://dx.doi.org/10.1161/RES.0b013e3182582523] [PMID: 22595296]
[16]
Swynghedauw B. Molecular mechanisms of myocardial remodeling. Physiol Rev 1999; 79(1): 215-62.
[http://dx.doi.org/10.1152/physrev.1999.79.1.215] [PMID: 9922372]
[17]
Dimarakis I, Habib NA, Gordon MY. Adult bone marrow-derived stem cells and the injured heart: Just the beginning? Eur J Cardiothorac Surg 2005; 28(5): 665-76.
[http://dx.doi.org/10.1016/j.ejcts.2005.08.013]
[18]
Thomas WAS, Falk V, Binner C, et al. Left ventricular reverse remodeling after surgical therapy for aortic stenosis: Correlation to renin-angiotensin system gene expression. Circulation 2002; 106(12): I23-6.
[19]
Simpson P. Norepinephrine-stimulated hypertrophy of cultured rat myocardial cells is an alpha 1 adrenergic response. J Clin Invest 1983; 72(2): 732-8.
[http://dx.doi.org/10.1172/JCI111023] [PMID: 6135712]
[20]
Yokoyama T, Nakano M, Bednarczyk JL, McIntyre BW, Entman M, Mann DL. Tumor necrosis factor-alpha provokes a hypertrophic growth response in adult cardiac myocytes. Circulation 1997; 95(5): 1247-52.
[http://dx.doi.org/10.1161/01.CIR.95.5.1247] [PMID: 9054856]
[21]
Zeng L, Hu Q, Wang X, et al. Bioenergetic and functional consequences of bone marrow-derived multipotent progenitor cell transplantation in hearts with postinfarction left ventricular remodeling. Circulation 2007; 115(14): 1866-75.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.106.659730] [PMID: 17389266]
[22]
Memon IA, Sawa Y, Miyagawa S, Taketani S, Matsuda H. Combined autologous cellular cardiomyoplasty with skeletal myoblasts and bone marrow cells in canine hearts for ischemic cardiomyopathy. J Thorac Cardiovasc Surg 2005; 130(3): 646-53.
[http://dx.doi.org/10.1016/j.jtcvs.2005.02.024] [PMID: 16153908]
[23]
Brasselet C, Morichetti MC, Messas E, et al. Skeletal myoblast transplantation through a catheter-based coronary sinus approach: An effective means of improving function of infarcted myocardium. Eur Heart J 2005; 26(15): 1551-6.
[http://dx.doi.org/10.1093/eurheartj/ehi151] [PMID: 15728646]
[24]
Chong JJH, Yang X, Don CW, et al. Human embryonic-stem-cell-derived cardiomyocytes regenerate non-human primate hearts. Nature 2014; 510(7504): 273-7.
[http://dx.doi.org/10.1038/nature13233] [PMID: 24776797]
[25]
Chong JJH, Murry CE. Cardiac regeneration using pluripotent stem cells—Progression to large animal models. Stem Cell Res 2014; 13(3) (3 Pt B): 654-65.
[http://dx.doi.org/10.1016/j.scr.2014.06.005] [PMID: 25087896]
[26]
Chablais F, Veit J, Rainer G, Jaźwińska A. The zebrafish heart regenerates after cryoinjury-induced myocardial infarction. BMC Dev Biol 2011; 11(1): 21.
[http://dx.doi.org/10.1186/1471-213X-11-21] [PMID: 21473762]
[27]
Milani NN, Janssen PML. Small and large animal models in cardiac contraction research: Advantages and disadvantages. Pharmacol Ther 2014; 141(3): 235-49.
[http://dx.doi.org/10.1016/j.pharmthera.2013.10.007] [PMID: 24140081]
[28]
Maxwell MP, Hearse DJ, Yellon DM. Species variation in the coronary collateral circulation during regional myocardial ischaemia: A critical determinant of the rate of evolution and extent of myocardial infarction. Cardiovasc Res 1987; 21(10): 737-46.
[http://dx.doi.org/10.1093/cvr/21.10.737] [PMID: 3440266]
[29]
Fedorov VV, Glukhov AV, Ambrosi CM, et al. Effects of KATP channel openers diazoxide and pinacidil in coronary-perfused atria and ventricles from failing and non-failing human hearts. J Mol Cell Cardiol 2011; 51(2): 215-25.
[http://dx.doi.org/10.1016/j.yjmcc.2011.04.016] [PMID: 21586291]
[30]
Nerbonne J. Studying cardiac arrhythmias in the mouse-A reasonable model for probing mechanisms? Trends Cardiovasc Med 2004; 14(3): 83-93.
[http://dx.doi.org/10.1016/j.tcm.2003.12.006] [PMID: 15121155]
[31]
Sanbe A, James J, Tuzcu V, et al. Transgenic rabbit model for human troponin I-based hypertrophic cardiomyopathy. Circulation 2005; 111(18): 2330-8.
[http://dx.doi.org/10.1161/01.CIR.0000164234.24957.75] [PMID: 15867176]
[32]
Zhou HLJ, Cao YK, Gu CH. Establishment of chronic myocardial infarction model with minimally in-vasive methodsin mice. Chin Heart J 2012; 24: 591-5.
[33]
Yang LDL, Tao H, Zhang FZ, Xu C, Zhang ZQ. Preparation of atherosclerosis model in mice. J Cardiovasc Pulmon Dis 2013; 32: 806.
[34]
Tang Y, Liu Y, Fan Y, Zhao Y, Feng J, Liu Y. To develop a novel animal model of myocardial infarction: A research imperative. Animal Model Exp Med 2018; 1(1): 36-9.
[http://dx.doi.org/10.1002/ame2.12010] [PMID: 30891545]
[35]
Hasenfuss G. Animal models of human cardiovascular disease, heart failure and hypertrophy. Cardiovasc Res 1998; 39(1): 60-76.
[http://dx.doi.org/10.1016/S0008-6363(98)00110-2] [PMID: 9764190]
[36]
Bassani JW, Bassani RA, Bers DM. Relaxation in rabbit and rat cardiac cells: Species-dependent differences in cellular mechanisms. J Physiol 1994; 476(2): 279-93.
[http://dx.doi.org/10.1113/jphysiol.1994.sp020130] [PMID: 8046643]
[37]
Piacentino V III, Weber CR, Chen X, et al. Cellular basis of abnormal calcium transients of failing human ventricular myocytes. Circ Res 2003; 92(6): 651-8.
[http://dx.doi.org/10.1161/01.RES.0000062469.83985.9B] [PMID: 12600875]
[38]
Davydenko VV, Matyukov AA, Vlasov TD, et al. Comparative effects of intramyocardial autotransplantation of different bone marrow cells upon outcomes of experimental myocardial infarction in rabbits. Cell Ther Transplant 2015; 4(1-2): 47-57.
[http://dx.doi.org/10.18620/1866-8836-2015-4-1-2-47-57]
[39]
Jung B, Odening KE, Dall’Armellina E, et al. A quantitative comparison of regional myocardial motion in mice, rabbits and humans using in-vivo phase contrast CMR. J Cardiovasc Magn Reson 2012; 14(1): 87.
[http://dx.doi.org/10.1186/1532-429X-14-87] [PMID: 23270566]
[40]
Zicha S, Moss I, Allen B, et al. Molecular basis of species-specific expression of repolarizing K+ currents in the heart. Am J Physiol Heart Circ Physiol 2003; 285(4): H1641-9.
[http://dx.doi.org/10.1152/ajpheart.00346.2003] [PMID: 12816752]
[41]
Wang Z, Feng J, Shi H, Pond A, Nerbonne JM, Nattel S. Potential molecular basis of different physiological properties of the transient outward K+ current in rabbit and human atrial myocytes. Circ Res 1999; 84(5): 551-61.
[http://dx.doi.org/10.1161/01.RES.84.5.551] [PMID: 10082477]
[42]
Stratton JR, Levy WC, Cerqueira MD, Schwartz RS, Abrass IB. Cardiovascular responses to exercise. Effects of aging and exercise training in healthy men. Circulation 1994; 89(4): 1648-55.
[http://dx.doi.org/10.1161/01.CIR.89.4.1648] [PMID: 8149532]
[43]
Fuller GA, Bicer S, Hamlin RL, Yamaguchi M, Reiser PJ. Increased myosin heavy chain-beta with atrial expression of ventricular light chain-2 in canine cardiomyopathy. J Card Fail 2007; 13(8): 680-6.
[http://dx.doi.org/10.1016/j.cardfail.2007.05.006] [PMID: 17923362]
[44]
Dixon JA, Gorman RC, Stroud RE, et al. Mesenchymal cell transplantation and myocardial remodeling after myocardial infarction. Circulation 2009; 120(11) (Suppl_ 1): S220-9.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.108.842302] [PMID: 19752372]
[45]
Dixon JA, Spinale FG. Large animal models of heart failure: A critical link in the translation of basic science to clinical practice. Circ Heart Fail 2009; 2(3): 262-71.
[http://dx.doi.org/10.1161/CIRCHEARTFAILURE.108.814459] [PMID: 19808348]
[46]
Lukács E, Magyari B, Tóth L, et al. Overview of large animal myocardial infarction models. (review) Acta Physiol Hung 2012; 99(4): 365-81.
[http://dx.doi.org/10.1556/APhysiol.99.2012.4.1] [PMID: 23238539]
[47]
Locher MR, Razumova MV, Stelzer JE, Norman HS, Moss RL. Effects of low-level α-myosin heavy chain expression on contractile kinetics in porcine myocardium. Am J Physiol Heart Circ Physiol 2011; 300(3): H869-78.
[http://dx.doi.org/10.1152/ajpheart.00452.2010] [PMID: 21217059]
[48]
Guo SST. Model establishment of acute myocardium infarction induced by coronary occlusion versus balloon occlusion in miniature pigs. J Clin Rehabil Tissue Eng Res 2009; 13: 9913-6.
[49]
Savage RM, Guth B, White FC, Hagan AD, Bloor CM. Correlation of regional myocardial blood flow and function with myocardial infarct size during acute myocardial ischemia in the conscious pig. Circulation 1981; 64(4): 699-707.
[http://dx.doi.org/10.1161/01.CIR.64.4.699] [PMID: 7273370]
[50]
Köhn F, Sharifi AR, Simianer H. Modeling the growth of the Goettingen minipig1. J Anim Sci 2007; 85(1): 84-92.
[http://dx.doi.org/10.2527/jas.2006-271] [PMID: 17179543]
[51]
Schuleri KH, Boyle AJ, Centola M, et al. The adult Göttingen minipig as a model for chronic heart failure after myocardial infarction: Focus on cardiovascular imaging and regenerative therapies. Comp Med 2008; 58(6): 568-79.
[PMID: 19149414]
[52]
Reiser PJ, Portman MA, Ning XH, Moravec CS. Human cardiac myosin heavy chain isoforms in fetal and failing adult atria and ventricles. Am J Physiol Heart Circ Physiol 2001; 280(4): H1814-20.
[http://dx.doi.org/10.1152/ajpheart.2001.280.4.H1814] [PMID: 11247796]
[53]
Camacho P, Fan H, Liu Z, He JQ. Large mammalian animal models of heart disease. J Cardiovasc Dev Dis 2016; 3(4): 30.
[http://dx.doi.org/10.3390/jcdd3040030] [PMID: 29367573]
[54]
Ebeling M, Küng E, See A, et al. Genome-based analysis of the nonhuman primate Macaca fascicularis as a model for drug safety assessment. Genome Res 2011; 21(10): 1746-56.
[http://dx.doi.org/10.1101/gr.123117.111] [PMID: 21862625]
[55]
Hood WB Jr, McCarthy B, Lown B. Myocardial infarction following coronary ligation in dogs. Hemodynamic effects of isoproterenol and acetylstrophanthidin. Circ Res 1967; 21(2): 191-200.
[http://dx.doi.org/10.1161/01.RES.21.2.191] [PMID: 4952709]
[56]
Xu Z, Alloush J, Beck E, Weisleder N. A murine model of myocardial ischemia-reperfusion injury through ligation of the left anterior descending artery. J Vis Exp 2014; (86): 51329.
[http://dx.doi.org/10.3791/51329]
[57]
Spannbauer A, Traxler D, Zlabinger K, et al. Large Animal Models of Heart Failure With Reduced Ejection Fraction (HFrEF). Front Cardiovasc Med 2019; 6: 117.
[http://dx.doi.org/10.3389/fcvm.2019.00117] [PMID: 31475161]
[58]
Katsanos K, Mitsos S, Koletsis E, et al. Transauricular embolization of the rabbit coronary artery for experimental myocardial infarction: Comparison of a minimally invasive closed-chest model with open-chest surgery. J Cardiothorac Surg 2012; 7(1): 16.
[http://dx.doi.org/10.1186/1749-8090-7-16] [PMID: 22330077]
[59]
Iwanaga K, Takano H, Ohtsuka M, et al. Effects of G-CSF on cardiac remodeling after acute myocardial infarction in swine. Biochem Biophys Res Commun 2004; 325(4): 1353-9.
[http://dx.doi.org/10.1016/j.bbrc.2004.10.149] [PMID: 15555576]
[60]
Gandolfi F, Vanelli A, Pennarossa G, Rahaman M, Acocella F, Brevini TAL. Large animal models for cardiac stem cell therapies. Theriogenology 2011; 75(8): 1416-25.
[http://dx.doi.org/10.1016/j.theriogenology.2011.01.026] [PMID: 21463721]
[61]
Kuhlmann MT, Kirchhof P, Klocke R, et al. G-CSF/SCF reduces inducible arrhythmias in the infarcted heart potentially via increased connexin43 expression and arteriogenesis. J Exp Med 2006; 203(1): 87-97.
[http://dx.doi.org/10.1084/jem.20051151] [PMID: 16401694]
[62]
Liu YH, Yang XP, Nass O, Sabbah HN, Peterson E, Carretero OA. Chronic heart failure induced by coronary artery ligation in Lewis inbred rats. Am J Physiol 1997; 272(2 Pt 2): H722-7.
[PMID: 9124430]
[63]
Redel A, Jazbutyte V, Smul TM, et al. Impact of ischemia and reperfusion times on myocardial infarct size in mice in vivo. Exp Biol Med 2008; 233(1): 84-93.
[http://dx.doi.org/10.3181/0612-RM-308] [PMID: 18156310]
[64]
Murry CE, Wiseman RW, Schwartz SM, Hauschka SD. Skeletal myoblast transplantation for repair of myocardial necrosis. J Clin Invest 1996; 98(11): 2512-23.
[http://dx.doi.org/10.1172/JCI119070] [PMID: 8958214]
[65]
Van Den Bos EJ, Mees BME, De Waard MC, De Crom R, Duncker DJ. A novel model of cryoinjury-induced myocardial infarction in the mouse: A comparison with coronary artery ligation. Am J Physiol Heart Circ Physiol 2005; 289(3): H1291-300.
[http://dx.doi.org/10.1152/ajpheart.00111.2005] [PMID: 15863462]
[66]
Hirano A, Fujita J, Kanazawa H, et al. Cryoinjury-induced acute myocardial infarction model and ameroid constrictor-induced ischemic heart disease model in adult micro-mini pigs for preclinical studies. Transl Med Commun 2017; 2(1): 1.
[http://dx.doi.org/10.1186/s41231-017-0011-y]
[67]
Isorni MA, Casanova A, Piquet J, et al. Comparative analysis of methods to induce myocardial infarction in a closed-chest rabbit model. BioMed Res Int 2015; 2015893051
[http://dx.doi.org/10.1155/2015/893051] [PMID: 26504843]
[68]
Dariolli R, Takimura CK, Campos CA, Lemos PA, Krieger JE. Development of a closed-artery catheter-based myocardial infarction in pigs using sponge and lidocaine hydrochloride infusion to prevent irreversible ventricular fibrillation. Physiol Rep 2014; 2(8)e12121
[http://dx.doi.org/10.14814/phy2.12121] [PMID: 25168871]
[69]
Hanes DW, Wong ML, Jenny CCW, et al. Embolization of the first diagonal branch of the left anterior descending coronary artery as a porcine model of chronic trans-mural myocardial infarction. J Transl Med 2015; 13(1): 187.
[http://dx.doi.org/10.1186/s12967-015-0547-4] [PMID: 26047812]
[70]
Brooks WW, Conrad CH. Isoproterenol-induced myocardial injury and diastolic dysfunction in mice: Structural and functional correlates. Comp Med 2009; 59(4): 339-43.
[PMID: 19712573]
[71]
Zhang J, Knapton A, Lipshultz SE, Weaver JL, Herman EH. Isoproterenol-induced cardiotoxicity in sprague-dawley rats: Correlation of reversible and irreversible myocardial injury with release of cardiac troponin T and roles of iNOS in myocardial injury. Toxicol Pathol 2008; 36(2): 277-8.
[http://dx.doi.org/10.1177/0192623307313010] [PMID: 18349426]
[72]
Brady S, York M, Scudamore C, Williams T, Griffiths W, Turton J. Cardiac troponin I in isoproterenol-induced cardiac injury in the Hanover Wistar rat: Studies on low dose levels and routes of administration. Toxicol Pathol 2010; 38(2): 287-91.
[http://dx.doi.org/10.1177/0192623309357948] [PMID: 20100841]
[73]
Sadeghian CS, Mokhber DMR, Jabbari FM. Mesenchymal stem/stromal cells: The therapeutic effects in animal models of acute pulmonary diseases. Respir Res 2020; 21(1): 110.
[http://dx.doi.org/10.1186/s12931-020-01373-5] [PMID: 32393278]
[74]
Koh GY, Klug MG, Soonpaa MH, Field LJ. Differentiation and long-term survival of C2C12 myoblast grafts in heart. J Clin Invest 1993; 92(3): 1548-54.
[http://dx.doi.org/10.1172/JCI116734] [PMID: 8376605]
[75]
Leor J, Patterson M, Quinones MJ, Kedes LH, Kloner RA. Transplantation of fetal myocardial tissue into the infarcted myocardium of rat. A potential method for repair of infarcted myocardium? Circulation 1996; 94(9) (Suppl.): II332-6.
[PMID: 8901770]
[76]
Taylor DA, Atkins BZ, Hungspreugs P, et al. Regenerating functional myocardium: Improved performance after skeletal myoblast transplantation. Nat Med 1998; 4(8): 929-33.
[http://dx.doi.org/10.1038/nm0898-929] [PMID: 9701245]
[77]
Povsic TJ, O’Connor CM, Henry T, et al. A double-blind, randomized, controlled, multicenter study to assess the safety and cardiovascular effects of skeletal myoblast implantation by catheter delivery in patients with chronic heart failure after myocardial infarction. Am Heart J 2011; 162(4): 654-662.e1.
[http://dx.doi.org/10.1016/j.ahj.2011.07.020] [PMID: 21982657]
[78]
Menasché P, Alfieri O, Janssens S, et al. The Myoblast Autologous Grafting in Ischemic Cardiomyopathy (MAGIC) trial: First randomized placebo-controlled study of myoblast transplantation. Circulation 2008; 117(9): 1189-200.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.107.734103] [PMID: 18285565]
[79]
Herreros J, Prósper F, Perez A, et al. Autologous intramyocardial injection of cultured skeletal muscle-derived stem cells in patients with non-acute myocardial infarction. Eur Heart J 2003; 24(22): 2012-20.
[http://dx.doi.org/10.1016/j.ehj.2003.09.012] [PMID: 14613737]
[80]
Makkar RR, Lill M, Chen PS. Stem cell therapy for myocardial repair. J Am Coll Cardiol 2003; 42(12): 2070-2.
[http://dx.doi.org/10.1016/j.jacc.2003.09.018] [PMID: 14680728]
[81]
Orlic D, Kajstura J, Chimenti S, et al. Bone marrow cells regenerate infarcted myocardium. Nature 2001; 410(6829): 701-5.
[http://dx.doi.org/10.1038/35070587] [PMID: 11287958]
[82]
Lee J, Terracciano CM. Cell therapy for cardiac repair. Br Med Bull 2010; 94(1): 65-80.
[http://dx.doi.org/10.1093/bmb/ldq005] [PMID: 20200014]
[83]
Beitnes JO, Øie E, Shahdadfar A, et al. Intramyocardial injections of human mesenchymal stem cells following acute myocardial infarction modulate scar formation and improve left ventricular function. Cell Transplant 2012; 21(8): 1697-709.
[http://dx.doi.org/10.3727/096368911X627462] [PMID: 22410280]
[84]
Li C, Xu Q. Mechanical stress-initiated signal transduction in vascular smooth muscle cells in vitro and in vivo. Cell Signal 2007; 19(5): 881-91.
[http://dx.doi.org/10.1016/j.cellsig.2007.01.004] [PMID: 17289345]
[85]
Suzuki G, Iyer V, Lee TC, Canty JM Jr. Autologous mesenchymal stem cells mobilize cKit+ and CD133+ bone marrow progenitor cells and improve regional function in hibernating myocardium. Circ Res 2011; 109(9): 1044-54.
[http://dx.doi.org/10.1161/CIRCRESAHA.111.245969] [PMID: 21885831]
[86]
Suncion VY, Ghersin E, Fishman JE, et al. Does transendocardial injection of mesenchymal stem cells improve myocardial function locally or globally?: An analysis from the Percutaneous Stem Cell Injection Delivery Effects on Neomyogenesis (POSEIDON) randomized trial. Circ Res 2014; 114(8): 1292-301.
[http://dx.doi.org/10.1161/CIRCRESAHA.114.302854] [PMID: 24449819]
[87]
Hu H, Zhou S, Liu Y, Hu H. Efficacy and safety of bone marrow cell transplantation for chronic ischemic heart disease: A meta-analysis. Med Sci Monit 2014; 20: 1768-77.
[http://dx.doi.org/10.12659/MSM.892047] [PMID: 25270584]
[88]
Gnecchi M, Zhang Z, Ni A, Dzau VJ. Paracrine mechanisms in adult stem cell signaling and therapy. Circ Res 2008; 103(11): 1204-19.
[http://dx.doi.org/10.1161/CIRCRESAHA.108.176826] [PMID: 19028920]
[89]
Lipinski MJ, Biondi ZGGL, Abbate A, et al. Impact of intracoronary cell therapy on left ventricular function in the setting of acute myocardial infarction: A collaborative systematic review and meta-analysis of controlled clinical trials. J Am Coll Cardiol 2007; 50(18): 1761-7.
[http://dx.doi.org/10.1016/j.jacc.2007.07.041] [PMID: 17964040]
[90]
Saito T, Kuang JQ, Lin CCH, Chiu RCJ. Transcoronary implantation of bone marrow stromal cells ameliorates cardiac function after myocardial infarction. J Thorac Cardiovasc Surg 2003; 126(1): 114-22.
[http://dx.doi.org/10.1016/S0022-5223(03)00118-1] [PMID: 12878946]
[91]
Zhang D, Gai L, Liu H, Jin Q, Huang J, Zhu X. Transplantation of autologous adipose-derived stem cells ameliorates cardiac function in rabbits with myocardial infarction. Chin Med J (Engl) 2007; 120(4): 300-7.
[http://dx.doi.org/10.1097/00029330-200702020-00009] [PMID: 17374281]
[92]
Baer PC, Geiger H. Adipose-derived mesenchymal stromal/stem cells: Tissue localization, characterization, and heterogeneity. Stem Cells Int 2012; 2012812693
[http://dx.doi.org/10.1155/2012/812693] [PMID: 22577397]
[93]
Strem BM, Hicok KC, Zhu M, et al. Multipotential differentiation of adipose tissue-derived stem cells. Keio J Med 2005; 54(3): 132-41.
[http://dx.doi.org/10.2302/kjm.54.132] [PMID: 16237275]
[94]
Strioga M, Viswanathan S, Darinskas A, Slaby O, Michalek J. Same or not the same? Comparison of adipose tissue-derived versus bone marrow-derived mesenchymal stem and stromal cells. Stem Cells Dev 2012; 21(14): 2724-52.
[http://dx.doi.org/10.1089/scd.2011.0722] [PMID: 22468918]
[95]
Al-Nbaheen M, Vishnubalaji R, Ali D, et al. Human stromal (mesenchymal) stem cells from bone marrow, adipose tissue and skin exhibit differences in molecular phenotype and differentiation potential. Stem Cell Rev Rep 2013; 9(1): 32-43.
[http://dx.doi.org/10.1007/s12015-012-9365-8] [PMID: 22529014]
[96]
De Ugarte DA, Morizono K, Elbarbary A, et al. Comparison of multi-lineage cells from human adipose tissue and bone marrow. Cells Tissues Organs 2003; 174(3): 101-9.
[http://dx.doi.org/10.1159/000071150] [PMID: 12835573]
[97]
Zhang J, Wilson GF, Soerens AG, et al. Functional cardiomyocytes derived from human induced pluripotent stem cells. Circ Res 2009; 104(4): e30-41.
[http://dx.doi.org/10.1161/CIRCRESAHA.108.192237] [PMID: 19213953]
[98]
Laflamme MA, Chen KY, Naumova AV, et al. Cardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infarcted rat hearts. Nat Biotechnol 2007; 25(9): 1015-24.
[http://dx.doi.org/10.1038/nbt1327] [PMID: 17721512]
[99]
Shiba Y, Fernandes S, Zhu WZ, et al. Human ES-cell-derived cardiomyocytes electrically couple and suppress arrhythmias in injured hearts. Nature 2012; 489(7415): 322-5.
[http://dx.doi.org/10.1038/nature11317] [PMID: 22864415]
[100]
Vunjak NG, Lui KO, Tandon N, Chien KR. Bioengineering heart muscle: A paradigm for regenerative medicine. Annu Rev Biomed Eng 2011; 13(1): 245-67.
[http://dx.doi.org/10.1146/annurev-bioeng-071910-124701] [PMID: 21568715]
[101]
Bačáková L, Novotná K, Pařízek M. Polysaccharides as cell carriers for tissue engineering: The use of cellulose in vascular wall reconstruction. Physiol Res 2014; 63 (Suppl. 1): S29-47.
[http://dx.doi.org/10.33549/physiolres.932644] [PMID: 24564664]
[102]
Zhou H, Lee J. Nanoscale hydroxyapatite particles for bone tissue engineering. Acta Biomater 2011; 7(7): 2769-81.
[http://dx.doi.org/10.1016/j.actbio.2011.03.019] [PMID: 21440094]
[103]
Asghari F, Samiei M, Adibkia K, Akbarzadeh A, Davaran S. Biodegradable and biocompatible polymers for tissue engineering application: A review. Artif Cells Nanomed Biotechnol 2017; 45(2): 185-92.
[http://dx.doi.org/10.3109/21691401.2016.1146731] [PMID: 26923861]
[104]
Maidhof R, Tandon N, Lee EJ, et al. Biomimetic perfusion and electrical stimulation applied in concert improved the assembly of engineered cardiac tissue. J Tissue Eng Regen Med 2012; 6(10): e12-23.
[http://dx.doi.org/10.1002/term.525] [PMID: 22170772]
[105]
Madden LR, Mortisen DJ, Sussman EM, et al. Proangiogenic scaffolds as functional templates for cardiac tissue engineering. Proc Natl Acad Sci USA 2010; 107(34): 15211-6.
[http://dx.doi.org/10.1073/pnas.1006442107] [PMID: 20696917]
[106]
Ott HC, Matthiesen TS, Goh SK, et al. Perfusion-decellularized matrix: Using nature’s platform to engineer a bioartificial heart. Nat Med 2008; 14(2): 213-21.
[http://dx.doi.org/10.1038/nm1684] [PMID: 18193059]
[107]
Duan Y, Liu Z, O’Neill J, Wan LQ, Freytes DO, Vunjak-Novakovic G. Hybrid gel composed of native heart matrix and collagen induces cardiac differentiation of human embryonic stem cells without supplemental growth factors. J Cardiovasc Transl Res 2011; 4(5): 605-15.
[http://dx.doi.org/10.1007/s12265-011-9304-0] [PMID: 21744185]
[108]
Zhang T, Wan LQ, Xiong Z, et al. Channelled scaffolds for engineering myocardium with mechanical stimulation. J Tissue Eng Regen Med 2012; 6(9): 748-56.
[http://dx.doi.org/10.1002/term.481] [PMID: 22081518]
[109]
Dvir T, Timko BP, Brigham MD, et al. Nanowired three-dimensional cardiac patches. Nat Nanotechnol 2011; 6(11): 720-5.
[http://dx.doi.org/10.1038/nnano.2011.160] [PMID: 21946708]
[110]
Engelmayr GC Jr, Cheng M, Bettinger CJ, Borenstein JT, Langer R, Freed LE. Accordion-like honeycombs for tissue engineering of cardiac anisotropy. Nat Mater 2008; 7(12): 1003-10.
[http://dx.doi.org/10.1038/nmat2316] [PMID: 18978786]
[111]
Yeh HY, Liu BH, Hsu S. The calcium-dependent regulation of spheroid formation and cardiomyogenic differentiation for MSCs on chitosan membranes. Biomaterials 2012; 33(35): 8943-54.
[http://dx.doi.org/10.1016/j.biomaterials.2012.08.069] [PMID: 22985995]
[112]
Liu BH, Yeh HY, Lin YC, et al. Spheroid formation and enhanced cardiomyogenic potential of adipose-derived stem cells grown on chitosan. Biores Open Access 2013; 2(1): 28-39.
[http://dx.doi.org/10.1089/biores.2012.0285] [PMID: 23514754]
[113]
Zimmermann WH, Melnychenko I, Wasmeier G, et al. Engineered heart tissue grafts improve systolic and diastolic function in infarcted rat hearts. Nat Med 2006; 12(4): 452-8.
[http://dx.doi.org/10.1038/nm1394] [PMID: 16582915]
[114]
Stevens KR, Kreutziger KL, Dupras SK, et al. Physiological function and transplantation of scaffold-free and vascularized human cardiac muscle tissue. Proc Natl Acad Sci USA 2009; 106(39): 16568-73.
[http://dx.doi.org/10.1073/pnas.0908381106] [PMID: 19805339]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy