Generic placeholder image

Current Medical Imaging

Editor-in-Chief

ISSN (Print): 1573-4056
ISSN (Online): 1875-6603

Case Report

Coexistence of Non-Hodgkin's Lymphoma and Acute Myeloid Leukemia at Initial Diagnosis: A Case Report

Author(s): Meng Meng Ke, Zhi Zhong Wang, Qin Wan and Zhi Jun Chen*

Volume 19, Issue 10, 2023

Published on: 19 October, 2022

Article ID: e290922209273 Pages: 5

DOI: 10.2174/1573405618666220929090927

Price: $65

Open Access Journals Promotions 2
Abstract

Non-Hodgkin's lymphoma and acute myeloid leukemia are both hematological malignancies that rarely coexist at the time of initial diagnosis. We present a case of non-Hodgkin lymphoma and acute myeloid leukemia diagnosed on the first admission.

Background: Lymphoma and leukemia, both malignant hematological cancers, are primarily different diseases, with a majority of cases originating independently. The co-occurrence of lymphoma and leukemia at the time of the first diagnosis is extremely rare, and few relevant reports exist in the medical literature. We describe a case of a patient with non-Hodgkin's lymphoma and acute myeloid leukemia, a very rare occurrence.

Case Report: A 57-year-old man complained of fatigue and neck tumors. A physical examination revealed several enlarged superficial lymph nodes throughout the body. On admission, routine blood tests revealed anemia, thrombocytopenia, and normal counts of white blood cells. Cytology of two cervical lymph nodes indicated non- Hodgkin's lymphoma, 18F-PET/CT: multiple enlarged lymph nodes with hypermetabolism, diffuse hypermetabolism of the bone marrow, suggesting lymphoma infiltration in the bone marrow, and a bone marrow biopsy revealed acute myeloid leukemia. Ultimately, the patient was diagnosed with non-Hodgkin’s lymphoma and acute myeloid leukemia.

Conclusion: Primary bilineage hematological malignancies are rare, and the mechanism underlying their incidence is unknown. Infiltration of the bone marrow by lymphoma or leukemia can result in diffuse hypermetabolism, mostly diagnosed via bone marrow biopsy.

Keywords: Non-Hodgkin's lymphoma, acute myeloid leukemia, two malignancies, coexistence, bone marrow infiltration, PET/CT, a case report.

Graphical Abstract
[1]
Zámečni’ková A, Vranovský A, Hlavčák P. Coexistence of Philadelphia-positive chronic granulocytic leukemia and diffuse large B-cell lymphoma at initial diagnosis. Leuk Lymphoma 2002; 43(2): 429-31.
[http://dx.doi.org/10.1080/10428190290006288] [PMID: 11999582]
[2]
Fu X, Shang Y, Zhang L, et al. Analyses and treatment of simultaneous bi lineage malignancies of myeloid leukemia and lymphoma: Two case reports and a literature review. Oncol Lett 2018; 16(5): 6624-32.
[http://dx.doi.org/10.3892/ol.2018.9447] [PMID: 30405801]
[3]
Kapadia SB, Kaplan SS. Simultaneous occurrence of non-Hodgkinapos;s lymphoma and acute myelomonocytic leukemia. Cancer 1976; 38(6): 2557-60.
[http://dx.doi.org/10.1002/1097-0142(197612)38:6<2557::AIDCNCR2820380646>3.0.CO;2-U] [PMID: 1069605]
[4]
Poth JL, George RP Jr, Creger WP, Schrier SL. Acute myelogenous leukemia following localized radiotherapy. Arch Intern Med 1971; 128(5): 802-5.
[http://dx.doi.org/10.1001/archinte.1971.00310230132016] [PMID: 5287013]
[5]
Hornbaker JH. Giant follicular lymphoblastoma terminating in acute myelogenous leukemia. Ann Intern Med 1960; 53(1): 221-7.
[http://dx.doi.org/10.7326/0003-4819-53-1-221] [PMID: 14403133]
[6]
Weiss RB, Brunning RD, Kennedy BJ. Lymphosarcoma terminating in acute myelogenous leukemia. Cancer 1972; 30(5): 1275-8.
[http://dx.doi.org/10.1002/1097-0142(197211)30:5<1275:AID-CNCR2820300520>3.0.CO;2-4] [PMID: 4507782]
[7]
Beutler E. The development of acute myelogenous leukemia in a patient with reticulum cell lymphoma. Ann Intern Med 1954; 40(6): 1217-22.
[http://dx.doi.org/10.7326/0003-4819-40-6-1217] [PMID: 13159092]
[8]
Kaldor JM, Day NE, Clarke EA, et al. Leukemia following Hodgkin’s disease. N Engl J Med 1990; 322(1): 7-13.
[http://dx.doi.org/10.1056/NEJM199001043220102] [PMID: 2403650]
[9]
Biti G, Cellai E, Magrini SM, Papi MG, Ponticelli P, Boddi V. Second solid tumors and leukemia after treatment for Hodgkin’s disease: An analysis of 1121 patients from a single institution. Int J Radiat Oncol Biol Phys 1994; 29(1): 25-31.
[http://dx.doi.org/10.1016/0360-3016(94)90222-4] [PMID: 8175441]
[10]
van Leeuwen FE, Klokman WJ, Hagenbeek A, et al. Second cancer risk following Hodgkin’s disease: a 20-year follow-up study. J Clin Oncol 1994; 12(2): 312-25.
[http://dx.doi.org/10.1200/JCO.1994.12.2.312] [PMID: 8113838]
[11]
Eichenauer DA, Thielen I, Haverkamp H, et al. Therapy-related acute myeloid leukemia and myelodysplastic syndromes in patients with Hodgkin lymphoma: a report from the German Hodgkin Study Group. Blood 2014; 123(11): 1658-64.
[http://dx.doi.org/10.1182/blood-2013-07-512657] [PMID: 24478403]
[12]
Bhatt VR, Giri S, Verma V, et al. Secondary acute myeloid leukemia in survivors of Hodgkin lymphoma. Future Oncol 2016; 12(13): 1565-75.
[http://dx.doi.org/10.2217/fon-2016-0048] [PMID: 27079926]
[13]
Boivin JF, Hutchison GB, Zauber AG, et al. Incidence of second cancers in patients treated for Hodgkin’s disease. J Natl Cancer Inst 1995; 87(10): 732-41.
[http://dx.doi.org/10.1093/jnci/87.10.732] [PMID: 7563150]
[14]
Rodriguez MA, Fuller LM, Zimmerman SO, et al. Hodgkin’s disease: Study of treatment intensities and incidences of second malignancies. Ann Oncol 1993; 4(2): 125-31.
[http://dx.doi.org/10.1093/oxfordjournals.annonc.a058414] [PMID: 8448080]
[15]
van Leeuwen FE, Somers R, Taal BG, et al. Increased risk of lung cancer, non-Hodgkin’s lymphoma, and leukemia following Hodgkin’s disease. J Clin Oncol 1989; 7(8): 1046-58.
[http://dx.doi.org/10.1200/JCO.1989.7.8.1046] [PMID: 2754447]
[16]
Tucker MA, Coleman CN, Cox RS, Varghese A, Rosenberg SA. Risk of second cancers after treatment for Hodgkin’s disease. N Engl J Med 1988; 318(2): 76-81.
[http://dx.doi.org/10.1056/NEJM198801143180203] [PMID: 3336397]
[17]
Henry-Amar M, Joly F. Late complications after Hodgkin’s disease. Ann Oncol 1996; 7 (Suppl. 4): S115-26.
[http://dx.doi.org/10.1093/annonc/7.suppl_4.S115] [PMID: 8836422]
[18]
Koontz MZ, Horning SJ, Balise R, et al. Risk of therapy-related secondary leukemia in Hodgkin lymphoma: the Stanford University experience over three generations of clinical trials. J Clin Oncol 2013; 31(5): 592-8.
[http://dx.doi.org/10.1200/JCO.2012.44.5791] [PMID: 23295809]
[19]
Swerdlow AJ, Higgins CD, Smith P, et al. Second cancer risk after chemotherapy for Hodgkin’s lymphoma: a collaborative British cohort study. J Clin Oncol 2011; 29(31): 4096-104.
[http://dx.doi.org/10.1200/JCO.2011.34.8268] [PMID: 21969511]
[20]
Acar H, Ecirli S, Gündoğan F, Bulay O, Acar A. Simultaneous occurrence of chronic myelogenous leukemia and non-Hodgkin lymphoma at diagnosis. Cancer Genet Cytogenet 1999; 108(2): 171-4.
[http://dx.doi.org/10.1016/S0165-4608(98)00116-2] [PMID: 9973949]
[21]
Shen ZL, Yin LF, Mao WW, Liang J, Yang L. Philadelphia chromosome-negative non-Hodgkin’s lymphoma occurring in Philadelphia chromosome-positive chronic myeloid leukemia: A case report and literature review. Oncol Lett 2016; 11(4): 2909-12.
[http://dx.doi.org/10.3892/ol.2016.4304] [PMID: 27073575]
[22]
Dong HJ, Wu W, Wang JH, et al. A case of acute myeloid leukemia with complex karyotype and T lymphoblastic lymphoma. Zhonghua Xue Ye Xue Za Zhi 2016; 37(3): 237.
[PMID: 27033763]
[23]
von Bubnoff N, Sandherr M, Schlimok G, Andreesen R, Peschel C, Duyster J. Myeloid blast crisis evolving during imatinib treatment of an FIP1L1-PDGFR alpha-positive chronic myeloproliferative disease wit. Leukemia 2004; 19: 286-7.
[http://dx.doi.org/10.1038/sj.leu.2403600] [PMID: 15618966]
[24]
Metzgeroth G, Walz C, Score J, et al. Recurrent finding of the FIP1L1-PDGFRA fusion gene in eosinophilia-associated acute myeloid leukemia and lymphoblastic T-cell lymphoma. Leukemia 2007; 21(6): 1183-8.
[http://dx.doi.org/10.1038/sj.leu.2404662] [PMID: 17377585]
[25]
Capovilla M, Cayuela JM, Bilhou-Nabera C, et al. Synchronous FIP1L1-PDGFRA-positive chronic eosinophilic leukemia and T-cell lymphoblastic lymphoma: a bilineal clonal malignancy. Eur J Haematol 2008; 80(1): 81-6.
[PMID: 18028420]
[26]
Yamada Y, Ichimaru M, Shiku H. Adult T cell leukaemia cells are of CD4 + CDw29 + T cell origin and secrete a B cell differentiation factor. Br J Haematol 1989; 72(3): 370-7.
[http://dx.doi.org/10.1111/j.1365-2141.1989.tb07718.x] [PMID: 2527551]
[27]
Hattori T, Uchiyama T, Toibana T, Takatsuki K, Uchino H. Surface phenotype of Japanese adult T-cell leukemia cells characterized by monoclonal antibodies. Blood 1981; 58(3): 645-7.
[http://dx.doi.org/10.1182/blood.V58.3.645.645] [PMID: 6455129]
[28]
Yamada Y, Ohmoto Y, Hata T, et al. Features of the cytokines secreted by adult T cell leukemia (ATL) cells. Leuk Lymphoma 1996; 21(5-6): 443-7.
[http://dx.doi.org/10.3109/10428199609093442] [PMID: 9172809]
[29]
Yamamoto S, Hattori T, Asou N, et al. Absolute neutrophilia in adult T cell leukemia. Jpn J Cancer Res 1986; 77(9): 858-61.
[PMID: 2876977]
[30]
Tsukasaki K, Koba T, Iwanaga M, et al. Possible association between adult T-cell leukemia/Lymphoma and acute myeloid leukemia. Cancer 1998; 82(3): 488-94.
[http://dx.doi.org/10.1002/(SICI)1097-0142(19980201)82:3<488::AID-CNCR10>3.0.CO;2-Y] [PMID: 9452266]
[31]
Muzahir S, Mian M, Munir I, et al. Clinical utility of 18 F FDG-PET/CT in the detection of bone marrow disease in Hodgkin’s lymphoma. Br J Radiol 2012; 85(1016): e490-6.
[http://dx.doi.org/10.1259/bjr/29583493] [PMID: 22215887]
[32]
Khan AB, Barrington SF, Mikhaeel NG, et al. PET-CT staging of DLBCL accurately identifies and provides new insight into the clinical significance of bone marrow involvement. Blood 2013; 122(1): 61-7.
[http://dx.doi.org/10.1182/blood-2012-12-473389] [PMID: 23660958]
[33]
El-Galaly TC, d’Amore F, Mylam KJ, et al. Routine bone marrow biopsy has little or no therapeutic consequence for positron emission tomography/computed tomography-staged treatment-naive patients with Hodgkin lymphoma. J Clin Oncol 2012; 30(36): 4508-14.
[http://dx.doi.org/10.1200/JCO.2012.42.4036] [PMID: 23150698]
[34]
Chen YK, Yeh CL, Tsui CC, Liang JA, Chen JH, Kao CH. F-18 FDG PET for evaluation of bone marrow involvement in non-Hodgkin lymphoma: a meta-analysis. Clin Nucl Med 2011; 36(7): 553-9.
[http://dx.doi.org/10.1097/RLU.0b013e318217aeff] [PMID: 21637057]
[35]
Ujjani CS, Hill EM, Wang H, et al. 18 F-FDG PET-CT and trephine biopsy assessment of bone marrow involvement in lymphoma. Br J Haematol 2016; 174(3): 410-6.
[http://dx.doi.org/10.1111/bjh.14071] [PMID: 27098364]
[36]
Zhao Z, Hu Y, Li J, Zhou Y, Zhang B, Deng S. Applications of PET in Diagnosis and Prognosis of Leukemia. Technol Cancer Res Treat 2020; 19: 1-12.
[http://dx.doi.org/10.1177/1533033820956993] [PMID: 32875963]
[37]
Cribe ASWI, Steenhof M, Marcher CW, Petersen H, Frederiksen H, Friis LS. Extramedullary disease in patients with acute myeloid leukemia assessed by (18)F-FDG PET. Eur J Haematol 2013; 90(4): 273-8.
[http://dx.doi.org/10.1111/ejh.12085] [PMID: 23470093]
[38]
Arimoto MK, Nakamoto Y, Nakatani K, et al. Increased bone marrow uptake of 18F-FDG in leukemia patients: preliminary findings. Springerplus 2015; 4(1): 521.
[http://dx.doi.org/10.1186/s40064-015-1339-2] [PMID: 26405641]
[39]
Takalkar A, Yu JQ, Kumar R, Xiu Y, Alavi A, Zhuang H. Diffuse bone marrow accumulation of FDG in a patient with chronic myeloid leukemia mimics hematopoietic cytokine-mediated FDG uptake on positron emission tomography. Clin Nucl Med 2004; 29(10): 637-9.
[http://dx.doi.org/10.1097/00003072-200410000-00010] [PMID: 15365439]
[40]
Parida GK, Soundararajan R, Passah A, Bal C, Kumar R. Metabolic Skeletal Superscan on 18F-FDG PET/CT in a Case of Acute Lymphoblastic Leukemia. Clin Nucl Med 2015; 40(7): 567-8.
[http://dx.doi.org/10.1097/RLU.0000000000000785] [PMID: 26018718]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy