Review Article

癌症免疫治疗中的细胞粘附分子CD99

卷 23, 期 10, 2023

发表于: 27 October, 2022

页: [1028 - 1036] 页: 9

弟呕挨: 10.2174/1566524023666221007143513

价格: $65

Open Access Journals Promotions 2
摘要

CD99抗原是一种跨膜蛋白,在多种组织中表达,特别是在造血细胞、胸腺、内皮细胞等中。它参与细胞粘附、迁移、死亡、分化和炎症等多种重要的生物过程。 CD99 在不同类型的癌症中显示出致癌或肿瘤抑制作用。因此,它已被用作多种癌症的生物标志物和治疗靶点。此外,据报道它还参与一些关键的免疫过程,如T细胞活化和分化、树突状细胞分化等。因此,CD99在癌症免疫治疗中可能具有潜在价值。抗 CD99 抗体已显示出对某些类型的癌症的治疗作用,特别是对尤文肉瘤和 T 细胞急性淋巴细胞白血病 (ALL)。该综述总结了CD99在癌症研究和靶向治疗,特别是在癌症免疫治疗方面的最新进展,这可能有助于研究人员了解CD99在癌症发生发展中的关键作用并设计新的治疗策略。

关键词: CD99,癌症,生物标志物,靶向治疗,免疫治疗,细胞粘附。

[1]
Manara M, Pasello M, Scotlandi K. CD99: A cell surface protein with an oncojanus role in tumors. Genes 2018; 9(3): 159.
[http://dx.doi.org/10.3390/genes9030159] [PMID: 29534016]
[2]
Pasello M, Manara MC, Scotlandi K. CD99 at the crossroads of physiology and pathology. J Cell Commun Signal 2018; 12(1): 55-68.
[http://dx.doi.org/10.1007/s12079-017-0445-z] [PMID: 29305692]
[3]
Riggi N, Suvà ML, Stamenkovic I. Ewing’s sarcoma. N Engl J Med 2021; 384(2): 154-64.
[http://dx.doi.org/10.1056/NEJMra2028910] [PMID: 33497548]
[4]
Scotlandi K, Perdichizzi S, Bernard G, et al. Targeting CD99 in association with doxorubicin: An effective combined treatment for Ewing’s sarcoma. Eur J Cancer 2006; 42(1): 91-6.
[http://dx.doi.org/10.1016/j.ejca.2005.09.015] [PMID: 16326096]
[5]
Scotlandi K, Baldini N, Cerisano V, et al. CD99 engagement: an effective therapeutic strategy for Ewing tumors. Cancer Res 2000; 60(18): 5134-42.
[PMID: 11016640]
[6]
Seol HJ, Chang JH, Yamamoto J, et al. Overexpression of CD99 increases the migration and invasiveness of human malig-nant glioma cells. Genes Cancer 2012; 3(9-10): 535-49.
[http://dx.doi.org/10.1177/1947601912473603] [PMID: 23486730]
[7]
Cardoso L, Soares R, Laurentino T, Lerario A, Marie S, Oba-Shinjo S. CD99 Expression in glioblastoma molecular subtypes and role in migration and invasion. Int J Mol Sci 2019; 20(5): 1137.
[http://dx.doi.org/10.3390/ijms20051137] [PMID: 30845661]
[8]
Dworzak MN, Fröschl G, Printz D, et al. CD99 expression in T-lineage ALL: implications for flow cytometric detection of mini-mal residual disease. Leukemia 2004; 18(4): 703-8.
[http://dx.doi.org/10.1038/sj.leu.2403303] [PMID: 14961034]
[9]
Cox CV, Diamanti P, Moppett JP, Blair A. Investigating CD99 expression in leukemia propagating cells in childhood T cell acute lymphoblastic leukemia. PLoS One 2016; 11(10): e0165210.
[http://dx.doi.org/10.1371/journal.pone.0165210] [PMID: 27764235]
[10]
Enein AAA, Rahman HAA, Sharkawy NE, et al. Significance of CD99 expression in T-lineage acute lymphoblastic leukemia. Cancer Biomark 2016; 17(2): 117-23.
[http://dx.doi.org/10.3233/CBM-160608] [PMID: 27002769]
[11]
Chen D, Camponeschi A, Wu Q, et al. CD99 expression is strongly associated with clinical outcome in children with B-cell precursor acute lymphoblastic leukaemia. Br J Haematol 2019; 184(3): 418-23.
[http://dx.doi.org/10.1111/bjh.15683] [PMID: 30484860]
[12]
Chung SS, Eng WS, Hu W, et al. CD99 is a therapeutic target on disease stem cells in myeloid malignancies. Sci Transl Med 2017; 9(374): eaaj2025.
[http://dx.doi.org/10.1126/scitranslmed.aaj2025] [PMID: 28123069]
[13]
Kim SH, Shin YK, Lee I, et al. Viral latent membrane protein 1 (LMP-1)–induced CD99 down-regulation in B cells leads to the generation of cells with Hodgkin’s and Reed-Sternberg phenotype. Blood 2000; 95(1): 294-300.
[http://dx.doi.org/10.1182/blood.V95.1.294] [PMID: 10607715]
[14]
Gao Q, Yellapantula V, Fenelus M, et al. Tumor suppressor CD99 is downregulated in plasma cell neoplasms lacking CCND1 translocation and distinguishes neoplastic from normal plasma cells and B-cell lymphomas with plasmacytic differentiation from primary plasma cell neoplasms. Mod Pathol 2018; 31(6): 881-9.
[http://dx.doi.org/10.1038/s41379-018-0011-0] [PMID: 29403080]
[15]
Choi YL, Xuan YH, Shin YK, et al. An immunohistochemical study of the expression of adhesion molecules in gallbladder le-sions. J Histochem Cytochem 2004; 52(5): 591-601.
[http://dx.doi.org/10.1177/002215540405200504] [PMID: 15100237]
[16]
Maitra A, Hansel DE, Argani P, et al. Global expression analysis of well-differentiated pancreatic endocrine neoplasms using oligonucleotide microarrays. Clin Cancer Res 2003; 9(16 Pt 1): 5988-95.
[PMID: 14676124]
[17]
Jung KC, Park WS, Bae YM, et al. Immunoreactivity of CD99 in stomach cancer. J Korean Med Sci 2002; 17(4): 483-9.
[http://dx.doi.org/10.3346/jkms.2002.17.4.483] [PMID: 12172043]
[18]
Manara MC, Bernard G, Lollini PL, et al. CD99 acts as an oncosuppressor in osteosarcoma. Mol Biol Cell 2006; 17(4): 1910-21.
[http://dx.doi.org/10.1091/mbc.e05-10-0971] [PMID: 16421247]
[19]
Choi EY, Park WS, Jung KC, et al. Engagement of CD99 induces up-regulation of TCR and MHC class I and II molecules on the surface of human thymocytes. J Immunol 1998; 161(2): 749-54.
[PMID: 9670951]
[20]
Kim MK, Choi YL, Kim MK, et al. MHC class II engagement inhibits CD99-induced apoptosis and up-regulation of T cell recep-tor and MHC molecules in human thymocytes and T cell line. FEBS Lett 2003; 546(2-3): 379-84.
[http://dx.doi.org/10.1016/S0014-5793(03)00567-2] [PMID: 12832073]
[21]
Yoon SS, Kim HJ, Chung DH, Kim TJ. CD99 costimulation up-regulates T cell receptor-mediated activation of JNK and AP-1. Mol Cells 2004; 18(2): 186-91.
[PMID: 15528994]
[22]
Mahiddine K, Mallavialle A, Bziouech H, Larbret F, Bernard A, Bernard G. CD99 isoforms regulate CD1a expression in human monocyte-derived DCs through ATF-2/CREB-1 phosphorylation. Eur J Immunol 2016; 46(6): 1460-71.
[http://dx.doi.org/10.1002/eji.201546143] [PMID: 27094031]
[23]
Hahn JH, Kim MK, Choi EY, et al. CD99 (MIC2) regulates the LFA-1/ICAM-1-mediated adhesion of lymphocytes, and its gene encodes both positive and negative regulators of cellular adhesion. J Immunol 1997; 159(5): 2250-8.
[PMID: 9278313]
[24]
Banting GS, Pym B, Darling SM, Goodfellow PN. The MIC2 gene product: Epitope mapping and structural prediction analysis define an integral membrane protein. Mol Immunol 1989; 26(2): 181-8.
[http://dx.doi.org/10.1016/0161-5890(89)90100-4] [PMID: 2465491]
[25]
Ellis NA, Ye TZ, Patton S, German J, Goodfellow PN, Weller P. Cloning of PBDX, an MIC2-related gene that spans the pseudo-autosomal boundary on chromosome Xp. Nat Genet 1994; 6(4): 394-400.
[http://dx.doi.org/10.1038/ng0494-394] [PMID: 8054981]
[26]
Fouchet C, Gane P, Huet M, et al. A study of the coregulation and tissue specificity of XGand MIC2 gene expression in eukary-otic cells. Blood 2000; 95(5): 1819-26.
[http://dx.doi.org/10.1182/blood.V95.5.1819.005k05_1819_1826] [PMID: 10688843]
[27]
Rocchi A, Manara MC, Sciandra M, et al. CD99 inhibits neural differentiation of human Ewing sarcoma cells and thereby con-tributes to oncogenesis. J Clin Invest 2010; 120(3): 668-80.
[http://dx.doi.org/10.1172/JCI36667] [PMID: 20197622]
[28]
Takheaw N, Earwong P, Laopajon W, Pata S, Kasinrerk W. Interaction of CD99 and its ligand upregulates IL-6 and TNF-α upon T cell activation. PLoS One 2019; 14(5): e0217393.
[http://dx.doi.org/10.1371/journal.pone.0217393] [PMID: 31120992]
[29]
Takheaw N, Pata S, Laopajon W, Roytrakul S, Kasinrerk W. The presence of membrane bound CD99 ligands on leukocyte surface. BMC Res Notes 2020; 13(1): 496.
[http://dx.doi.org/10.1186/s13104-020-05347-0] [PMID: 33092634]
[30]
Goswami D, März S, Li YT, et al. Endothelial CD99 supports arrest of mouse neutrophils in venules and binds to neutrophil PILRs. Blood 2017; 129(13): 1811-22.
[http://dx.doi.org/10.1182/blood-2016-08-733394] [PMID: 28223280]
[31]
Ventura S, Aryee DNT, Felicetti F, et al. CD99 regulates neural differentiation of Ewing sarcoma cells through miR-34a-Notch-mediated control of NF-κB signaling. Oncogene 2016; 35(30): 3944-54.
[http://dx.doi.org/10.1038/onc.2015.463] [PMID: 26616853]
[32]
Miyagawa Y, Okita H, Nakaijima H, et al. Inducible expression of chimeric EWS/ETS proteins confers Ewing’s family tumor-like phenotypes to human mesenchymal progenitor cells. Mol Cell Biol 2008; 28(7): 2125-37.
[http://dx.doi.org/10.1128/MCB.00740-07] [PMID: 18212050]
[33]
Riggi N, Suvà ML, Suvà D, et al. EWS-FLI-1 expression triggers a Ewing’s sarcoma initiation program in primary human mes-enchymal stem cells. Cancer Res 2008; 68(7): 2176-85.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-1761] [PMID: 18381423]
[34]
Franzetti GA, Laud-Duval K, Bellanger D, Stern MH, Sastre-Garau X, Delattre O. MiR-30a-5p connects EWS-FLI1 and CD99, two major therapeutic targets in Ewing tumor. Oncogene 2013; 32(33): 3915-21.
[http://dx.doi.org/10.1038/onc.2012.403] [PMID: 22986530]
[35]
Tavakkoli M, Chung SS, Park CY. Do preclinical studies suggest that CD99 is a potential therapeutic target in acute myeloid leukemia and the myelodysplastic syndromes? Expert Opin Ther Targets 2018; 22(5): 381-3.
[http://dx.doi.org/10.1080/14728222.2018.1464140] [PMID: 29637789]
[36]
Scotlandi K, Zuntini M, Manara MC, et al. CD99 isoforms dictate opposite functions in tumour malignancy and metastases by activating or repressing c-Src kinase activity. Oncogene 2007; 26(46): 6604-18.
[http://dx.doi.org/10.1038/sj.onc.1210481] [PMID: 17471235]
[37]
Lee JH, Kim SH, Wang LH, et al. Clinical significance of CD99 down-regulation in gastric adenocarcinoma. Clin Cancer Res 2007; 13(9): 2584-91.
[http://dx.doi.org/10.1158/1078-0432.CCR-06-1785] [PMID: 17473187]
[38]
Shin SJ, Lee H, Jung G, et al. Expression of CD99 in Multiple Myeloma: A Clinicopathologic and Immunohistochemical Study of 170 Cases. Korean J Pathol 2014; 48(3): 209-16.
[http://dx.doi.org/10.4132/KoreanJPathol.2014.48.3.209] [PMID: 25013419]
[39]
Edlund K, Lindskog C, Saito A, et al. CD99 is a novel prognostic stromal marker in non-small cell lung cancer. Int J Cancer 2012; 131(10): 2264-73.
[http://dx.doi.org/10.1002/ijc.27518] [PMID: 22392539]
[40]
Lee SP, Park S, Park J, Hong J, Ko YH. Clinicopathologic characteristics of CD99-positive diffuse large B-cell lymphoma. Acta Haematol 2011; 125(3): 167-74.
[http://dx.doi.org/10.1159/000322551] [PMID: 21196719]
[41]
Coustan-Smith E, Song G, Clark C, et al. New markers for minimal residual disease detection in acute lymphoblastic leukemia. Blood 2011; 117(23): 6267-76.
[http://dx.doi.org/10.1182/blood-2010-12-324004] [PMID: 21487112]
[42]
Takheaw N, Sittithumcharee G, Kariya R, Kasinrerk W, Okada S. Anti-human CD99 antibody exerts potent antitumor effects in mantle cell lymphoma. Cancer Immunol Immunother 2021; 70(6): 1557-67.
[http://dx.doi.org/10.1007/s00262-020-02789-0] [PMID: 33215253]
[43]
Vaikari VP, Du Y, Wu S, et al. Clinical and preclinical characterization of CD99 isoforms in acute myeloid leukemia. Haematologica 2020; 105(4): 999-1012.
[http://dx.doi.org/10.3324/haematol.2018.207001] [PMID: 31371417]
[44]
Vaikari VP, Park M, Keossayan L, MacKay JA, Alachkar H. Anti-CD99 scFv-ELP nanoworms for the treatment of acute myeloid leukemia. Nanomedicine 2020; 29: 102236.
[http://dx.doi.org/10.1016/j.nano.2020.102236] [PMID: 32535112]
[45]
Wingett D, Forcier K, Nielson CP. A role for CD99 in T cell activation. Cell Immunol 1999; 193(1): 17-23.
[http://dx.doi.org/10.1006/cimm.1999.1470] [PMID: 10202109]
[46]
Laopajon W, Pata S, Takheaw N, Surinkaew S, Khummuang S, Kasinrerk W. Triggering of CD99 on monocytes by a specific monoclonal antibody regulates T cell activation. Cell Immunol 2019; 335: 51-8.
[http://dx.doi.org/10.1016/j.cellimm.2018.10.012] [PMID: 30396687]
[47]
Sohn HW, Shin YK, Lee IS, et al. CD99 regulates the transport of MHC class I molecules from the Golgi complex to the cell surface. J Immunol 2001; 166(2): 787-94.
[http://dx.doi.org/10.4049/jimmunol.166.2.787] [PMID: 11145651]
[48]
Bernard G, Breittmayer JP, de Matteis M, et al. Apoptosis of immature thymocytes mediated by E2/CD99. J Immunol 1997; 158(6): 2543-50.
[PMID: 9058785]
[49]
Pettersen RD, Bernard G, Olafsen MK, Pourtein M, Lie SO. CD99 signals caspase-independent T cell death. J Immunol 2001; 166(8): 4931-42.
[http://dx.doi.org/10.4049/jimmunol.166.8.4931] [PMID: 11290771]
[50]
Jensen MC, Riddell SR. Designing chimeric antigen receptors to effectively and safely target tumors. Curr Opin Immunol 2015; 33: 9-15.
[http://dx.doi.org/10.1016/j.coi.2015.01.002] [PMID: 25621840]
[51]
Shi J, Zhang Z, Cen H, et al. CAR T cells targeting CD99 as an approach to eradicate T-cell acute lymphoblastic leukemia without normal blood cells toxicity. J Hematol Oncol 2021; 14(1): 162.
[http://dx.doi.org/10.1186/s13045-021-01178-z] [PMID: 34627328]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy