Review Article

非病毒Episomal载体基因治疗的现状和新兴机遇

卷 23, 期 2, 2023

发表于: 27 October, 2022

页: [135 - 147] 页: 13

弟呕挨: 10.2174/1566523222666221004100858

价格: $65

conference banner
摘要

基因疗法在管理广泛的遗传疾病方面非常有益己被证明,目前没有或很少有有效的治疗方法。基因转移载体在基因治疗领域具有非常重要的意义。可以将非病毒的附着载体附着在供体细胞染色体上,而不是将其整合,从而消除病毒和整合载体的副作用。它是一种安全的、最优的基因治疗表达载体,因为它不会引起任何不良反应。但克隆率适中,表达量低,克隆数量少,不适合用于基因治疗。自第一代非病毒附着episomal载体构建以来,人们采取了截断MAR元件、降低CpG基序数量、选择合适的启动子和利用调控元件等各种步骤来调控其表达和稳定性。这增加了非病毒附着载体的转染有效性,同时也使其高水平表达并保持高水平的稳定性。载体是基因治疗中常用的一种基因结构,用于治疗各种系统性疾病。本文综述了非病毒附着载体的各种优化策略的开发进展,以及这些载体在基因治疗中的未来应用。

关键词: 附着载体、非病毒载体、载体优化、基因治疗、帕金森病、毒性、免疫反应、疗效。

[1]
Muigai AWT. Expanding global access to genetic therapies. Nat Biotechnol 2022; 40(1): 20-1.
[http://dx.doi.org/10.1038/s41587-021-01191-0] [PMID: 34997245]
[2]
Flotte TR, Cataltepe O, Puri A, et al. AAV gene therapy for Tay-Sachs disease. Nat Med 2022; 28(2): 251-9.
[http://dx.doi.org/10.1038/s41591-021-01664-4] [PMID: 35145305]
[3]
Khan MI, Batool F, Kalsoom F, et al. New insights on unique therapeutic potentialities of prostacyclin and prostacyclin synthase. Mater Today Chem 2020; 16(16): 100258.
[http://dx.doi.org/10.1016/j.mtchem.2020.100258]
[4]
Lederer CW, Koniali L, Buerki-Thurnherr T, et al. Catching them early: Framework parameters and progress for prenatal and childhood application of advanced therapies. Pharmaceutics 2022; 14(4): 793.
[http://dx.doi.org/10.3390/pharmaceutics14040793] [PMID: 35456627]
[5]
Singh G. Resveratrol delivery via gene therapy: Entering the modern era. Turk J Pharm Sci 2022; 19(1): 104-9.
[http://dx.doi.org/10.4274/tjps.galenos.2020.89577] [PMID: 35227259]
[6]
Ge L, Yang L, Bron R, van Rijn P. Topography-mediated enhancement of nonviral gene delivery in stem cells. Pharmaceutics 2022; 14(5): 1096.
[http://dx.doi.org/10.3390/pharmaceutics14051096] [PMID: 35631682]
[7]
Sayed N, Allawadhi P, Khurana A, et al. Gene therapy: Comprehensive overview and therapeutic applications. Life Sci 2022; 294: 120375.
[http://dx.doi.org/10.1016/j.lfs.2022.120375] [PMID: 35123997]
[8]
Almani MIK, Kazmi A, Haider I, et al. Correlation of duration of Hepatitis C infection with triglycerides and total cholesterol. J Islamabad Med Dent Coll 2016; 5(4): 168-71.
[9]
Imran Khan M, Iqbal HMN, Garedaghi Y, Bilal M. Molecular epidemiology of hepatitis C virus infection- status Quo and outlook. Int J Med Parasitol Epidemiol Sci 2021; 2(3): 71-2.
[http://dx.doi.org/10.34172/ijmpes.2021.19]
[10]
Almani MIK, Kazmi A, Mansoor R. Prevalence of diabetes mellitus in patients of chronic hepatitis C. J Islamabad Med Dent Coll 2012; 1(4): 183-6.
[11]
Khan MI, Kalsoom F, Batool F, et al. Undiagnosed hepatitis B and C virus infection at a teaching hospital in Rawalpindi. J Pure Appl Microbiol 2020; 14(2): 1279-86.
[http://dx.doi.org/10.22207/JPAM.14.2.23]
[12]
Tasset A, Bellamkonda A, Wang W, et al. Overcoming barriers in non-viral gene delivery for neurological applications. Nanoscale 2022; 14(10): 3698-719.
[http://dx.doi.org/10.1039/D1NR06939J] [PMID: 35195645]
[13]
Leclercq B, Mejlachowicz D, Behar-Cohen F. Ocular barriers and their influence on gene therapy products delivery. Pharmaceutics 2022; 14(5): 998.
[http://dx.doi.org/10.3390/pharmaceutics14050998] [PMID: 35631584]
[14]
Ariful Islam M, Park TE, Firdous J, et al. Essential cues of engineered polymeric materials regulating gene transfer pathways. Prog Mater Sci 2022; 128: 100961.
[http://dx.doi.org/10.1016/j.pmatsci.2022.100961]
[15]
Parambi DGT, Alharbi KS, Kumar R, et al. Gene therapy approach with an emphasis on growth factors: Theoretical and clinical outcomes in neurodegenerative diseases. Mol Neurobiol 2022; 59(1): 191-233.
[http://dx.doi.org/10.1007/s12035-021-02555-y] [PMID: 34655056]
[16]
Blaese RM, Culver KW, Miller AD, et al. T lymphocyte-directed gene therapy for ADA- SCID: Initial trial results after 4 years. Science 1995; 270(5235): 475-80.
[http://dx.doi.org/10.1126/science.270.5235.475] [PMID: 7570001]
[17]
Mueller C, Flotte TR. Clinical gene therapy using recombinant adeno-associated virus vectors. Gene Ther 2008; 15(11): 858-63.
[http://dx.doi.org/10.1038/gt.2008.68] [PMID: 18418415]
[18]
Zhao Z, Anselmo AC, Mitragotri S. Viral vector‐based gene therapies in the clinic. Bioeng Transl Med 2022; 7(1): e10258.
[http://dx.doi.org/10.1002/btm2.10258] [PMID: 35079633]
[19]
Bezeljak U. Cancer gene therapy goes viral: Viral vector platforms come of age. Radiol Oncol 2022; 56(1): 1-13.
[http://dx.doi.org/10.2478/raon-2022-0002] [PMID: 35148469]
[20]
Umair Mb, Akusa FN, Kashif H, et al. Viruses as tools in gene therapy, vaccine development, and cancer treatment. Arch Virol 2022; 167: 1387-404.
[21]
Hutt JA, Assaf BT, Bolon B, et al. Scientific and regulatory policy committee points to consider: Nonclinical research and development of in vivo gene therapy products, emphasizing adeno-associated virus vectors. Toxicol Pathol 2022; 50(1): 118-46.
[http://dx.doi.org/10.1177/01926233211041962] [PMID: 34657529]
[22]
Gurumoorthy N, Nordin F, Tye GJ, Wan Kamarul Zaman WS, Ng MH. Non-integrating lentiviral vectors in clinical applications: A glance through. Biomedicines 2022; 10(1): 107.
[http://dx.doi.org/10.3390/biomedicines10010107] [PMID: 35052787]
[23]
Chandok IK, Afreen H, Afreen R, et al. Functional genomics tools for studying microbe-mediated stress tolerance in plants. In: Santoyo G, Kumar A, Aamir M, Uthandi S, Eds. Mitigation of Plant Abiotic Stress by Microorganisms. Amsterdam, Netherlands: Elsevier 2022; pp. 175-204.
[http://dx.doi.org/10.1016/B978-0-323-90568-8.00009-2]
[24]
Najafi S, Tan SC, Aghamiri S, et al. Therapeutic potentials of CRISPR-Cas genome editing technology in human viral infections. Biomed Pharmacother 2022; 148: 112743.
[http://dx.doi.org/10.1016/j.biopha.2022.112743]
[25]
Cole A. Child in gene therapy programme develops leukaemia. BMJ 2008; 336(7634): 13.
[http://dx.doi.org/10.1136/bmj.39436.582292.DB] [PMID: 18174583]
[26]
Kamimura K, Suda T, Zhang G, Liu D. Advances in gene delivery systems. Pharmaceut Med 2011; 25(5): 293-306.
[http://dx.doi.org/10.1007/BF03256872] [PMID: 22200988]
[27]
Piechaczek C, Fetzer C, Baiker A, Bode J, Lipps HJ. A vector based on the SV40 origin of replication and chromosomal S/MARs replicates episomally in CHO cells. Nucleic Acids Res 1999; 27(2): 426-8.
[http://dx.doi.org/10.1093/nar/27.2.426] [PMID: 9862961]
[28]
Mulia GE, Picanço-Castro V, Stavrou EF, Athanassiadou A, Figueiredo ML. Advances in the development and the applications of nonviral, episomal vectors for gene therapy. Hum Gene Ther 2021; 32(19-20): 1076-95.
[http://dx.doi.org/10.1089/hum.2020.310] [PMID: 34348480]
[29]
Papapetrou EP, Ziros PG, Micheva ID, Zoumbos NC, Athanassiadou A. Gene transfer into human hematopoietic progenitor cells with an episomal vector carrying an S/MAR element. Gene Ther 2006; 13(1): 40-51.
[http://dx.doi.org/10.1038/sj.gt.3302593] [PMID: 16094410]
[30]
Jenke ACW, Eisenberger T, Baiker A, Stehle IM, Wirth S, Lipps HJ. The nonviral episomal replicating vector pEPI-1 allows long-term inhibition of BCR-ABL expression by shRNA. Hum Gene Ther 2005; 16(4): 533-9.
[http://dx.doi.org/10.1089/hum.2005.16.533] [PMID: 15871685]
[31]
Manzini S, Vargiolu A, Stehle IM, et al. Genetically modified pigs produced with a nonviral episomal vector. Proc Natl Acad Sci USA 2006; 103(47): 17672-7.
[http://dx.doi.org/10.1073/pnas.0604938103] [PMID: 17101993]
[32]
Privolizzi R, Chu WS, Tijani M, Ng J. Viral gene therapy for paediatric neurological diseases: Progress to clinical reality. Dev Med Child Neurol 2021; 63(9): 1019-29.
[http://dx.doi.org/10.1111/dmcn.14885] [PMID: 33834479]
[33]
Wade-Martins R. Developing extrachromosomal gene expression vector technologies: An overview. In: Hadlaczky G, Ed. Mammalian Chromosome Engineering. Humana Press 2011; pp. 1-17.
[http://dx.doi.org/10.1007/978-1-61779-099-7_1]
[34]
Stehle IM, Scinteie MF, Baiker A, Jenke ACW, Lipps HJ. Exploiting a minimal system to study the epigenetic control of DNA replication: The interplay between transcription and replication. Chromosome Res 2003; 11(5): 413-21.
[http://dx.doi.org/10.1023/A:1024962308071] [PMID: 12971718]
[35]
Giannakopoulos A, Quiviger M, Stavrou E, et al. Efficient episomal gene transfer to human hepatic cells using the pFAR4–S/MAR vector. Mol Biol Rep 2019; 46(3): 3203-11.
[http://dx.doi.org/10.1007/s11033-019-04777-9] [PMID: 30980265]
[36]
Rupprecht S, Hagedorn C, Seruggia D, et al. Controlled removal of a nonviral episomal vector from transfected cells. Gene 2010; 466(1-2): 36-42.
[http://dx.doi.org/10.1016/j.gene.2010.07.001] [PMID: 20621169]
[37]
Haase R, Argyros O, Wong SP, et al. pEPito: A significantly improved non-viral episomal expression vector for mammalian cells. BMC Biotechnol 2010; 10(1): 20.
[http://dx.doi.org/10.1186/1472-6750-10-20] [PMID: 20230618]
[38]
Kipp M, Göhring F, Ostendorp T, et al. SAF-Box, a conserved protein domain that specifically recognizes scaffold attachment region DNA. Mol Cell Biol 2000; 20(20): 7480-9.
[http://dx.doi.org/10.1128/MCB.20.20.7480-7489.2000] [PMID: 11003645]
[39]
Baiker A, Maercker C, Piechaczek C, et al. Mitotic stability of an episomal vector containing a human scaffold/matrix-attached region is provided by association with nuclear matrix. Nat Cell Biol 2000; 2(3): 182-4.
[http://dx.doi.org/10.1038/35004061] [PMID: 10707091]
[40]
Jenke BHC, Fetzer CP, Stehle IM, et al. An episomally replicating vector binds to the nuclear matrix protein SAF‐A in vivo. EMBO Rep 2002; 3(4): 349-54.
[http://dx.doi.org/10.1093/embo-reports/kvf070] [PMID: 11897664]
[41]
Razin SV, Kantidze OL. The twisted path of the 3D genome: Where does it lead? Trends Biochem Sci 2022; S0968-0004(22): 00091-3.
[42]
Jenke AC, Stehle IM, Herrmann F, et al. Nuclear scaffold/matrix attached region modules linked to a transcription unit are sufficient for replication and maintenance of a mammalian episome. Proc Natl Acad Sci USA 2004; 101(31): 11322-7.
[http://dx.doi.org/10.1073/pnas.0401355101]
[43]
Mesner LD, Hamlin JL, Dijkwel PA. The matrix attachment region in the Chinese hamster dihydrofolate reductase origin of replication may be required for local chromatid separation. Proc Natl Acad Sci USA 2003; 100(6): 3281-6.
[http://dx.doi.org/10.1073/pnas.0437791100] [PMID: 12629222]
[44]
Schaarschmidt D, Baltin J, Stehle IM, Lipps HJ, Knippers R. An episomal mammalian replicon: Sequence-independent binding of the origin recognition complex. EMBO J 2004; 23(1): 191-201.
[http://dx.doi.org/10.1038/sj.emboj.7600029] [PMID: 14685267]
[45]
Deng L, Liang P, Cui H. Pseudotyped lentiviral vectors: Ready for translation into targeted cancer gene therapy? Genes Dis 2022. in press
[http://dx.doi.org/10.1016/j.gendis.2022.03.007]
[46]
Hamidieh AA, Hosseinkhani S. The control and trust of CRISPR/Cas9 genome altering for clinical application with gene treatment and treatment of hereditary diseases. Authorea Preprints 2022.
[http://dx.doi.org/10.22541/au.165268627.74823408/v1]
[47]
Charlesworth CT, Hsu I, Wilkinson AC, Nakauchi H. Immunological barriers to haematopoietic stem cell gene therapy. Nat Rev Immunol 2022; 1-15.
[http://dx.doi.org/10.1038/s41577-022-00698-0] [PMID: 35301483]
[48]
Teleanu RI, Preda MD, Niculescu AG, et al. Current strategies to enhance delivery of drugs across the blood–brain barrier. Pharmaceutics 2022; 14(5): 987.
[http://dx.doi.org/10.3390/pharmaceutics14050987] [PMID: 35631573]
[49]
Hernandez JM. Biosafety considerations for viral vector gene therapy: An explanation and guide for the average everyday-hero pharmacist. J Pharm Pract 2022; 08971900221104250.
[http://dx.doi.org/10.1177/08971900221104250] [PMID: 35583499]
[50]
Sainz Ramos M. Development and characterization of non-viral vectors based on cationic niosomes to address cystic fibrosis disease by gene therapy approach. Doctoral Thesis, University of the Basque Country UPV/EHU, Biscay, Spain, 2022.
[51]
Yin H, Kanasty RL, Eltoukhy AA, Vegas AJ, Dorkin JR, Anderson DG. Non-viral vectors for gene-based therapy. Nat Rev Genet 2014; 15(8): 541-55.
[http://dx.doi.org/10.1038/nrg3763] [PMID: 25022906]
[52]
Ediriweera GR, Chen L, Yerbury JJ, Thurecht KJ, Vine KL. Non-viral vector-mediated gene therapy for ALS: Challenges and future perspectives. Mol Pharm 2021; 18(6): 2142-60.
[http://dx.doi.org/10.1021/acs.molpharmaceut.1c00297] [PMID: 34010004]
[53]
Zu H, Gao D. Non-viral vectors in gene therapy: Recent development, challenges, and prospects. AAPS J 2021; 23(4): 78.
[http://dx.doi.org/10.1208/s12248-021-00608-7] [PMID: 34076797]
[54]
Tang X, Wang Z, Zhang Y, Mu W, Han X. Non-viral nanocarriers for CRISPR-Cas9 gene editing system delivery. Chem Eng J 2022; 435: 135116.
[http://dx.doi.org/10.1016/j.cej.2022.135116]
[55]
Roig-Merino A, Urban M, Bozza M, et al. An episomal DNA vector platform for the persistent genetic modification of pluripotent stem cells and their differentiated progeny. Stem Cell Reports 2022; 17(1): 143-58.
[http://dx.doi.org/10.1016/j.stemcr.2021.11.011] [PMID: 34942088]
[56]
Lin Y, Li Z, Wang T, et al. MAR characteristic motifs mediate episomal vector in CHO cells. Gene 2015; 559(2): 137-43.
[http://dx.doi.org/10.1016/j.gene.2015.01.032] [PMID: 25598284]
[57]
Wang XY, Zhang X, Wang TY, Jia YL, Xu DH, Yi DD. Shortened nuclear matrix attachment regions are sufficient for replication and maintenance of episomes in mammalian cells. Mol Biol Cell 2019; 30(22): 2761-70.
[http://dx.doi.org/10.1091/mbc.E19-02-0108] [PMID: 31509492]
[58]
Brooks AR, Harkins RN, Wang P, Qian HS, Liu P, Rubanyi GM. Transcriptional silencing is associated with extensive methylation of the CMV promoter following adenoviral gene delivery to muscle. J Gene Med 2004; 6(4): 395-404.
[http://dx.doi.org/10.1002/jgm.516]
[59]
Darquet A-M, Rangara R, Kreiss P, et al. Minicircle: An improved DNA molecule for in vitro and in vivo gene transfer. Gene Ther 1999; 6(2): 209-18.
[http://dx.doi.org/10.1038/sj.gt.3300816] [PMID: 10435105]
[60]
Nehlsen Kristina, Broll Sandra, Bode Juergen. Replicating minicircles: Generation of nonviral episomes for the efficient modification of dividing cells. Gene Ther Mol Biol 2006; 10: 233-44.
[61]
Broll S, Oumard A, Hahn K, Schambach A, Bode J. Minicircle performance depending on S/MAR-nuclear matrix interactions. J Mol Biol 2010; 395(5): 950-65.
[http://dx.doi.org/10.1016/j.jmb.2009.11.066] [PMID: 20004666]
[62]
Argyros O, Wong SP, Fedonidis C, et al. Development of S/MAR minicircles for enhanced and persistent transgene expression in the mouse liver. J Mol Med (Berl) 2011; 89(5): 515-29.
[http://dx.doi.org/10.1007/s00109-010-0713-3] [PMID: 21301798]
[63]
Wagner S, McCracken J, Bruszies S, et al. Episomal minicircles persist in periods of transcriptional inactivity and can be transmitted through somatic cell nuclear transfer into bovine embryos. Mol Biol Rep 2019; 46(2): 1737-46.
[http://dx.doi.org/10.1007/s11033-019-04624-x] [PMID: 30694456]
[64]
Luke J, Carnes AE, Hodgson CP, Williams JA. Improved antibiotic-free DNA vaccine vectors utilizing a novel RNA based plasmid selection system. Vaccine 2009; 27(46): 6454-9.
[http://dx.doi.org/10.1016/j.vaccine.2009.06.017] [PMID: 19559109]
[65]
Marie C, Vandermeulen G, Quiviger M, et al. pFARs, plasmids free of antibiotic resistance markers, display high‐level transgene expression in muscle, skin and tumour cells. J Gene Med 2010; 12(4): 323-32.
[http://dx.doi.org/10.1002/jgm.1441]
[66]
Pastor M, Quiviger M, Pailloux J, Scherman D, Marie C. Reduced heterochromatin formation on the pFAR4 Miniplasmid allows sustained transgene expression in the mouse liver. Molecular Therapy Nucleic Acids 2020; 21: 28-36.
[http://dx.doi.org/10.1016/j.omtn.2020.05.014]
[67]
Bozza M, Green EW, Espinet E, et al. Novel non-integrating DNA nano-S/MAR vectors restore gene function in isogenic patient-derived pancreatic tumor models. Mol Ther Methods Clin Dev 2020; 17: 957-68.
[http://dx.doi.org/10.1016/j.omtm.2020.04.017]
[68]
Bozza M, De Roia A, Correia MP, et al. A nonviral, nonintegrating DNA nanovector platform for the safe, rapid, and persistent manufacture of recombinant T cells. Sci Adv 2021; 7(16): eabf1333.
[http://dx.doi.org/10.1126/sciadv.abf1333] [PMID: 33853779]
[69]
Wang XY, Zhang JH, Zhang X, Sun QL, Zhao CP, Wang TY. Impact of different promoters on episomal vectors harbouring characteristic motifs of matrix attachment regions. Sci Rep 2016; 6(1): 26446.
[http://dx.doi.org/10.1038/srep26446] [PMID: 27226236]
[70]
Wang X, Zhang W, Jia Y, Wang M, Yi D, Wang T. Woodchuck hepatitis post-transcriptional regulatory element improves transgene expression and stability mediated by episomal vectors in CHO-K1 cells. Acta Biochim Biophys Sin (Shanghai) 2020; 52(11): 1285-8.
[http://dx.doi.org/10.1093/abbs/gmaa105] [PMID: 33196825]
[71]
Xu ZJ, Jia YL, Wang M, et al. Effect of promoter, promoter mutation and enhancer on transgene expression mediated by episomal vectors in transfected HEK293, Chang liver and primary cells. Bioengineered 2019; 10(1): 548-60.
[http://dx.doi.org/10.1080/21655979.2019.1684863] [PMID: 31668126]
[72]
Stavrou EF, Lazaris VM, Giannakopoulos A, et al. The β-globin Replicator greatly enhances the potential of S/MAR based episomal vectors for gene transfer into human haematopoietic progenitor cells. Sci Rep 2017; 7(1): 40673.
[http://dx.doi.org/10.1038/srep40673] [PMID: 28106085]
[73]
Hagedorn C, Antoniou MN, Lipps HJ. Genomic cis-acting sequences improve expression and establishment of a nonviral vector. Mol Ther Nucleic Acids 2013; 2: e118.
[http://dx.doi.org/10.1038/mtna.2013.47]
[74]
Taha EA, Lee J, Hotta A. Delivery of CRISPR-Cas tools for in vivo genome editing therapy: Trends and challenges. J Control Release 2022; 342: 345-61.
[http://dx.doi.org/10.1016/j.jconrel.2022.01.013] [PMID: 35026352]
[75]
Mohammadinejad R, Dehshahri A, Madamsetty VS, et al. In vivo gene delivery mediated by non-viral vectors for cancer therapy. J Control Release 2020; 325: 249-75.
[http://dx.doi.org/10.1016/j.jconrel.2020.06.038]
[76]
Iqbal K, Barg-Kues B, Broll S, Bode J, Niemann H, Kues WA. Cytoplasmic injection of circular plasmids allows targeted expression in mammalian embryos. Biotechniques 2009; 47(5): 959-68.
[http://dx.doi.org/10.2144/000113270] [PMID: 20041849]
[77]
Wang X, Xu Z, Tian Z, et al. The EF-1α promoter maintains high-level transgene expression from episomal vectors in transfected CHO-K1 cells. J Cell Mol Med 2017; 21(11): 3044-54.
[http://dx.doi.org/10.1111/jcmm.13216] [PMID: 28557288]
[78]
Chow C-M, Athanassiadou A, Raguz S, et al. LCR-mediated, long-term tissue-specific gene expression within replicating episomal plasmid and cosmid vectors. Gene Ther 2002; 9(5): 327-36.
[http://dx.doi.org/10.1038/sj.gt.3301654] [PMID: 11938452]
[79]
Zhang X, Wang XY, Jia YL, Guo X, Wang YF, Wang TY. A vector based on the chicken hypersensitive site 4 insulator element replicates episomally in mammalian cells. Curr Gene Ther 2017; 16(6): 410-8.
[http://dx.doi.org/10.2174/1566523217666170202122755] [PMID: 28155604]
[80]
Osterlehner A, Simmeth S, Göpfert U. Promoter methylation and transgene copy numbers predict unstable protein production in recombinant Chinese hamster ovary cell lines. Biotechnol Bioeng 2011; 108(11): 2670-81.
[http://dx.doi.org/10.1002/bit.23216] [PMID: 21618470]
[81]
Wang XY, Yi DD, Wang TY, et al. Enhancing expression level and stability of transgene mediated by episomal vector via buffering DNA methyltransferase in transfected CHO cells. J Cell Biochem 2019; 120(9): 15661-70.
[http://dx.doi.org/10.1002/jcb.28835] [PMID: 31074065]
[82]
Nuo MT, Yuan JL, Yang WL, et al. Promoter methylation and histone modifications affect the expression of the exogenous DsRed gene in transgenic goats. Genet Mol Res 2016; 15(3)
[http://dx.doi.org/10.4238/gmr.15038560] [PMID: 27706651]
[83]
Khan SU, Khan MU, Kalsoom F, et al. Mechanisms of gene regulation by histone degradation in adaptation of yeast: An overview of recent advances. Arch Microbiol 2022; 204(5): 287.
[http://dx.doi.org/10.1007/s00203-022-02897-8] [PMID: 35482104]
[84]
Argyros O, Wong SP, Niceta M, et al. Persistent episomal transgene expression in liver following delivery of a scaffold/matrix attachment region containing non-viral vector. Gene Ther 2008; 15(24): 1593-605.
[http://dx.doi.org/10.1038/gt.2008.113] [PMID: 18633447]
[85]
Sawicki JA, Morris RJ, Monks B, Sakai K, Miyazaki J. A composite CMV-IE enhancer/β-actin promoter is ubiquitously expressed in mouse cutaneous epithelium. Exp Cell Res 1998; 244(1): 367-9.
[http://dx.doi.org/10.1006/excr.1998.4175] [PMID: 9770380]
[86]
Manzini S, Vargiolu A, Seruggia D, et al. S/MAR trek: A new generation of non-viral episomal vectors to be used in gene transfer experiments. Transgenic Res 2010; 19(2): 340-1.
[87]
Kaczmarczyk SJ, Green JE. A single vector containing modified cre recombinase and LOX recombination sequences for inducible tissue-specific amplification of gene expression. Nucleic Acids Res 2001; 29(12): E56.
[http://dx.doi.org/10.1093/nar/29.12.e56] [PMID: 11410679]
[88]
Benton T, Chen T, McEntee M, et al. The use of UCOE vectors in combination with a preadapted serum free, suspension cell line allows for rapid production of large quantities of protein. In: Linder-Olsson E, Chatzissavidou Lullau E, Eds. Animal Cell Technology: From Target to Market. Dordrecht: Springer 2001; pp. 52-7.
[http://dx.doi.org/10.1007/978-94-010-0369-8_12]
[89]
Lu X, Guo Y, Huang W. Characterization of the cHS4 insulator in mouse embryonic stem cells. FEBS Open Bio 2020; 10(4): 644-56.
[http://dx.doi.org/10.1002/2211-5463.12818] [PMID: 32087050]
[90]
Wang L, Lin CM, Lopreiato JO, Aladjem MI. Cooperative sequence modules determine replication initiation sites at the human β-globin locus. Hum Mol Genet 2006; 15(17): 2613-22.
[http://dx.doi.org/10.1093/hmg/ddl187] [PMID: 16877501]
[91]
Stavrou EF, Simantirakis E, Verras M, et al. Episomal vectors based on S/MAR and the β-globin Replicator, encoding a synthetic transcriptional activator, mediate efficient γ-globin activation in haematopoietic cells. Sci Rep 2019; 9(1): 19765.
[http://dx.doi.org/10.1038/s41598-019-56056-z] [PMID: 31874995]
[92]
Lufino MMP, Manservigi R, Wade-Martins R. An S/MAR-based infectious episomal genomic DNA expression vector provides long-term regulated functional complementation of LDLR deficiency. Nucleic Acids Res 2007; 35(15): e98.
[http://dx.doi.org/10.1093/nar/gkm570] [PMID: 17675302]
[93]
Sgourou A, Routledge S, Spathas D, Athanassiadou A, Antoniou MN. Physiological levels of HBB transgene expression from S/MAR element-based replicating episomal vectors. J Biotechnol 2009; 143(2): 85-94.
[http://dx.doi.org/10.1016/j.jbiotec.2009.06.018] [PMID: 19559736]
[94]
Cim A, Sawyer GJ, Zhang X, et al. In vivo studies on non-viral transdifferentiation of liver cells towards pancreatic β cells. J Endocrinol 2012; 214(3): 277-88.
[http://dx.doi.org/10.1530/JOE-12-0033] [PMID: 22685335]
[95]
Li YS, Davidson E, Reid CN, McHale AP. Optimising ultrasound-mediated gene transfer (sonoporation) in vitro and prolonged expression of a transgene in vivo: Potential applications for gene therapy of cancer. Cancer Lett 2009; 273(1): 62-9.
[http://dx.doi.org/10.1016/j.canlet.2008.07.030] [PMID: 18829156]
[96]
Wong SP, Argyros O, Howe SJ, Harbottle RP. Systemic gene transfer of polyethylenimine (PEI)–plasmid DNA complexes to neonatal mice. J Control Release 2011; 150(3): 298-306.
[http://dx.doi.org/10.1016/j.jconrel.2010.12.010] [PMID: 21192993]
[97]
Jenke ACW, Wilhelm AD, Orth V, Lipps HJ, Protzer U, Wirth S. Long-term suppression of hepatitis B virus replication by short hairpin RNA expression using the scaffold/matrix attachment region-based replicating vector system pEPI-1. Antimicrob Agents Chemother 2008; 52(7): 2355-9.
[http://dx.doi.org/10.1128/AAC.00067-08] [PMID: 18474581]
[98]
De Rocco D, Pompili B, Castellani S, et al. Assembly and functional analysis of an S/MAR based episome with the cystic fibrosis transmembrane conductance regulator gene. Int J Mol Sci 2018; 19(4): 1220.
[http://dx.doi.org/10.3390/ijms19041220] [PMID: 29673202]
[99]
Zhang Y, Schlachetzki F, Zhang YF, Boado RJ, Pardridge WM. Normalization of striatal tyrosine hydroxylase and reversal of motor impairment in experimental parkinsonism with intravenous nonviral gene therapy and a brain-specific promoter. Hum Gene Ther 2004; 15(4): 339-50.
[http://dx.doi.org/10.1089/104303404322959498] [PMID: 15053859]
[100]
Bharali DJ, Klejbor I, Stachowiak EK, et al. Organically modified silica nanoparticles: A nonviral vector for in vivo gene delivery and expression in the brain. Proc Natl Acad Sci USA 2005; 102(32): 11539-44.
[http://dx.doi.org/10.1073/pnas.0504926102] [PMID: 16051701]
[101]
Huang R, Ma H, Guo Y, et al. Angiopep-conjugated nanoparticles for targeted long-term gene therapy of Parkinson’s disease. Pharm Res 2013; 30(10): 2549-59.
[http://dx.doi.org/10.1007/s11095-013-1005-8] [PMID: 23703371]
[102]
Gonzalez-Barrios JA, Lindahl M, Bannon MJ, et al. Neurotensin polyplex as an efficient carrier for delivering the human GDNF gene into nigral dopamine neurons of hemiparkinsonian rats. Mol Ther 2006; 14(6): 857-65.
[http://dx.doi.org/10.1016/j.ymthe.2006.09.001] [PMID: 17015039]
[103]
Razgado-Hernandez LF, Espadas-Alvarez AJ, Reyna-Velazquez P, et al. The transfection of BDNF to dopamine neurons potentiates the effect of dopamine D3 receptor agonist recovering the striatal innervation, dendritic spines and motor behavior in an aged rat model of Parkinson’s disease. PLoS One 2015; 10(2): e0117391.
[http://dx.doi.org/10.1371/journal.pone.0117391] [PMID: 25693197]
[104]
Yurek DM, Fletcher AM, Smith GM, et al. Long-term transgene expression in the central nervous system using DNA nanoparticles. Mol Ther 2009; 17(4): 641-50.
[http://dx.doi.org/10.1038/mt.2009.2] [PMID: 19223866]
[105]
Mastorakos P, Zhang C, Song E, et al. Biodegradable brain-penetrating DNA nanocomplexes and their use to treat malignant brain tumors. J Control Release 2017; 262: 37-46.
[http://dx.doi.org/10.1016/j.jconrel.2017.07.009]
[106]
Liu S, Guo Y, Huang R, et al. Gene and doxorubicin co-delivery system for targeting therapy of glioma. Biomaterials 2012; 33(19): 4907-16.
[http://dx.doi.org/10.1016/j.biomaterials.2012.03.031] [PMID: 22484049]
[107]
Gao S, Tian H, Xing Z, et al. A non-viral suicide gene delivery system traversing the blood brain barrier for non-invasive glioma targeting treatment. J Control Release 2016; 243: 357-69.
[http://dx.doi.org/10.1016/j.jconrel.2016.10.027]
[108]
Kumthekar P, Ko CH, Paunesku T, et al. A first-in-human phase 0 clinical study of RNA interference-based spherical nucleic acids in patients with recurrent glioblastoma. Sci Transl Med 2021; 13(584): eabb3945.
[http://dx.doi.org/10.1126/scitranslmed.abb3945] [PMID: 33692132]
[109]
Li X, Kozielski K, Cheng YH, et al. Nanoparticle-mediated conversion of primary human astrocytes into neurons and oligodendrocytes. Biomater Sci 2016; 4(7): 1100-12.
[http://dx.doi.org/10.1039/C6BM00140H] [PMID: 27328202]
[110]
Calado SM, Oliveira AV, Machado S, Haase R, Silva GA. Sustained gene expression in the retina by improved episomal vectors. Tissue Eng Part A 2014; 20(19-20): 2692-8.
[http://dx.doi.org/10.1089/ten.tea.2013.0672] [PMID: 24684370]
[111]
Koirala A, Conley SM, Naash MI. Episomal maintenance of S/MAR-containing non-viral vectors for RPE-based diseases. In: Ash J, Grimm C, Hollyfield J, Anderson R, LaVail M, Bowes Rickman C, Eds. Retinal Degenerative Diseases. New York: Springer 2014; pp. 703-9.
[http://dx.doi.org/10.1007/978-1-4614-3209-8_88]
[112]
Porter SD, Hu J, Gilks CB. Distal upstream tyrosinase S/MAR-containing sequence has regulatory properties specific to subsets of melanocytes. Dev Genet 1999; 25(1): 40-8.
[http://dx.doi.org/10.1002/(SICI)1520-6408(1999)25:1<40:AID-DVG5>3.0.CO;2-L] [PMID: 10402671]
[113]
Pickering CA, Mazarakis ND. Viral vector delivery of DREADDs for CNS therapy. Curr Gene Ther 2021; 21(3): 191-206.
[http://dx.doi.org/10.2174/1566523221666210211102435] [PMID: 33573551]
[114]
Muhuri M, Maeda Y, Ma H, et al. Overcoming innate immune barriers that impede AAV gene therapy vectors. J Clin Invest 2021; 131(1): e143780.
[http://dx.doi.org/10.1172/JCI143780]
[115]
Fakhiri J, Grimm D. Best of most possible worlds: Hybrid gene therapy vectors based on parvoviruses and heterologous viruses. Mol Ther 2021; 29(12): 3359-82.
[http://dx.doi.org/10.1016/j.ymthe.2021.04.005] [PMID: 33831556]
[116]
Hartwig O, Boushehri MAS, Shalaby KS, et al. Drug delivery to the inflamed intestinal mucosa-targeting technologies and human cell culture models for better therapies of IBD. Adv Drug Deliv Rev 2021; 175: 113828.
[http://dx.doi.org/10.1016/j.addr.2021.113828]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy