Generic placeholder image

Current Computer-Aided Drug Design

Editor-in-Chief

ISSN (Print): 1573-4099
ISSN (Online): 1875-6697

Research Article

Neural Network-based Optimization of Silybum Marianum Extract-loaded Chitosan Particles: Modeling, Preparation and Antioxidant Evaluation

Author(s): Ali Hanafi, Kazem D. Safa* and Shamsali Rezazadeh*

Volume 19, Issue 1, 2023

Published on: 15 December, 2022

Page: [2 - 12] Pages: 11

DOI: 10.2174/1573409918666221010101036

Price: $65

Abstract

Background: Silymarin is a flavonolignan extracted from Silybum marianum with various therapeutic applications. Many studies have focused on improving the bioavailability of silymarin due to its wide range of efficacy and low bioavailability. Chitosan, a naturally occurring polymeric substance, has a strong reputation for increasing the solubility of poorly soluble compounds.

Objective: This study used artificial neural networks (ANNs) to measure the effects of pH, chitosan to silymarin ratio, chitosan to tripolyphosphate ratio, and stirring time on the loading efficiency of silymarin into chitosan particles.

Methods: A model was developed to investigate the interactions between input factors and silymarin loading efficiency. The DPPH method was utilized to determine the antioxidant activity of an optimized formula and pure raw materials.

Results: According to the outcome of the ANN model, pH and the chitosan to silymarin ratio demonstrated significant effects on loading efficiency. In addition, increased stirring time decreased silymarin loading, whereas the chitosan-to-tripolyphosphate ratio showed a negligible effect on loading efficiency.

Conclusion: Maximum loading efficiency occurred at a pH of approximately~5. Moreover, silymarin- loaded chitosan particles with a lower IC50 value (36.17 ± 0.02 ppm) than pure silymarin (165.04 ± 0.07 ppm) demonstrated greater antioxidant activity.

Keywords: Silymarin, artificial neural networks, optimization, chitosan, antioxidant activity, modeling.

Graphical Abstract
[1]
Kumar, N.; Rai, A.; Reddy, N.D.; Raj, P.V.; Jain, P.; Deshpande, P.; Mathew, G.; Kutty, N.G.; Udupa, N.; Rao, C.M. Silymarin liposomes improves oral bioavailability of silybin besides targeting hepatocytes, and immune cells. Pharmacol. Rep., 2014, 66(5), 788-798.
[http://dx.doi.org/10.1016/j.pharep.2014.04.007] [PMID: 25149982]
[2]
Wang, X.; Zhang, Z.; Wu, S.C. Health benefits of Silybum marianum: Phytochemistry, pharmacology, and applications. J. Agric. Food Chem., 2020, 68(42), 11644-11664.
[http://dx.doi.org/10.1021/acs.jafc.0c04791] [PMID: 33045827]
[3]
Abd El-Ghany, W. The potential uses of silymarin, a milk thistle (Silybum marianum) derivative in poultry production system. Online J Anim Feed Res, 2022.
[http://dx.doi.org/10.51227/ojafr.2022.7]
[4]
Kadoglou, N.P.E.; Panayiotou, C.; Vardas, M.; Balaskas, N.; Kostomitsopoulos, N.G.; Tsaroucha, A.K.; Valsami, G. A comprehensive review of the cardiovascular protective properties of silibinin/silymarin: A new kid on the block. Pharmaceuticals, 2022, 15(5), 538.
[http://dx.doi.org/10.3390/ph15050538] [PMID: 35631363]
[5]
Ramadan, A.A.; Elbakry, A.M.; Sarhan, H.A.; Ali, S.H. Silymarin loaded floating polymer(s) microspheres: Characterization, in vitro/in vivo evaluation. Pharm. Dev. Technol., 2020, 25(9), 1081-1089.
[http://dx.doi.org/10.1080/10837450.2020.1795192] [PMID: 32654568]
[6]
Méndez-Sánchez, N.; Dibildox-Martinez, M.; Sosa-Noguera, J.; Sánchez-Medal, R.; Flores-Murrieta, F.J. Superior silybin bioavailability of silybin-phosphatidylcholine complex in oily-medium soft-gel capsules versus conventional silymarin tablets in healthy volunteers. BMC Pharmacol. Toxicol., 2019, 20(1), 1-6.
[PMID: 30611293]
[7]
Ghosh, A.; Biswas, S.; Ghosh, T. Preparation and evaluation of silymarin β-cyclodextrin molecular inclusion complexes. J. Young Pharm., 2011, 3(3), 205-210.
[http://dx.doi.org/10.4103/0975-1483.83759] [PMID: 21897659]
[8]
Kumar, N.; Rai, A.; Reddy, N.D.; Shenoy, R.R.; Mudgal, J.; Bansal, P.; Mudgal, P.P.; Arumugam, K.; Udupa, N.; Sharma, N.; Rao, C.M. Improved in vitro and in vivo hepatoprotective effects of liposomal silymarin in alcohol-induced hepatotoxicity in Wistar rats. Pharmacol. Rep., 2019, 71(4), 703-712.
[http://dx.doi.org/10.1016/j.pharep.2019.03.013] [PMID: 31207432]
[9]
Nguyen, T.H.T.; Trinh, N.T.; Tran, H.N.; Tran, H.T.; Le, P.Q.; Ngo, D.N.; Tran-Van, H.; Van Vo, T.; Vong, L.B.; Nagasaki, Y. Improving silymarin oral bioavailability using silica-installed redox nanoparticle to suppress inflammatory bowel disease. J. Control. Release, 2021, 331, 515-524.
[http://dx.doi.org/10.1016/j.jconrel.2020.10.042] [PMID: 33616078]
[10]
Saini, S.; Nanda, S.; Dhiman, A. Chitosan nanoparticles: An approbative system for the delivery of herbal bioactives. Nat. Prod. J., 2022, 12(1), 3-16.
[http://dx.doi.org/10.2174/2210315510999201124155627]
[11]
Kecel-Gunduz, S.; Budama-Kilinc, Y.; Cakir-Koc, R.; Zorlu, T.; Bicak, B.; Kokcu, Y.; Kaya, Z.; Ozel, A.E.; Akyuz, S. In silico analysis of sulpiride, synthesis, characterization and in vitro studies of its nanoparticle for the treatment of schizophrenia. Curr. Computeraided Drug Des., 2020, 16(2), 104-121.
[http://dx.doi.org/10.2174/1573409915666190627125643] [PMID: 31244443]
[12]
Kravanja, G.; Primožič, M.; Knez, Ž.; Leitgeb, M. Chitosan-based (Nano) materials for novel biomedical applications. Molecules, 2019, 24(10), 1960.
[http://dx.doi.org/10.3390/molecules24101960] [PMID: 31117310]
[13]
Shen, S.; Wu, Y.; Liu, Y.; Wu, D. High drug-loading nanomedicines: Progress, current status, and prospects. Int. J. Nanomedicine, 2017, 12, 4085-4109.
[http://dx.doi.org/10.2147/IJN.S132780] [PMID: 28615938]
[14]
Hanafi, A.; Amani, A. Effect of processing/formulation parameters on particle size of nanoemulsions containing ibuprofen-An artificial neural networks study. Ulum-i Daruyi, 2020, 27(2), 230-237.
[http://dx.doi.org/10.34172/PS.2020.74]
[15]
Ibrahim, A.S.S.; Al-Salamah, A.A.; El-Toni, A.M.; El-Tayeb, M.A.; Elbadawi, Y.B. Cyclodextrin glucanotransferase immobilization onto functionalized magnetic double mesoporous core-shell silica nanospheres. Electron. J. Biotechnol., 2014, 17(2), 55-64.
[http://dx.doi.org/10.1016/j.ejbt.2014.01.001]
[16]
Shin, H.W.; Kim, J.E.; Park, Y.J. Nanoporous silica entrapped lipid-drug complexes for the solubilization and absorption enhancement of poorly soluble drugs. Pharmaceutics, 2021, 13(1), 63.
[http://dx.doi.org/10.3390/pharmaceutics13010063] [PMID: 33418969]
[17]
Lv, S.; Wu, Y.; Cai, K.; He, H.; Li, Y.; Lan, M.; Chen, X.; Cheng, J.; Yin, L. High drug loading and sub-quantitative loading efficiency of polymeric micelles driven by donor-receptor coordination interactions. J. Am. Chem. Soc., 2018, 140(4), 1235-1238.
[http://dx.doi.org/10.1021/jacs.7b12776] [PMID: 29332390]
[18]
Pan, Y.; Liu, J.; Yang, K.; Cai, P.; Xiao, H. Novel multi-responsive and sugarcane bagasse cellulose-based nanogels for controllable release of doxorubicin hydrochloride. Mater. Sci. Eng. C, 2021, 118, 111357.
[http://dx.doi.org/10.1016/j.msec.2020.111357] [PMID: 33254977]
[19]
Rawal, T.; Parmar, R.; Tyagi, R.K.; Butani, S. Rifampicin loaded chitosan nanoparticle dry powder presents an improved therapeutic approach for alveolar tuberculosis. Colloids Surf. B Biointerfaces, 2017, 154, 321-330.
[http://dx.doi.org/10.1016/j.colsurfb.2017.03.044] [PMID: 28363192]
[20]
Seyedebrahimi, R.; Razavi, S.; Varshosaz, J. Controlled delivery of brain derived Neurotrophic factor and gold-nanoparticles from chitosan/TPP nanoparticles for tissue engineering applications. J. Cluster Sci., 2020, 31(1), 99-108.
[http://dx.doi.org/10.1007/s10876-019-01621-9]
[21]
Moghaddam, A.H.; Mokhtari Sangdehi, S.R.; Ranjbar, M.; Hasantabar, V. Preventive effect of silymarin-loaded chitosan nanoparticles against global cerebral ischemia/reperfusion injury in rats. Eur. J. Pharmacol., 2020, 877, 173066.
[http://dx.doi.org/10.1016/j.ejphar.2020.173066] [PMID: 32171791]
[22]
Mokhtari Sangdehi, S.R.; Hajizadeh Moghaddam, A.; Ranjbar, M. Anti-apoptotic effect of silymarin-loaded chitosan nanoparticles on hippocampal caspase-3 and Bcl-2 expression following cerebral ischemia/reperfusion injury. Int. J. Neurosci., 2021, 1-8.
[http://dx.doi.org/10.1080/00207454.2020.1860971] [PMID: 33287594]
[23]
Baharifar, H.; Amani, A. Size, loading efficiency, and cytotoxicity of albumin-loaded chitosan nanoparticles: An artificial neural networks study. J. Pharm. Sci., 2017, 106(1), 411-417.
[http://dx.doi.org/10.1016/j.xphs.2016.10.013] [PMID: 27866686]
[24]
Paknezhad, B.; Vakili, M.; Bozorgi, M.; Hajialibabaie, M.; Yahyaei, M. A hybrid genetic-BP algorithm approach for thermal conductivity modeling of nanofluid containing silver nanoparticles coated with PVP. J. Therm. Anal. Calorim., 2020, 1-14.
[25]
Ghaemian, P.; Shayanfar, A. Image-based QSAR Model for the prediction of P-gp inhibitory activity of epigallocatechin and gallocatechin derivatives. Curr. Computeraided Drug Des., 2019, 15(3), 212-224.
[http://dx.doi.org/10.2174/1573409914666181003152042] [PMID: 30280673]
[26]
Esmaeili, F.; Aghajani, M.; Rashti, A.; Abdollahi, M.; Faridi-Majidi, R.; Ghanbari, H.; Amani, A. Parameters influencing size of electrosprayed chitosan/HPMC/TPP nanoparticles containing alendronate by an artificial neural networks model. J. Electrost., 2021, 112, 103598.
[http://dx.doi.org/10.1016/j.elstat.2021.103598]
[27]
Singh, S.K.; Girotra, P.; Gupta, S. Targeting silymarin for improved hepatoprotective activity through chitosan nanoparticles. Int. J. Pharm. Investig., 2014, 4(4), 156-163.
[http://dx.doi.org/10.4103/2230-973X.143113] [PMID: 25426436]
[28]
Hanafi, A.; Kamali, M.; Darvishi, M.H.; Amani, A. Evaluation of loading efficiency of azelaic acid-chitosan particles using artificial neural networks. Nanomed. J., 2016, 3(3), 169-178.
[29]
Piran, F.; Khoshkhoo, Z.; Hosseini, S.; Azizi, M. Controlling the antioxidant activity of green tea extract through encapsulation in chitosan-citrate nanogel. J. Food Qual., 2020, 2020, Article ID: 7935420.
[http://dx.doi.org/10.1155/2020/7935420]
[30]
The effects of different extraction conditions on the polyphenol, flavonoids components and antioxidant activity of Polyscias fruticosa roots. IOP Conference Series: Materials Science and Engineering; Nguyen, N.; Nguyen, M.; Nguyen, V.; Le, V.; Trieu, L.; Le, X., Eds.; , 2020.
[31]
Dong, K.; Zhao, Z.Z.; Kang, J.; Lin, L.R.; Chen, W.T.; Liu, J.X.; Wu, X.L.; Lu, T.L. Cinnamaldehyde and doxorubicin Co-loaded graphene oxide wrapped mesoporous silica nanoparticles for enhanced MCF-7 cell apoptosis. Int. J. Nanomedicine, 2020, 15, 10285-10304.
[http://dx.doi.org/10.2147/IJN.S283981] [PMID: 33376322]
[32]
Baharifar, H.; Tavoosidana, G.; Karimi, R.; Bidgoli, S.A.; Ghanbari, H.; Faramarzi, M.A.; Amani, A. Optimization of self-assembled chitosan/streptokinase nanoparticles and evaluation of their cytotoxicity and thrombolytic activity. J. Nanosci. Nanotechnol., 2015, 15(12), 10127-10133.
[http://dx.doi.org/10.1166/jnn.2015.11696] [PMID: 26682458]
[33]
Jarudilokkul, S.; Tongthammachat, A.; Boonamnuayvittaya, V. Preparation of chitosan nanoparticles for encapsulation and release of protein. Korean J. Chem. Eng., 2011, 28(5), 1247-1251.
[http://dx.doi.org/10.1007/s11814-010-0485-z]
[34]
Maciel, V.B.V.; Yoshida, C.M.P.; Franco, T.T. Chitosan/pectin polyelectrolyte complex as a pH indicator. Carbohydr. Polym., 2015, 132, 537-545.
[http://dx.doi.org/10.1016/j.carbpol.2015.06.047] [PMID: 26256380]
[35]
Afzal, S.; Maswal, M.; Dar, A.A. Rheological behavior of pH responsive composite hydrogels of chitosan and alginate: Characterization and its use in encapsulation of citral. Colloids Surf. B Biointerfaces, 2018, 169, 99-106.
[http://dx.doi.org/10.1016/j.colsurfb.2018.05.002] [PMID: 29753183]
[36]
Gan, Q.; Wang, T. Chitosan nanoparticle as protein delivery carrier Systematic examination of fabrication conditions for efficient loading and release. Colloids Surf. B Biointerfaces, 2007, 59(1), 24-34.
[http://dx.doi.org/10.1016/j.colsurfb.2007.04.009] [PMID: 17555948]
[37]
Honarmand, D.; Ghoreishi, S.M.; Habibi, N.; Nicknejad, E.T. Controlled release of protein from magnetite-chitosan nanoparticles exposed to an alternating magnetic field. J. Appl. Polym. Sci., 2016, 133(17)
[http://dx.doi.org/10.1002/app.43335]
[38]
Alsarra, I.A.; Neau, S.H.; Howard, M.A. Effects of preparative parameters on the properties of chitosan hydrogel beads containing Candida rugosa lipase. Biomaterials, 2004, 25(13), 2645-2655.
[http://dx.doi.org/10.1016/j.biomaterials.2003.09.051] [PMID: 14751751]
[39]
Chandra Hembram, K.; Prabha, S.; Chandra, R.; Ahmed, B.; Nimesh, S. Advances in preparation and characterization of chitosan nanoparticles for therapeutics. Artif. Cells Nanomed. Biotechnol., 2016, 44(1), 305-314.
[http://dx.doi.org/10.3109/21691401.2014.948548] [PMID: 25137489]
[40]
Kesharwani, S.S.; Jain, V.; Dey, S.; Sharma, S.; Mallya, P.; Kumar, V.A. An overview of advanced formulation and nanotechnology-based approaches for solubility and bioavailability enhancement of silymarin. J. Drug Deliv. Sci. Technol., 2020, 60, 102021.
[http://dx.doi.org/10.1016/j.jddst.2020.102021]
[41]
Pooja, D.; Babu Bikkina, D.J.; Kulhari, H.; Nikhila, N.; Chinde, S.; Raghavendra, Y.M.; Sreedhar, B.; Tiwari, A.K. Fabrication, characterization and bioevaluation of silibinin loaded chitosan nanoparticles. Int. J. Biol. Macromol., 2014, 69, 267-273.
[http://dx.doi.org/10.1016/j.ijbiomac.2014.05.035] [PMID: 24863917]
[42]
Wang, J.; Jiang, Z. Synthesis, characterisation, antioxidant and antibacterial properties of p-hydroxybenzoic acid-grafted chitosan conjugates. Int. J. Food Sci. Technol., 2022, 57(2), 1283-1290.
[http://dx.doi.org/10.1111/ijfs.15518]
[43]
Abdullah, A.S.; El Sayed, I.E.T.; El-Torgoman, A.M.A.; Alghamdi, N.A.; Ullah, S.; Wageh, S.; Kamel, M.A. Preparation and characterization of silymarin-conjugated gold nanoparticles with enhanced anti-fibrotic therapeutic effects against hepatic fibrosis in rats: Role of MicroRNAs as molecular targets. Biomedicines, 2021, 9(12), 1767.
[http://dx.doi.org/10.3390/biomedicines9121767] [PMID: 34944582]
[44]
Sandomierski, M.; Jakubowski, M.; Ratajczak, M.; Voelkel, A. Drug distribution evaluation using FT-IR imaging on the surface of a titanium alloy coated with zinc titanate with potential application in the release of drugs for osteoporosis. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2022, 281, 121575.
[http://dx.doi.org/10.1016/j.saa.2022.121575] [PMID: 35797951]
[45]
Rodrigues, S.; Costa, A.M.R.; Grenha, A. Chitosan/carrageenan nanoparticles: Effect of cross-linking with tripolyphosphate and charge ratios. Carbohydr. Polym., 2012, 89(1), 282-289.
[http://dx.doi.org/10.1016/j.carbpol.2012.03.010] [PMID: 24750635]
[46]
Senturk, F.; Cakmak, S.; Gumusderelioglu, M.; Ozturk, G.G. Hydrolytic instability and low-loading levels of temozolomide to magnetic PLGA nanoparticles remain challenging against glioblastoma therapy. J. Drug Deliv. Sci. Technol., 2022, 68, 103101.
[http://dx.doi.org/10.1016/j.jddst.2022.103101]
[47]
Ivanov, V.; Pavlova, M.; Pavlova, M. Comparative study of the antioxidant properties of silymarin and milk thistle extracts. Trakia J. Sci., 2021, 19(1), 1-6.
[http://dx.doi.org/10.15547/tjs.2021.01.001]
[48]
Mhamdi, B.; Abbassi, F.; Smaoui, A.; Abdelly, C.; Marzouk, B. Fatty acids, essential oil and phenolics composition of Silybum marianum seeds and their antioxidant activities. Pak. J. Pharm. Sci., 2016, 29(3), 953-959.
[PMID: 27166539]
[49]
Rajalakshmi, A.; Krithiga, N.; Jayachitra, A. Antioxidant activity of the chitosan extracted from shrimp exoskeleton. Middle East J. Sci. Res., 2013, 16(10), 1446-1451.
[50]
Barzegar, M.; Ghaderi Ghahfarokhi, M.; Sahari, M.; Azizi, M. Enhancement of thermal stability and antioxidant activity of thyme essential oil by encapsulation in chitosan nanoparticles. J. Agric. Sci. Technol., 2016, 18(7), 1781-1792.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy