Review Article

多靶点HDAC抑制剂作为抗癌药物的现状和未来展望

卷 30, 期 24, 2023

发表于: 04 November, 2022

页: [2762 - 2795] 页: 34

弟呕挨: 10.2174/0929867329666220922105615

价格: $65

conference banner
摘要

多靶点药物可以依次与多个靶点相互作用,即使活性相对适度,也能对包括癌症在内的多种复杂疾病产生协同作用和更有效的治疗。组蛋白脱乙酰酶(HDAC)抑制剂是低分子量的小化合物,可增加组蛋白和非组蛋白的乙酰化,改变基因表达,从而影响血管生成、转移和细胞凋亡等过程。 HDAC 抑制剂影响多种细胞通路,从而产生不良问题,导致治疗耐药性,并且它们的药代动力学特性较差。设计基于 HDAC 的双/多靶点抑制剂是克服不良反应、耐药性和提高控制癌症有效性的重要策略。设计多靶点HDAC抑制剂的靶点组合选择一般是在系统高通量筛选(HTS)、网络药理学分析方法的基础上完成的。使用理性或计算方法执行药效团针对单个目标的识别。鉴定的药效团可以与可裂解或不可裂解的接头合并、融合或连接,以保留与原始靶标的相互作用,同时与其他靶标兼容。本综述的目的是阐明潜在靶标的设计策略、生物活性,以及作为潜在抗癌剂的双重/多靶点 HDAC 抑制剂的最新发展。本综述阐述了潜在靶标的设计策略以及生物活性,以及双/多靶点 HDAC 抑制剂作为潜在抗癌剂的最新发展。基于 HDAC 的双/多靶点抑制剂的开发对于克服副作用、耐药性和有效的癌症控制非常重要。

关键词: 组蛋白去乙酰酶,HDAC抑制剂,抗癌,双/多靶点,设计策略,计算方法,最新进展。

[1]
Li, X.; Li, X.; Liu, F.; Li, S.; Shi, D. Rational multitargeted drug design strategy from the perspective of a medicinal chemist. J. Med. Chem., 2021, 64(15), 10581-10605.
[http://dx.doi.org/10.1021/acs.jmedchem.1c00683] [PMID: 34313432]
[2]
Zhang, W.; Pei, J.; Lai, L. Computational multitarget drug design. J. Chem. Inf. Model., 2017, 57(3), 403-412.
[http://dx.doi.org/10.1021/acs.jcim.6b00491] [PMID: 28166637]
[3]
Proschak, E.; Stark, H.; Merk, D. Polypharmacology by design: A medicinal chemist’s perspective on multitargeting compounds. J. Med. Chem., 2019, 62(2), 420-444.
[http://dx.doi.org/10.1021/acs.jmedchem.8b00760] [PMID: 30035545]
[4]
Shang, E.; Yuan, Y.; Chen, X.; Liu, Y.; Pei, J.; Lai, L. De novo design of multitarget ligands with an iterative fragment-growing strategy. J. Chem. Inf. Model., 2014, 54(4), 1235-1241.
[http://dx.doi.org/10.1021/ci500021v] [PMID: 24611712]
[5]
Papavassiliou, K.A.; Papavassiliou, A.G. Histone deacetylases inhibitors: Conjugation to other anti-tumour pharmacophores provides novel tools for cancer treatment. Expert Opin. Investig. Drugs, 2014, 23(3), 291-294.
[http://dx.doi.org/10.1517/13543784.2014.857401] [PMID: 24205827]
[6]
Ramsay, R.R.; Popovic-Nikolic, M.R.; Nikolic, K.; Uliassi, E.; Bolognesi, M.L. A perspective on multi‐target drug discovery and design for complex diseases. Clin. Transl. Med., 2018, 7(1), 3.
[http://dx.doi.org/10.1186/s40169-017-0181-2] [PMID: 29340951]
[7]
Li, Y.H.; Wang, P.P.; Li, X.X.; Yu, C.Y.; Yang, H.; Zhou, J.; Xue, W.W.; Tan, J.; Zhu, F. The human kinome targeted by FDA approved multi-target drugs and combination products: A comparative study from the drug-target interaction network perspective. PLoS One, 2016, 11(11), e0165737.
[http://dx.doi.org/10.1371/journal.pone.0165737] [PMID: 27828998]
[8]
Bieliauskas, A.V.; Pflum, M.K.H. Isoform-selective histone deacetylase inhibitors. Chem. Soc. Rev., 2008, 37(7), 1402-1413.
[http://dx.doi.org/10.1039/b703830p] [PMID: 18568166]
[9]
Kornberg, R.D.; Klug, A. The nucleosome. Sci. Am., 1981, 244(2), 52-64.
[http://dx.doi.org/10.1038/scientificamerican0281-52] [PMID: 7209486]
[10]
Wu, J.; Grunstein, M. 25 years after the nucleosome model: Chromatin modifications. Trends Biochem. Sci., 2000, 25(12), 619-623.
[http://dx.doi.org/10.1016/S0968-0004(00)01718-7] [PMID: 11116189]
[11]
Shirbhate, E.; Patel, P.; Patel, V.K.; Veerasamy, R.; Sharma, P.C.; Rajak, H. The combination of histone deacetylase inhibitors and radiotherapy: A promising novel approach for cancer treatment. Future Oncol., 2020, 16(30), 2457-2469.
[http://dx.doi.org/10.2217/fon-2020-0385] [PMID: 32815411]
[12]
Watson, P.J.; Fairall, L.; Santos, G.M.; Schwabe, J.W.R. Structure of HDAC3 bound to co-repressor and inositol tetraphosphate. Nature, 2012, 481(7381), 335-340.
[http://dx.doi.org/10.1038/nature10728] [PMID: 22230954]
[13]
Muslin, A.; Xing, H. 14-3-3 proteins: Regulation of subcellular localization by molecular interference. Cell. Signal., 2000, 12(11-12), 703-709.
[http://dx.doi.org/10.1016/S0898-6568(00)00131-5] [PMID: 11152955]
[14]
Gao, L.; Cueto, M.A.; Asselbergs, F.; Atadja, P. Cloning and functional characterization of HDAC11, a novel member of the human histone deacetylase family. J. Biol. Chem., 2002, 277(28), 25748-25755.
[http://dx.doi.org/10.1074/jbc.M111871200] [PMID: 11948178]
[15]
Finnin, M.S.; Donigian, J.R.; Cohen, A.; Richon, V.M.; Rifkind, R.A.; Marks, P.A.; Breslow, R.; Pavletich, N.P. Structures of a histone deacetylase homologue bound to the TSA and SAHA inhibitors. Nature, 1999, 401(6749), 188-193.
[http://dx.doi.org/10.1038/43710] [PMID: 10490031]
[16]
Brachmann, C.B.; Sherman, J.M.; Devine, S.E.; Cameron, E.E.; Pillus, L.; Boeke, J.D. The SIR2 gene family, conserved from bacteria to humans, functions in silencing, cell cycle progression, and chromosome stability. Genes Dev., 1995, 9(23), 2888-2902.
[http://dx.doi.org/10.1101/gad.9.23.2888] [PMID: 7498786]
[17]
Qin, J.; Wen, B.; Liang, Y.; Yu, W.; Li, H. Histone modifications and their role in colorectal cancer. Pathol. Oncol. Res., 2020, 26(4), 2023-2033.
[http://dx.doi.org/10.1007/s12253-019-00663-8] [PMID: 31055775]
[18]
Rajak, H.; Singh, A.; Dewangan, P.K.; Patel, V.; Jain, D.K.; Tiwari, S.K.; Veerasamy, R.; Sharma, P.C. Peptide based macrocycles: Selective histone deacetylase inhibitors with antiproliferative activity. Curr. Med. Chem., 2013, 20(14), 1887-1903.
[http://dx.doi.org/10.2174/0929867311320140006] [PMID: 23409715]
[19]
Mottamal, M.; Zheng, S.; Huang, T.; Wang, G. Histone deacetylase inhibitors in clinical studies as templates for new anticancer agents. Molecules, 2015, 20(3), 3898-3941.
[http://dx.doi.org/10.3390/molecules20033898] [PMID: 25738536]
[20]
Price, S.; Dyke, H.J. Histone deacetylase inhibitors. Expert Opin. Ther. Pat., 2007, 17(7), 745-765.
[http://dx.doi.org/10.1517/13543776.17.7.745]
[21]
Liu, X.H.; Song, H.Y.; Zhang, J.X.; Han, B.C.; Wei, X.N.; Ma, X.H.; Cui, W.K.; Chen, Y.Z. Identifying novel type ZBGs and nonhydroxamate HDAC inhibitors through a SVM based virtual screening approach. Mol. Inform., 2010, 29(5), 407-420.
[http://dx.doi.org/10.1002/minf.200900014] [PMID: 27463196]
[22]
Madsen, A.S.; Kristensen, H.M.E.; Lanz, G.; Olsen, C.A. The effect of various zinc binding groups on inhibition of histone deacetylases 1-11. ChemMedChem, 2014, 9(3), 614-626.
[http://dx.doi.org/10.1002/cmdc.201300433] [PMID: 24375963]
[23]
Park, H.; Kim, S.; Kim, Y.E.; Lim, S.J. A structure-based virtual screening approach toward the discovery of histone deacetylase inhibitors: Identification of promising zincchelating groups. ChemMedChem, 2010, 5(4), 591-597.
[http://dx.doi.org/10.1002/cmdc.200900500] [PMID: 20157916]
[24]
Singh, A.; Patel, P.; Jageshwar; Patel, V.K.; Jain, D.K.; Kamal, M.; Rajak, H. The safety, efficacy and therapeutic potential of histone deacetylase inhibitors with special reference to panobinostat in gastrointestinal tumors: A review of preclinical and clinical studies. Curr. Cancer Drug Targets, 2018, 18(8), 720-736.
[http://dx.doi.org/10.2174/1568009617666170630124643] [PMID: 28669336]
[25]
Singh, A.; Patel, P.; Patel, V.K.; Jain, D.K.; Veerasamy, R.; Sharma, P.C.; Rajak, H. Histone deacetylase inhibitors for the treatment of colorectal cancer: Recent progress and future prospects. Curr. Cancer Drug Targets, 2017, 17(5), 456-466.
[http://dx.doi.org/10.2174/1568009617666170109150134] [PMID: 28067178]
[26]
Patel, P.; Patel, V.K.; Singh, A.; Jawaid, T.; Kamal, M.; Rajak, H. Identification of hydroxamic acid based selective HDAC1 inhibitors: Computer aided drug design studies. Curr. Computeraided Drug Des., 2019, 15(2), 145-166.
[http://dx.doi.org/10.2174/1573409914666180502113135] [PMID: 29732991]
[27]
Singh, A.; Patel, V.K.; Rajak, H. Appraisal of pyrrole as connecting unit in hydroxamic acid based histone deacetylase inhibitors: Synthesis, anticancer evaluation and molecular docking studies. J. Mol. Struct., 2021, 1240, 130590.
[http://dx.doi.org/10.1016/j.molstruc.2021.130590]
[28]
Peng, X.; Sun, Z.; Kuang, P.; Chen, J. Recent progress on HDAC inhibitors with dual targeting capabilities for cancer treatment. Eur. J. Med. Chem., 2020, 208, 112831.
[http://dx.doi.org/10.1016/j.ejmech.2020.112831] [PMID: 32961382]
[29]
Khan, N.; Jeffers, M.; Kumar, S.; Hackett, C.; Boldog, F.; Khramtsov, N.; Qian, X.; Mills, E.; Berghs, S.C.; Carey, N.; Finn, P.W.; Collins, L.S.; Tumber, A.; Ritchie, J.W.; Jensen, P.B.; Lichenstein, H.S.; Sehested, M. Determination of the class and isoform selectivity of small-molecule histone deacetylase inhibitors. Biochem. J., 2008, 409(2), 581-589.
[http://dx.doi.org/10.1042/BJ20070779] [PMID: 17868033]
[30]
Vaidya, G.N.; Rana, P.; Venkatesh, A.; Chatterjee, D.R.; Contractor, D.; Satpute, D.P.; Nagpure, M.; Jain, A.; Kumar, D. Paradigm shift of “classical” HDAC inhibitors to “hybrid” HDAC inhibitors in therapeutic interventions. Eur. J. Med. Chem., 2021, 209, 112844.
[http://dx.doi.org/10.1016/j.ejmech.2020.112844] [PMID: 33143937]
[31]
Juengel, E.; Makarević, J.; Tsaur, I.; Bartsch, G.; Nelson, K.; Haferkamp, A.; Blaheta, R.A. Resistance after chronic application of the HDAC-inhibitor valproic acid is associated with elevated Akt activation in renal cell carcinoma in vivo. PLoS One, 2013, 8(1), e53100.
[http://dx.doi.org/10.1371/journal.pone.0053100] [PMID: 23372654]
[32]
National Library of Medicine (US). ClinicalTrials.gov identifier: NCT01171924. A Phase IB Expansion study investigating the safety, efficacy, and pharmacokinetics of intravenous CUDC-101 in subjects with advanced head and neck, gastric, breast, liver and non-small cell lung cancer tumors. Available from: https://clinicaltrials.gov/ct2/show/
[33]
Tolcher, A. A phase I study of the safety, pharmacokinetics, and anti-tumor activity of CUDC-101 in patients with advanced solid tumor, NCT00728793, 2018.
[34]
National Library of Medicine (US). Phase I study of CUDC-101 with cisplatin and radiation in subjects with head & neck cancer, NCT01384799, 2018.
[35]
Mueller, S. Fimepinostat in Treating Brain Tumors in Children and Young Adults (PNOC016), NCT03893487, 2022.
[36]
Shulman, S.D. Fimepinostat in treating brain tumors in children and young adults (PNOC016). NCT02909777, 2022.
[37]
National Library of Medicine (US). Study to assess the safety, tolerability and pharmacokinetics of fimepinostat (CUDC-907) in patients with lymphoma, NCT01742988, 2021.
[38]
Aggarwal, R. Hyperpolarized C-13 pyruvate as a biomarker in patients with advanced solid tumor malignancies, NCT02913131, 2022.
[39]
Kummar, S. Study of the safety, pharmacokinetics and efficacy of EDO-S101, in patients with advanced solid tumors, NCT03345485, 2020.
[40]
Hari, P.; Hess, D. Tinostamustine conditioning and autologous stem cell (Titanium1). NCT03687125, 2021.
[41]
Engert, A. Oral histone deacetylase inhibitor 4sc-202 in patients with advanced hematologic malignancies (TOPAS), NCT01344707, 2015.
[42]
Schadendorf, D. Combination with pembrolizumab in patients primary refractory/non-responding to prior anti-PD-1 therapy (Sensitize). NCT03278665, 2022.
[43]
Ma, X.; Ezzeldin, H.H.; Diasio, R.B. Histone deacetylase inhibitors: Current status and overview of recent clinical trials. Drugs, 2009, 69(14), 1911-1934.
[http://dx.doi.org/10.2165/11315680-000000000-00000] [PMID: 19747008]
[44]
Rabal, O.; Sánchez-Arias, J.A.; Cuadrado-Tejedor, M.; de Miguel, I.; Pérez-González, M.; García-Barroso, C.; Ugarte, A.; Estella-Hermoso de Mendoza, A.; Sáez, E.; Espelosin, M.; Ursua, S.; Haizhong, T.; Wei, W.; Musheng, X.; Garcia-Osta, A.; Oyarzabal, J. Design, Synthesis, and biological evaluation of first-in-class dual acting histone deacetylases (HDACs) and phosphodiesterase 5 (PDE5) inhibitors for the treatment of Alzheimer’s disease. J. Med. Chem., 2016, 59(19), 8967-9004.
[http://dx.doi.org/10.1021/acs.jmedchem.6b00908] [PMID: 27606546]
[45]
Fu, R.; Sun, Y.; Sheng, W.; Liao, D. Designing multi-targeted agents: An emerging anticancer drug discovery paradigm. Eur. J. Med. Chem., 2017, 136, 195-211.
[http://dx.doi.org/10.1016/j.ejmech.2017.05.016] [PMID: 28494256]
[46]
Wang, X.X.; Wan, R.Z.; Liu, Z.P. Recent advances in the discovery of potent and selective HDAC6 inhibitors. Eur. J. Med. Chem., 2018, 143, 1406-1418.
[http://dx.doi.org/10.1016/j.ejmech.2017.10.040] [PMID: 29133060]
[47]
Bass, A.K.A.; El-Zoghbi, M.S.; Nageeb, E.S.M.; Mohamed, M.F.A.; Badr, M.; Abuo-Rahma, G.E.D.A. Comprehensive review for anticancer hybridized multitargeting HDAC inhibitors. Eur. J. Med. Chem., 2021, 209, 112904.
[http://dx.doi.org/10.1016/j.ejmech.2020.112904] [PMID: 33077264]
[48]
Suraweera, A.; O’Byrne, K.J.; Richard, D.J. Combination therapy with histone deacetylase inhibitors (HDACi) for the treatment of cancer: Achieving the full therapeutic potential of HDACi. Front. Oncol., 2018, 8, 92.
[http://dx.doi.org/10.3389/fonc.2018.00092] [PMID: 29651407]
[49]
Ranganna, K.; Selvam, C.; Shivachar, A.; Yousefipour, Z. Histone deacetylase inhibitors as multitarget-directed epidrugs in blocking PI3K oncogenic signaling: A polypharmacology approach. Int. J. Mol. Sci., 2020, 21(21), 8198.
[http://dx.doi.org/10.3390/ijms21218198] [PMID: 33147762]
[50]
Ververis, K.; Hiong, A.; Karagiannis, T.C. Histone deacetylase inhibitors (HDACIs): Multitargeted anticancer agents. Biologics, 2013, 7, 47-60.
[http://dx.doi.org/10.2147/BTT.S29965] [PMID: 23459471]
[51]
Liu, T.; Wan, Y.; Xiao, Y.; Xia, C.; Duan, G. Dual-target inhibitors based on HDACs: Novel antitumor agents for cancer therapy. J. Med. Chem., 2020, 63(17), 8977-9002.
[http://dx.doi.org/10.1021/acs.jmedchem.0c00491] [PMID: 32320239]
[52]
Tang, J.; Maddali, K.; Dreis, C.D.; Sham, Y.Y.; Vince, R.; Pommier, Y.; Wang, Z. N-3 hydroxylation of pyrimidine-2,4-diones yields dual inhibitors of HIV reverse transcriptase and integrase. ACS Med. Chem. Lett., 2011, 2(1), 63-67.
[http://dx.doi.org/10.1021/ml1002162] [PMID: 21499541]
[53]
Chen, J.B.; Chern, T.R.; Wei, T.T.; Chen, C.C.; Lin, J.H.; Fang, J.M. Design and synthesis of dual-action inhibitors targeting histone deacetylases and 3-hydroxy-3-methylglutaryl coenzyme A reductase for cancer treatment. J. Med. Chem., 2013, 56(9), 3645-3655.
[http://dx.doi.org/10.1021/jm400179b] [PMID: 23570542]
[54]
Tavera-Mendoza, L.E.; Quach, T.D.; Dabbas, B.; Hudon, J.; Liao, X.; Palijan, A.; Gleason, J.L.; White, J.H. Incorporation of histone deacetylase inhibition into the structure of a nuclear receptor agonist. Proc. Natl. Acad. Sci. USA, 2008, 105(24), 8250-8255.
[http://dx.doi.org/10.1073/pnas.0709279105] [PMID: 18550844]
[55]
Schmidt, J.; Rotter, M.; Weiser, T.; Wittmann, S.; Weizel, L.; Kaiser, A.; Heering, J.; Goebel, T.; Angioni, C.; Wurglics, M.; Paulke, A.; Geisslinger, G.; Kahnt, A.; Steinhilber, D.; Proschak, E.; Merk, D. A dual modulator of farnesoid x receptor and soluble epoxide hydrolase to counter nonalcoholic steatohepatitis. J. Med. Chem., 2017, 60(18), 7703-7724.
[http://dx.doi.org/10.1021/acs.jmedchem.7b00398] [PMID: 28845983]
[56]
Huang, W.; Lv, D.; Yu, H.; Sheng, R.; Kim, S.C.; Wu, P.; Luo, K.; Li, J.; Hu, Y. Dual-target-directed 1,3-diphenylurea derivatives: BACE 1 inhibitor and metal chelator against Alzheimer’s disease. Bioorg. Med. Chem., 2010, 18(15), 5610-5615.
[http://dx.doi.org/10.1016/j.bmc.2010.06.042] [PMID: 20620068]
[57]
Grommes, C.; Landreth, G.E.; Heneka, M.T. Antineoplastic effects of peroxisome proliferatoractivated receptor γ agonists. Lancet Oncol., 2004, 5(7), 419-429.
[http://dx.doi.org/10.1016/S1470-2045(04)01509-8] [PMID: 15231248]
[58]
Theocharis, S.; Margeli, A.; Vielh, P.; Kouraklis, G. Peroxisome proliferator-activated receptor-γ ligands as cell-cycle modulators. Cancer Treat. Rev., 2004, 30(6), 545-554.
[http://dx.doi.org/10.1016/j.ctrv.2004.04.004] [PMID: 15325034]
[59]
Youssef, J.; Badr, M. Peroxisome proliferator-activated receptors and cancer: Challenges and opportunities. Br. J. Pharmacol., 2011, 164(1), 68-82.
[http://dx.doi.org/10.1111/j.1476-5381.2011.01383.x] [PMID: 21449912]
[60]
Aouali, N.; Palissot, V.; El-Khoury, V.; Moussay, E.; Janji, B.; Pierson, S.; Brons, N.H.C.; Kellner, L.; Bosseler, M.; Van Moer, K.; Berchem, G. Peroxisome proliferator-activated receptor γ agonists potentiate the cytotoxic effect of valproic acid in multiple myeloma cells. Br. J. Haematol., 2009, 147(5), 662-671.
[http://dx.doi.org/10.1111/j.1365-2141.2009.07902.x] [PMID: 19793255]
[61]
Chang, T.H.; Szabo, E. Enhanced growth inhibition by combination differentiation therapy with ligands of peroxisome proliferator-activated receptor-gamma and inhibitors of histone deacetylase in adenocarcinoma of the lung. Clin. Cancer Res., 2002, 8(4), 1206-1212.
[PMID: 11948134]
[62]
Tilekar, K.; Hess, J.D.; Upadhyay, N.; Bianco, A.L.; Schweipert, M.; Laghezza, A.; Loiodice, F.; Meyer-Almes, F.J.; Aguilera, R.J.; Lavecchia, A.; C S, R. Thiazolidinedione “Magic Bullets” simultaneously targeting PPARγ and HDACs: Design, synthesis, and investi-gations of their in vitro and in vivo antitumor effects. J. Med. Chem., 2021, 64(10), 6949-6971.
[http://dx.doi.org/10.1021/acs.jmedchem.1c00491] [PMID: 34006099]
[63]
Lin, Y.C.; Lin, J.H.; Chou, C.W.; Chang, Y.F.; Yeh, S.H.; Chen, C.C. Statins increase p21 through inhibition of histone deacetylase activity and release of promoter-associated HDAC1/2. Cancer Res., 2008, 68(7), 2375-2383.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-5807] [PMID: 18381445]
[64]
Istvan, E.S.; Deisenhofer, J. Structural mechanism for statin inhibition of HMG-CoA reductase. Science, 2001, 292(5519), 1160-1164.
[http://dx.doi.org/10.1126/science.1059344] [PMID: 11349148]
[65]
Adorini, L.; Daniel, K.; Penna, G. Vitamin D receptor agonists, cancer and the immune system: An intricate relationship. Curr. Top. Med. Chem., 2006, 6(12), 1297-1301.
[http://dx.doi.org/10.2174/156802606777864890] [PMID: 16848743]
[66]
Masuda, S.; Jones, G. Promise of vitamin D analogues in the treatment of hyperproliferative conditions. Mol. Cancer Ther., 2006, 5(4), 797-808.
[http://dx.doi.org/10.1158/1535-7163.MCT-05-0539] [PMID: 16648549]
[67]
Lamblin, M.; Dabbas, B.; Spingarn, R.; Mendoza-Sanchez, R.; Wang, T.T.; An, B.S.; Huang, D.C.; Kremer, R.; White, J.H.; Gleason, J.L. Vitamin D receptor agonist/histone deacetylase inhibitor molecular hybrids. Bioorg. Med. Chem., 2010, 18(11), 4119-4137.
[http://dx.doi.org/10.1016/j.bmc.2010.03.078] [PMID: 20452225]
[68]
Hideshima, T.; Qi, J.; Paranal, R.M.; Tang, W.; Greenberg, E.; West, N.; Colling, M.E.; Estiu, G.; Mazitschek, R.; Perry, J.A.; Ohguchi, H.; Cottini, F.; Mimura, N.; Görgün, G.; Tai, Y.T.; Richardson, P.G.; Carrasco, R.D.; Wiest, O.; Schreiber, S.L.; Anderson, K.C.; Bradner, J.E. Discovery of selective small-molecule HDAC6 inhibitor for overcoming proteasome inhibitor resistance in multiple myeloma. Proc. Natl. Acad. Sci. USA, 2016, 113(46), 13162-13167.
[http://dx.doi.org/10.1073/pnas.1608067113] [PMID: 27799547]
[69]
Hideshima, T.; Richardson, P.G.; Anderson, K.C. Mechanism of action of proteasome inhibitors and deacetylase inhibitors and the biological basis of synergy in multiple myeloma. Mol. Cancer Ther., 2011, 10(11), 2034-2042.
[http://dx.doi.org/10.1158/1535-7163.MCT-11-0433] [PMID: 22072815]
[70]
Bhatia, S.; Krieger, V.; Groll, M.; Osko, J.D.; Reßing, N.; Ahlert, H.; Borkhardt, A.; Kurz, T.; Christianson, D.W.; Hauer, J.; Hansen, F.K. Discovery of the first-in-class dual histone deacetylase proteasome inhibitor. J. Med. Chem., 2018, 61(22), 10299-10309.
[http://dx.doi.org/10.1021/acs.jmedchem.8b01487] [PMID: 30365892]
[71]
Allison, A.C.; Eugui, E.M. Mycophenolate mofetil and its mechanisms of action. Immunopharmacology, 2000, 47(2-3), 85-118.
[http://dx.doi.org/10.1016/S0162-3109(00)00188-0] [PMID: 10878285]
[72]
Suganuma, K.; Sarwono, A.E.Y.; Mitsuhashi, S.; Jąkalski, M.; Okada, T.; Nthatisi, M.; Yamagishi, J.; Ubukata, M.; Inoue, N. Mycophenolic acid and its derivatives as potential chemotherapeutic agents targeting inosine monophosphate dehydrogenase in Trypanosoma congolense. Antimicrob. Agents Chemother., 2016, 60(7), 4391-4393.
[http://dx.doi.org/10.1128/AAC.02816-15] [PMID: 27139487]
[73]
Chen, L.; Wilson, D.; Jayaram, H.N.; Pankiewicz, K.W. Dual inhibitors of inosine monophosphate dehydrogenase and histone deacetylases for cancer treatment. J. Med. Chem., 2007, 50(26), 6685-6691.
[http://dx.doi.org/10.1021/jm070864w] [PMID: 18038969]
[74]
Chen, L.; Petrelli, R.; Gao, G.; Wilson, D.J.; McLean, G.T.; Jayaram, H.N.; Sham, Y.Y.; Pankiewicz, K.W. Dual inhibitors of inosine monophosphate dehydrogenase and histone deacetylase based on a cinnamic hydroxamic acid core structure. Bioorg. Med. Chem., 2010, 18(16), 5950-5964.
[http://dx.doi.org/10.1016/j.bmc.2010.06.081] [PMID: 20650640]
[75]
Bai, J.; Liao, C.; Liu, Y.; Qin, X.; Chen, J.; Qiu, Y.; Qin, D.; Li, Z.; Tu, Z.C.; Jiang, S. Structure-based design of potent nicotinamide phosphoribosyltransferase inhibitors with promising in vitro and in vivo antitumor activities. J. Med. Chem., 2016, 59(12), 5766-5779.
[http://dx.doi.org/10.1021/acs.jmedchem.6b00324] [PMID: 27224875]
[76]
Dong, G.; Chen, W.; Wang, X.; Yang, X.; Xu, T.; Wang, P.; Zhang, W.; Rao, Y.; Miao, C.; Sheng, C. Small molecule inhibitors simultaneously targeting cancer metabolism and epigenetics: Discovery of novel nicotinamide phosphoribosyltransferase (NAMPT) and histone deacetylase (HDAC) dual inhibitors. J. Med. Chem., 2017, 60(19), 7965-7983.
[http://dx.doi.org/10.1021/acs.jmedchem.7b00467] [PMID: 28885834]
[77]
Moradei, O.M.; Mallais, T.C.; Frechette, S.; Paquin, I.; Tessier, P.E.; Leit, S.M.; Fournel, M.; Bonfils, C.; Trachy-Bourget, M.C.; Liu, J.; Yan, T.P.; Lu, A.H.; Rahil, J.; Wang, J.; Lefebvre, S.; Li, Z.; Vaisburg, A.F.; Besterman, J.M. Novel aminophenyl benzamide-type histone deacetylase inhibitors with enhanced potency and selectivity. J. Med. Chem., 2007, 50(23), 5543-5546.
[http://dx.doi.org/10.1021/jm701079h] [PMID: 17941625]
[78]
Sitkovsky, M.; Lukashev, D.; Deaglio, S.; Dwyer, K.; Robson, S.C.; Ohta, A. Adenosine A2A receptor antagonists: Blockade of adenosinergic effects and T regulatory cells. Br. J. Pharmacol., 2008, 153(S1), S457-S464.
[http://dx.doi.org/10.1038/bjp.2008.23] [PMID: 18311159]
[79]
Ohta, A. A metabolic immune checkpoint: Adenosine in tumor microenvironment. Front. Immunol., 2016, 7, 109.
[http://dx.doi.org/10.3389/fimmu.2016.00109] [PMID: 27066002]
[80]
Yan, W.; Ling, L.; Wu, Y.; Yang, K.; Liu, R.; Zhang, J.; Zhao, S.; Zhong, G.; Zhao, S.; Jiang, H.; Xie, C.; Cheng, J. Structure-based design of dual-acting compounds targeting adenosine A2A receptor and histone deacetylase as novel tumor immunotherapeutic agents. J. Med. Chem., 2021, 64(22), 16573-16597.
[http://dx.doi.org/10.1021/acs.jmedchem.1c01155] [PMID: 34783558]
[81]
Benek, O.; Korabecny, J.; Soukup, O. A perspective on multi-target drugs for Alzheimers disease. Trends Pharmacol. Sci., 2020, 41(7), 434-445.
[http://dx.doi.org/10.1016/j.tips.2020.04.008] [PMID: 32448557]
[82]
Prati, F.; Cavalli, A.; Bolognesi, M. Navigating the chemical space of multitarget-directed ligands: From hybrids to fragments in Alzheimer’s disease. Molecules, 2016, 21(4), 466.
[http://dx.doi.org/10.3390/molecules21040466] [PMID: 27070562]
[83]
Zhou, N.; Xu, W.; Zhang, Y. Histone deacetylase inhibitors merged with protein tyrosine kinase inhibitors. Drug Discov. Ther., 2015, 9(3), 147-155.
[http://dx.doi.org/10.5582/ddt.2015.01001] [PMID: 26193935]
[84]
Roskoski, R., Jr. Properties of FDA-approved small molecule protein kinase inhibitors: A 2021 update. Pharmacol. Res., 2021, 165, 105463.
[http://dx.doi.org/10.1016/j.phrs.2021.105463] [PMID: 33513356]
[85]
Gao, Y.; Zhang, H.; Lirussi, F.; Garrido, C.; Ye, X.Y.; Xie, T. Dual inhibitors of histone deacetylases and other cancer-related targets: A pharmacological perspective. Biochem. Pharmacol., 2020, 182, 114224.
[http://dx.doi.org/10.1016/j.bcp.2020.114224] [PMID: 32956642]
[86]
Biersack, B.; Polat, S.; Höpfner, M. Anticancer properties of chimeric HDAC and kinase inhibitors. Semin. Cancer Biol., 2020, S1044-579(20), 30223-30226.
[http://dx.doi.org/10.1016/j.semcancer.2020.11.005]
[87]
Luan, Y.; Li, J.; Bernatchez, J.A.; Li, R. Kinase and histone deacetylase hybrid inhibitors for cancer therapy. J. Med. Chem., 2019, 62(7), 3171-3183.
[http://dx.doi.org/10.1021/acs.jmedchem.8b00189] [PMID: 30418766]
[88]
Kim, M.J.; Kim, D.E.; Jeong, I.G.; Choi, J.; Jang, S.; Lee, J.H.; Ro, S.; Hwang, J.J.; Kim, C.S. HDAC inhibitors synergize antiproliferative effect of sorafenib in renal cell carcinoma cells. Anticancer Res., 2012, 32(8), 3161-3168.
[PMID: 22843888]
[89]
Chen, M-C.; Chen, C-H.; Wang, J-C.; Tsai, A-C.; Liou, J-P.; Pan, S-L.; Teng, C-M. The HDAC inhibitor, MPT0E028, enhances erlotinib-induced cell death in EGFR-TKI-resistant NSCLC cells. Cell Death Dis., 2013, 4(9), e810.
[http://dx.doi.org/10.1038/cddis.2013.330] [PMID: 24052078]
[90]
Chen, C.H.; Chen, M.C.; Wang, J.C.; Tsai, A.C.; Chen, C.S.; Liou, J.P.; Pan, S.L.; Teng, C.M. Synergistic interaction between the HDAC inhibitor, MPT0E028, and sorafenib in liver cancer cells in vitro and in vivo. Clin. Cancer Res., 2014, 20(5), 1274-1287.
[http://dx.doi.org/10.1158/1078-0432.CCR-12-3909] [PMID: 24520095]
[91]
Greve, G.; Schiffmann, I.; Pfeifer, D.; Pantic, M.; Schüler, J.; Lübbert, M. The pan-HDAC inhibitor panobinostat acts as a sensitizer for erlotinib activity in EGFR-mutated and -wildtype non-small cell lung cancer cells. BMC Cancer, 2015, 15(1), 947.
[http://dx.doi.org/10.1186/s12885-015-1967-5] [PMID: 26675484]
[92]
Qian, D.Z.; Wang, X.; Kachhap, S.K.; Kato, Y.; Wei, Y.; Zhang, L.; Atadja, P.; Pili, R. The histone deacetylase inhibitor NVP-LAQ824 inhibits angiogenesis and has a greater antitumor effect in combination with the vascular endothelial growth factor receptor tyrosine kinase inhibitor PTK787/ZK222584. Cancer Res., 2004, 64(18), 6626-6634.
[http://dx.doi.org/10.1158/0008-5472.CAN-04-0540] [PMID: 15374977]
[93]
Ding, C.; Chen, S.; Zhang, C.; Hu, G.; Zhang, W.; Li, L.; Chen, Y.Z.; Tan, C.; Jiang, Y. Synthesis and investigation of novel 6-(1,2,3-triazol-4-yl)-4-aminoquinazolin derivatives possessing hydroxamic acid moiety for cancer therapy. Bioorg. Med. Chem., 2017, 25(1), 27-37.
[http://dx.doi.org/10.1016/j.bmc.2016.10.006] [PMID: 27769671]
[94]
Zuo, M.; Zheng, Y.W.; Lu, S.M.; Li, Y.; Zhang, S.Q. Synthesis and biological evaluation of N-aryl salicylamides with a hydroxamic acid moiety at 5-position as novel HDAC–EGFR dual inhibitors. Bioorg. Med. Chem., 2012, 20(14), 4405-4412.
[http://dx.doi.org/10.1016/j.bmc.2012.05.034] [PMID: 22698782]
[95]
Cai, X.; Zhai, H.X.; Wang, J.; Forrester, J.; Qu, H.; Yin, L.; Lai, C.J.; Bao, R.; Qian, C. Discovery of 7-(4-(3-ethynylphenylamino)-7-methoxyquinazolin-6-yloxy)-N-hydroxyheptanamide (CUDc-101) as a potent multi-acting HDAC, EGFR, and HER2 inhibitor for the treatment of cancer. J. Med. Chem., 2010, 53(5), 2000-2009.
[http://dx.doi.org/10.1021/jm901453q] [PMID: 20143778]
[96]
Jechlinger, M.; Sommer, A.; Moriggl, R.; Seither, P.; Kraut, N.; Capodiecci, P.; Donovan, M.; Cordon-Cardo, C.; Beug, H.; Grünert, S. Autocrine PDGFR signaling promotes mammary cancer metastasis. J. Clin. Invest., 2006, 116(6), 1561-1570.
[http://dx.doi.org/10.1172/JCI24652] [PMID: 16741576]
[97]
Patel, H.; Chuckowree, I.; Coxhead, P.; Guille, M.; Wang, M.; Zuckermann, A.; Williams, R.S.B.; Librizzi, M.; Paranal, R.M.; Bradner, J.E.; Spencer, J. Synthesis of hybrid anticancer agents based on kinase and histone deacetylase inhibitors. MedChemComm, 2014, 5(12), 1829-1833.
[http://dx.doi.org/10.1039/C4MD00211C]
[98]
Viola, D.; Valerio, L.; Molinaro, E.; Agate, L.; Bottici, V.; Biagini, A.; Lorusso, L.; Cappagli, V.; Pieruzzi, L.; Giani, C.; Sabini, E.; Passannati, P.; Puleo, L.; Matrone, A.; Pontillo-Contillo, B.; Battaglia, V.; Mazzeo, S.; Vitti, P.; Elisei, R. Treatment of advanced thyroid cancer with targeted therapies: Ten years of experience. Endocr. Relat. Cancer, 2016, 23(4), R185-R205.
[http://dx.doi.org/10.1530/ERC-15-0555] [PMID: 27207700]
[99]
Peng, F.W.; Wu, T.T.; Ren, Z.W.; Xue, J.Y.; Shi, L. Hybrids from 4-anilinoquinazoline and hydroxamic acid as dual inhibitors of vascular endothelial growth factor receptor-2 and histone deacetylase. Bioorg. Med. Chem. Lett., 2015, 25(22), 5137-5141.
[http://dx.doi.org/10.1016/j.bmcl.2015.10.006] [PMID: 26475519]
[100]
Ding, C.; Li, D.; Wang, Y.W.; Han, S.S.; Gao, C.M.; Tan, C.Y.; Jiang, Y.Y. Discovery of ErbB/HDAC inhibitors by combining the core pharmacophores of HDAC inhibitor vorinostat and kinase inhibitors vandetanib, BMS-690514, neratinib, and TAK-285. Chin. Chem. Lett., 2017, 28(6), 1220-1227.
[http://dx.doi.org/10.1016/j.cclet.2017.01.003]
[101]
Brotelle, T.; Bay, J.O. Pazopanib for treatment of renal cell carcinoma and soft tissue sarcomas. Bull. Cancer, 2014, 101(6), 641-646.
[http://dx.doi.org/10.1684/bdc.2014.1981] [PMID: 24977453]
[102]
Zang, J.; Liang, X.; Huang, Y.; Jia, Y.; Li, X.; Xu, W.; Chou, C.J.; Zhang, Y. Discovery of novel pazopanib-based HDAC and VEGFR dual inhibitors targeting cancer epigenetics and angiogenesis simultaneously. J. Med. Chem., 2018, 61(12), 5304-5322.
[http://dx.doi.org/10.1021/acs.jmedchem.8b00384] [PMID: 29787262]
[103]
Zhang, M.; Jang, H.; Nussinov, R. PI3K inhibitors: Review and new strategies. Chem. Sci. (Camb.), 2020, 11(23), 5855-5865.
[http://dx.doi.org/10.1039/D0SC01676D] [PMID: 32953006]
[104]
Yamada, T.; Horinaka, M.; Shinnoh, M.; Yoshioka, T.; Miki, T.; Sakai, T. A novel HDAC inhibitor OBP-801 and a PI3K inhibitor LY294002 synergistically induce apoptosis via the suppression of survivin and XIAP in renal cell carcinoma. Int. J. Oncol., 2013, 43(4), 1080-1086.
[http://dx.doi.org/10.3892/ijo.2013.2042] [PMID: 23900601]
[105]
Yoshioka, T.; Yogosawa, S.; Yamada, T.; Kitawaki, J.; Sakai, T. Combination of a novel HDAC inhibitor OBP-801/YM753 and a PI3K inhibitor LY294002 synergistically induces apoptosis in human endometrial carcinoma cells due to increase of Bim with accumulation of ROS. Gynecol. Oncol., 2013, 129(2), 425-432.
[http://dx.doi.org/10.1016/j.ygyno.2013.02.008] [PMID: 23403163]
[106]
Yun, F.; Cheng, C.; Ullah, S.; Yuan, Q. Design, synthesis and biological evaluation of novel histone deacetylase1/2 (HDAC1/2) and cyclin-dependent Kinase2 (CDK2) dual inhibitors against malignant cancer. Eur. J. Med. Chem., 2020, 198, 112322.
[http://dx.doi.org/10.1016/j.ejmech.2020.112322] [PMID: 32361064]
[107]
Cheng, C.; Yun, F.; Ullah, S.; Yuan, Q. Discovery of novel cyclin-dependent kinase (CDK) and histone deacetylase (HDAC) dual inhibitors with potent in vitro and in vivo anticancer activity. Eur. J. Med. Chem., 2020, 189, 112073.
[http://dx.doi.org/10.1016/j.ejmech.2020.112073] [PMID: 31991336]
[108]
Guerra, B.; Issinger, O.G. Protein kinase CK2 in human diseases. Curr. Med. Chem., 2008, 15(19), 1870-1886.
[http://dx.doi.org/10.2174/092986708785132933] [PMID: 18691045]
[109]
Laurence, A.; Pesu, M.; Silvennoinen, O.; O’Shea, J. JAK kinases in health and disease: An update. Open Rheumatol. J., 2012, 6(1), 232-244.
[http://dx.doi.org/10.2174/1874312901206010232] [PMID: 23028408]
[110]
Gao, S.; Chen, C.; Wang, L.; Hong, L.; Wu, J.; Dong, P.; Yu, F. Histone deacetylases inhibitor sodium butyrate inhibits JAK2/STAT signaling through upregulation of SOCS1 and SOCS3 mediated by HDAC8 inhibition in myeloproliferative neoplasms. Exp. Hematol., 2013, 41(3), 261-270.e4.
[http://dx.doi.org/10.1016/j.exphem.2012.10.012] [PMID: 23111066]
[111]
Quintás-Cardama, A.; Kantarjian, H.; Estrov, Z.; Borthakur, G.; Cortes, J.; Verstovsek, S. Therapy with the histone deacetylase inhibitor pracinostat for patients with myelofibrosis. Leuk. Res., 2012, 36(9), 1124-1127.
[http://dx.doi.org/10.1016/j.leukres.2012.03.003] [PMID: 22475363]
[112]
Yang, E.G.; Mustafa, N.; Tan, E.C.; Poulsen, A.; Ramanujulu, P.M.; Chng, W.J.; Yen, J.J.Y.; Dymock, B.W. Design and synthesis of janus kinase 2 (JAK2) and histone deacetlyase (HDAC) bispecific inhibitors based on pacritinib and evidence of dual pathway inhibition in hematological cell lines. J. Med. Chem., 2016, 59(18), 8233-8262.
[http://dx.doi.org/10.1021/acs.jmedchem.6b00157] [PMID: 27541357]
[113]
Ning, C.Q.; Lu, C.; Hu, L.; Bi, Y.J.; Yao, L.; He, Y.J.; Liu, L.F.; Liu, X.Y.; Yu, N.F. Macrocyclic compounds as anti-cancer agents: Design and synthesis of multi-acting inhibitors against HDAC, FLT3 and JAK2. Eur. J. Med. Chem., 2015, 95, 104-115.
[http://dx.doi.org/10.1016/j.ejmech.2015.03.034] [PMID: 25800646]
[114]
Rebocho, A.P.; Marais, R. ARAF acts as a scaffold to stabilize BRAF:CRAF heterodimers. Oncogene, 2013, 32(26), 3207-3212.
[http://dx.doi.org/10.1038/onc.2012.330] [PMID: 22926515]
[115]
Keating, G.M. Sorafenib: A review in hepatocellular carcinoma. Target. Oncol., 2017, 12(2), 243-253.
[http://dx.doi.org/10.1007/s11523-017-0484-7] [PMID: 28299600]
[116]
Geng, A.; Cui, H.; Zhang, L.; Chen, X.; Li, H.; Lu, T.; Zhu, Y. Discovery of novel phenoxybenzamide analogues as Raf/HDAC dual inhibitors. Bioorg. Med. Chem. Lett., 2019, 29(13), 1605-1608.
[http://dx.doi.org/10.1016/j.bmcl.2019.04.047] [PMID: 31053508]
[117]
Borgo, C.; Ruzzene, M. Role of protein kinase CK2 in antitumor drug resistance. J. Exp. Clin. Cancer Res., 2019, 38(1), 287.
[http://dx.doi.org/10.1186/s13046-019-1292-y] [PMID: 31277672]
[118]
Martínez, R.; Di Geronimo, B.; Pastor, M.; Zapico, J.M.; Coderch, C.; Panchuk, R.; Skorokhyd, N.; Maslyk, M.; Ramos, A.; de Pascual-Teresa, B. Multitarget anticancer agents based on histone deacetylase and protein kinase CK2 inhibitors. Molecules, 2020, 25(7), 1497.
[http://dx.doi.org/10.3390/molecules25071497] [PMID: 32218358]
[119]
Rangasamy, L.; Ortín, I.; Zapico, J.M.; Coderch, C.; Ramos, A.; de Pascual-Teresa, B. de Pascual-Teresa, B. New dual CK2/HDAC1 inhibitors with nanomolar inhibitory activity against both enzymes. ACS Med. Chem. Lett., 2020, 11(5), 713-719.
[http://dx.doi.org/10.1021/acsmedchemlett.9b00561] [PMID: 32435375]
[120]
Zhang, Y.; Xia, M.; Jin, K.; Wang, S.; Wei, H.; Fan, C.; Wu, Y.; Li, X.; Li, X.; Li, G.; Zeng, Z.; Xiong, W. Function of the c-Met receptor tyrosine kinase in carcinogenesis and associated therapeutic opportunities. Mol. Cancer, 2018, 17(1), 45.
[http://dx.doi.org/10.1186/s12943-018-0796-y] [PMID: 29455668]
[121]
Lu, D.; Yan, J.; Wang, L.; Liu, H.; Zeng, L.; Zhang, M.; Duan, W.; Ji, Y.; Cao, J.; Geng, M.; Shen, A.; Hu, Y. Design, synthesis, and biological evaluation of the first cmet/hdac inhibitors based on pyridazinone derivatives. ACS Med. Chem. Lett., 2017, 8(8), 830-834.
[http://dx.doi.org/10.1021/acsmedchemlett.7b00172] [PMID: 28835797]
[122]
Dai, S.; Zhou, Z.; Chen, Z.; Xu, G.; Chen, Y. Fibroblast growth factor receptors (FGFRs): Structures and small molecule inhibitors. Cells, 2019, 8(6), 614.
[http://dx.doi.org/10.3390/cells8060614] [PMID: 31216761]
[123]
Liu, J.; Qian, C.; Zhu, Y.; Cai, J.; He, Y.; Li, J.; Wang, T.; Zhu, H.; Li, Z.; Li, W.; Hu, L. Design, synthesis and evaluate of novel dual FGFR1 and HDAC inhibitors bearing an indazole scaffold. Bioorg. Med. Chem., 2018, 26(3), 747-757.
[http://dx.doi.org/10.1016/j.bmc.2017.12.041] [PMID: 29317150]
[124]
Shuai, W.; Wang, G.; Zhang, Y.; Bu, F.; Zhang, S.; Miller, D.D.; Li, W.; Ouyang, L.; Wang, Y. Recent progress on tubulin inhibitors with dual targeting capabilities for cancer therapy. J. Med. Chem., 2021, 64(12), 7963-7990.
[http://dx.doi.org/10.1021/acs.jmedchem.1c00100] [PMID: 34101463]
[125]
Wang, Y.; Sun, M.; Wang, Y.; Qin, J.; Zhang, Y.; Pang, Y.; Yao, Y.; Yang, H.; Duan, Y. Discovery of novel tubulin/HDAC dual-targeting inhibitors with strong antitumor and antiangiogenic potency. Eur. J. Med. Chem., 2021, 225, 113790.
[http://dx.doi.org/10.1016/j.ejmech.2021.113790] [PMID: 34454126]
[126]
Lee, H.Y.; Lee, J.F.; Kumar, S.; Wu, Y.W.; HuangFu, W.C.; Lai, M.J.; Li, Y.H.; Huang, H.L.; Kuo, F.C.; Hsiao, C.J.; Cheng, C.C.; Yang, C.R.; Liou, J.P. 3-Aroylindoles display antitumor activity in vitro and in vivo: Effects of N1-substituents on biological activity. Eur. J. Med. Chem., 2017, 125, 1268-1278.
[http://dx.doi.org/10.1016/j.ejmech.2016.11.033] [PMID: 27886544]
[127]
Schmitt, F.; Gosch, L.; Dittmer, A.; Rothemund, M.; Mueller, T.; Schobert, R.; Biersack, B.; Volkamer, A.; Höpfner, M. Oxazole-bridged Combretastatin A-4 derivatives with tethered hydroxamic acids: Structure–activity relations of new inhibitors of HDAC and/or tubulin function. Int. J. Mol. Sci., 2019, 20(2), 383.
[http://dx.doi.org/10.3390/ijms20020383] [PMID: 30658435]
[128]
Mourad, A.A.E.; Mourad, M.A.E.; Jones, P.G. Novel HDAC/tubulin dual inhibitor: Design, synthesis and docking studies of α-phthalimido-chalcone hybrids as potential anticancer agents with apoptosis-inducing activity. Drug Des. Devel. Ther., 2020, 14, 3111-3130.
[http://dx.doi.org/10.2147/DDDT.S256756] [PMID: 32848361]
[129]
Patel, V.K.; Singh, A.; Jain, D.K.; Patel, P.; Veerasamy, R.; Sharma, P.C.; Rajak, H. Combretastatin A-4 based thiophene derivatives as antitumor agent: Development of structure activity correlation model using 3D-QSAR, pharmacophore and docking studies. Future J. Pharm. Sci., 2017, 3(2), 71-78.
[http://dx.doi.org/10.1016/j.fjps.2017.03.003]
[130]
Patel, V.K.; Rajak, H. Development of structure activity correlation model on aroylindole derivatives as anticancer agents. Lett. Drug Des. Discov., 2018, 15(2), 143-153.
[http://dx.doi.org/10.2174/1570180814666170823161751]
[131]
Zhang, X.; Kong, Y.; Zhang, J.; Su, M.; Zhou, Y.; Zang, Y.; Li, J.; Chen, Y.; Fang, Y.; Zhang, X.; Lu, W. Design, synthesis and biological evaluation of colchicine derivatives as novel tubulin and histone deacetylase dual inhibitors. Eur. J. Med. Chem., 2015, 95, 127-135.
[http://dx.doi.org/10.1016/j.ejmech.2015.03.035] [PMID: 25805446]
[132]
Zhang, X.; Zhang, J.; Su, M.; Zhou, Y.; Chen, Y.; Li, J.; Lu, W. Design, synthesis and biological evaluation of 4′-demethyl-4-deoxypodophyllotoxin derivatives as novel tubulin and histone deacetylase dual inhibitors. RSC Advances, 2014, 4(76), 40444-40448.
[http://dx.doi.org/10.1039/C4RA05508J]
[133]
Patel, V.K.; Rajak, H. Significance of amino group substitution at combretastatin a-4 and phenstatin analogs. Lett. Drug Des. Discov., 2016, 13(9), 943-951.
[http://dx.doi.org/10.2174/1570180813666160517163444]
[134]
Patel, V.K.; Rajak, H. Structural investigations of aroylindole derivatives through 3D-QSAR and multiple pharmacophore modeling for the search of novel colchicines inhibitor. Lett. Drug Des. Discov., 2021, 18(2), 131-142.
[http://dx.doi.org/10.2174/1570180817999200905092444]
[135]
Lamaa, D.; Lin, H.P.; Zig, L.; Bauvais, C.; Bollot, G.; Bignon, J.; Levaique, H.; Pamlard, O.; Dubois, J.; Ouaissi, M.; Souce, M.; Kasselouri, A.; Saller, F.; Borgel, D.; Jayat-Vignoles, C.; Al-Mouhammad, H.; Feuillard, J.; Benihoud, K.; Alami, M.; Hamze, A. Design and synthesis of tubulin and histone deacetylase inhibitor based on iso-Combretastatin A-4. J. Med. Chem., 2018, 61(15), 6574-6591.
[http://dx.doi.org/10.1021/acs.jmedchem.8b00050] [PMID: 30004697]
[136]
Wang, J.C. Cellular roles of DNA topoisomerases: A molecular perspective. Nat. Rev. Mol. Cell Biol., 2002, 3(6), 430-440.
[http://dx.doi.org/10.1038/nrm831] [PMID: 12042765]
[137]
Guerrant, W.; Patil, V.; Canzoneri, J.C.; Oyelere, A.K. Dual targeting of histone deacetylase and topoisomerase II with novel bifunctional inhibitors. J. Med. Chem., 2012, 55(4), 1465-1477.
[http://dx.doi.org/10.1021/jm200799p] [PMID: 22260166]
[138]
Zhang, X.; Bao, B.; Yu, X.; Tong, L.; Luo, Y.; Huang, Q.; Su, M.; Sheng, L.; Li, J.; Zhu, H.; Yang, B.; Zhang, X.; Chen, Y.; Lu, W. The discovery and optimization of novel dual inhibitors of topoisomerase II and histone deacetylase. Bioorg. Med. Chem., 2013, 21(22), 6981-6995.
[http://dx.doi.org/10.1016/j.bmc.2013.09.023] [PMID: 24095018]
[139]
Guerrant, W.; Patil, V.; Canzoneri, J.C.; Yao, L.P.; Hood, R.; Oyelere, A.K. Dual-acting histone deacetylase-topoisomerase I inhibitors. Bioorg. Med. Chem. Lett., 2013, 23(11), 3283-3287.
[http://dx.doi.org/10.1016/j.bmcl.2013.03.108] [PMID: 23622981]
[140]
Cincinelli, R.; Musso, L.; Artali, R.; Guglielmi, M.B.; La Porta, I.; Melito, C.; Colelli, F.; Cardile, F.; Signorino, G.; Fucci, A.; Frusciante, M.; Pisano, C.; Dallavalle, S. Hybrid topoisomerase I and HDAC inhibitors as dual action anticancer agents. PLoS One, 2018, 13(10), e0205018.
[http://dx.doi.org/10.1371/journal.pone.0205018] [PMID: 30300374]
[141]
Diyabalanage, H.V.K.; Granda, M.L.; Hooker, J.M. Combination therapy: Histone deacetylase inhibitors and platinum-based chemotherapeutics for cancer. Cancer Lett., 2013, 329(1), 1-8.
[http://dx.doi.org/10.1016/j.canlet.2012.09.018] [PMID: 23032720]
[142]
Xie, R.; Li, Y.; Tang, P.; Yuan, Q. Rational design, synthesis and preliminary antitumor activity evaluation of a chlorambucil derivative with potent DNA/HDAC dual-targeting inhibitory activity. Bioorg. Med. Chem. Lett., 2017, 27(18), 4415-4420.
[http://dx.doi.org/10.1016/j.bmcl.2017.08.011] [PMID: 28818449]
[143]
Griffith, D.; Morgan, M.P.; Marmion, C.J. A novel anti-cancer bifunctional platinum drug candidate with dual DNA binding and histone deacetylase inhibitory activity. Chem. Commun. (Camb.), 2009, 28(44), 6735-6737.
[http://dx.doi.org/10.1039/b916715c] [PMID: 19885462]
[144]
Almotairy, A.R.Z.; Gandin, V.; Morrison, L.; Marzano, C.; Montagner, D.; Erxleben, A. Antitumor platinum(IV) derivatives of carboplatin and the histone deacetylase inhibitor 4-phenylbutyric acid. J. Inorg. Biochem., 2017, 177, 1-7.
[http://dx.doi.org/10.1016/j.jinorgbio.2017.09.009] [PMID: 28918353]
[145]
Fujisawa, T.; Filippakopoulos, P. Functions of bromodomain-containing proteins and their roles in homeostasis and cancer. Nat. Rev. Mol. Cell Biol., 2017, 18(4), 246-262.
[http://dx.doi.org/10.1038/nrm.2016.143] [PMID: 28053347]
[146]
Lovén, J.; Hoke, H.A.; Lin, C.Y.; Lau, A.; Orlando, D.A.; Vakoc, C.R.; Bradner, J.E.; Lee, T.I.; Young, R.A. Selective inhibition of tumor oncogenes by disruption of super-enhancers. Cell, 2013, 153(2), 320-334.
[http://dx.doi.org/10.1016/j.cell.2013.03.036] [PMID: 23582323]
[147]
Chesi, M.; Matthews, G.M.; Garbitt, V.M.; Palmer, S.E.; Shortt, J.; Lefebure, M.; Stewart, A.K.; Johnstone, R.W.; Bergsagel, P.L. Drug response in a genetically engineered mouse model of multiple myeloma is predictive of clinical efficacy. Blood, 2012, 120(2), 376-385.
[http://dx.doi.org/10.1182/blood-2012-02-412783] [PMID: 22451422]
[148]
He, S.; Dong, G.; Li, Y.; Wu, S.; Wang, W.; Sheng, C. Potent dual BET/HDAC inhibitors for efficient treatment of pancreatic cancer. Angew. Chem. Int. Ed., 2020, 59(8), 3028-3032.
[http://dx.doi.org/10.1002/anie.201915896] [PMID: 31943585]
[149]
Zhang, Z.; Hou, S.; Chen, H.; Ran, T.; Jiang, F.; Bian, Y.; Zhang, D.; Zhi, Y.; Wang, L.; Zhang, L.; Li, H.; Zhang, Y.; Tang, W.; Lu, T.; Chen, Y. Targeting epigenetic reader and eraser: Rational design, synthesis and in vitro evaluation of dimethylisoxazoles derivatives as BRD4/HDAC dual inhibitors. Bioorg. Med. Chem. Lett., 2016, 26(12), 2931-2935.
[http://dx.doi.org/10.1016/j.bmcl.2016.04.034] [PMID: 27142751]
[150]
Pan, Z.; Li, X.; Wang, Y.; Jiang, Q.; Jiang, L.; Zhang, M.; Zhang, N.; Wu, F.; Liu, B.; He, G. Discovery of thieno[2,3-d]pyrimidine-based hydroxamic acid derivatives as bromodomain-containing protein 4/histone deacetylase dual inhibitors induce autophagic cell death in colorectal carcinoma cells. J. Med. Chem., 2020, 63(7), 3678-3700.
[http://dx.doi.org/10.1021/acs.jmedchem.9b02178] [PMID: 32153186]
[151]
Shao, M.; He, L.; Zheng, L.; Huang, L.; Zhou, Y.; Wang, T.; Chen, Y.; Shen, M.; Wang, F.; Yang, Z.; Chen, L. Structure-based design, synthesis and in vitro antiproliferative effects studies of novel dual BRD4/HDAC inhibitors. Bioorg. Med. Chem. Lett., 2017, 27(17), 4051-4055.
[http://dx.doi.org/10.1016/j.bmcl.2017.07.054] [PMID: 28765013]
[152]
Hoter, A.; El-Sabban, M.; Naim, H. The HSP90 family: Structure, regulation, function, and implications in health and disease. Int. J. Mol. Sci., 2018, 19(9), 2560.
[http://dx.doi.org/10.3390/ijms19092560] [PMID: 30158430]
[153]
Wu, Y.W.; Chao, M.W.; Tu, H.J.; Chen, L.C.; Hsu, K.C.; Liou, J.P.; Yang, C.R.; Yen, S.C.; Huang Fu, W.C.; Pan, S.L. A novel dual HDAC and HSP90 inhibitor, MPT0G449, downregulates oncogenic pathways in human acute leukemia in vitro and in vivo. Oncogenesis, 2021, 10(5), 39.
[http://dx.doi.org/10.1038/s41389-021-00331-0] [PMID: 33986242]
[154]
Ojha, R.; Huang, H.L.; HuangFu, W.C.; Wu, Y.W.; Nepali, K.; Lai, M.J.; Su, C.J.; Sung, T.Y.; Chen, Y.L.; Pan, S.L.; Liou, J.P. 1-Aroylindoline-hydroxamic acids as anticancer agents, inhibitors of HSP90 and HDAC. Eur. J. Med. Chem., 2018, 150, 667-677.
[http://dx.doi.org/10.1016/j.ejmech.2018.03.006] [PMID: 29567459]
[155]
Mehndiratta, S.; Lin, M.H.; Wu, Y.W.; Chen, C.H.; Wu, T.Y.; Chuang, K.H.; Chao, M.W.; Chen, Y.Y.; Pan, S.L.; Chen, M.C.; Liou, J.P. N-alkyl-hydroxybenzoyl anilide hydroxamates as dual inhibitors of HDAC and HSP90, downregulating IFN-γ induced PD-L1 expression. Eur. J. Med. Chem., 2020, 185, 111725.
[http://dx.doi.org/10.1016/j.ejmech.2019.111725] [PMID: 31655430]
[156]
Yao, L.; Ohlson, S.; Dymock, B.W. Design and synthesis of triple inhibitors of janus kinase (JAK), histone deacetylase (HDAC) and Heat Shock Protein 90 (HSP90). Bioorg. Med. Chem. Lett., 2018, 28(8), 1357-1362.
[http://dx.doi.org/10.1016/j.bmcl.2018.03.009] [PMID: 29545103]
[157]
Overall, C.M.; Kleifeld, O. Validating matrix metalloproteinases as drug targets and anti-targets for cancer therapy. Nat. Rev. Cancer, 2006, 6(3), 227-239.
[http://dx.doi.org/10.1038/nrc1821] [PMID: 16498445]
[158]
Egeblad, M.; Werb, Z. New functions for the matrix metalloproteinases in cancer progression. Nat. Rev. Cancer, 2002, 2(3), 161-174.
[http://dx.doi.org/10.1038/nrc745] [PMID: 11990853]
[159]
Adhikari, N.; Mukherjee, A.; Saha, A.; Jha, T. Arylsulfonamides and selectivity of matrix metalloproteinase-2: An overview. Eur. J. Med. Chem., 2017, 129, 72-109.
[http://dx.doi.org/10.1016/j.ejmech.2017.02.014] [PMID: 28219048]
[160]
Amin, S.A.; Adhikari, N.; Jha, T. Is dual inhibition of metalloenzymes HDAC-8 and MMP-2 a potential pharmacological target to combat hematological malignancies? Pharmacol. Res., 2017, 122, 8-19.
[http://dx.doi.org/10.1016/j.phrs.2017.05.002] [PMID: 28501516]
[161]
Klein, G.; Vellenga, E.; Fraaije, M.W.; Kamps, W.A.; de Bont, E.S.J.M. The possible role of matrix metalloproteinase (MMP)-2 and MMP-9 in cancer, e.g. acute leukemia. Crit. Rev. Oncol. Hematol., 2004, 50(2), 87-100.
[http://dx.doi.org/10.1016/j.critrevonc.2003.09.001] [PMID: 15157658]
[162]
Cheng, X.C.; Wang, R.L.; Dong, Z.K.; Li, J.; Li, Y.Y.; Li, R.R. Design, synthesis and evaluation of novel metalloproteinase inhibitors based on l-tyrosine scaffold. Bioorg. Med. Chem., 2012, 20(19), 5738-5744.
[http://dx.doi.org/10.1016/j.bmc.2012.08.014] [PMID: 22967811]
[163]
Li, X.; Wang, J.; Li, J.; Wu, J.; Li, Y.; Zhu, H.; Fan, R.; Xu, W. Novel aminopeptidase N inhibitors derived from antineoplaston AS2–5 (Part I). Bioorg. Med. Chem., 2009, 17(8), 3053-3060.
[http://dx.doi.org/10.1016/j.bmc.2009.02.063] [PMID: 19329328]
[164]
Li, X.; Wang, Y.; Wu, J.; Li, Y.; Wang, Q.; Xu, W. Novel aminopeptidase N inhibitors derived from antineoplaston AS2–5 (Part II). Bioorg. Med. Chem., 2009, 17(8), 3061-3071.
[http://dx.doi.org/10.1016/j.bmc.2009.03.017] [PMID: 19339187]
[165]
Wang, Y.; Yang, L.; Hou, J.; Zou, Q.; Gao, Q.; Yao, W.; Yao, Q.; Zhang, J. Hierarchical virtual screening of the dual MMP-2/HDAC-6 inhibitors from natural products based on pharmacophore models and molecular docking. J. Biomol. Struct. Dyn., 2019, 37(3), 649-670.
[http://dx.doi.org/10.1080/07391102.2018.1434833] [PMID: 29380672]
[166]
Fischer, S.M.; Hawk, E.T.; Lubet, R.A. Coxibs and other nonsteroidal anti-inflammatory drugs in animal models of cancer chemoprevention. Cancer Prev. Res. (Phila.), 2011, 4(11), 1728-1735.
[http://dx.doi.org/10.1158/1940-6207.CAPR-11-0166] [PMID: 21778329]
[167]
Zang, J.; Shi, B.; Liang, X.; Gao, Q.; Xu, W.; Zhang, Y. Development of N -hydroxycinnamamide-based HDAC inhibitors with improved HDAC inhibitory activity and in vitro antitumor activity. Bioorg. Med. Chem., 2017, 25(9), 2666-2675.
[http://dx.doi.org/10.1016/j.bmc.2016.12.001] [PMID: 28336407]
[168]
Chang, M.S. Tamoxifen resistance in breast cancer. Biomol. Ther. (Seoul), 2012, 20(3), 256-267.
[http://dx.doi.org/10.4062/biomolther.2012.20.3.256] [PMID: 24130921]
[169]
Hodges-Gallagher, L.; Valentine, C.D.; Bader, S.E.; Kushner, P.J. Inhibition of histone deacetylase enhances the anti-proliferative action of antiestrogens on breast cancer cells and blocks tamoxifen-induced proliferation of uterine cells. Breast Cancer Res. Treat., 2007, 105(3), 297-309.
[http://dx.doi.org/10.1007/s10549-006-9459-6] [PMID: 17186358]
[170]
Ulm, M.; Ramesh, A.V.; McNamara, K.M.; Ponnusamy, S.; Sasano, H.; Narayanan, R. Therapeutic advances in hormone-dependent cancers: Focus on prostate, breast and ovarian cancers. Endocr. Connect., 2019, 8(2), R10-R26.
[http://dx.doi.org/10.1530/EC-18-0425] [PMID: 30640710]
[171]
Yang, X.; Phillips, D.L.; Ferguson, A.T.; Nelson, W.G.; Herman, J.G.; Davidson, N.E. Synergistic activation of functional estrogen receptor (ER)-alpha by DNA methyltransferase and histone deacetylase inhibition in human ER-alpha-negative breast cancer cells. Cancer Res., 2001, 61(19), 7025-7029.
[PMID: 11585728]
[172]
Sabnis, G.J.; Goloubeva, O.; Chumsri, S.; Nguyen, N.; Sukumar, S.; Brodie, A.M.H. Functional activation of the estrogen receptor-α and aromatase by the HDAC inhibitor entinostat sensitizes ER-negative tumors to letrozole. Cancer Res., 2011, 71(5), 1893-1903.
[http://dx.doi.org/10.1158/0008-5472.CAN-10-2458] [PMID: 21245100]
[173]
Restall, C.; Doherty, J.; Liu, H.B.; Genovese, R.; Paiman, L.; Byron, K.A.; Anderson, R.L.; Dear, A.E. A novel histone deacetylase inhibitor augments tamoxifen-mediated attenuation of breast carcinoma growth. Int. J. Cancer, 2009, 125(2), 483-487.
[http://dx.doi.org/10.1002/ijc.24350] [PMID: 19330834]
[174]
Gryder, B.E.; Rood, M.K.; Johnson, K.A.; Patil, V.; Raftery, E.D.; Yao, L.P.D.; Rice, M.; Azizi, B.; Doyle, D.F.; Oyelere, A.K. Histone deacetylase inhibitors equipped with estrogen receptor modulation activity. J. Med. Chem., 2013, 56(14), 5782-5796.
[http://dx.doi.org/10.1021/jm400467w] [PMID: 23786452]
[175]
Mendoza-Sanchez, R.; Cotnoir-White, D.; Kulpa, J.; Jutras, I.; Pottel, J.; Moitessier, N.; Mader, S.; Gleason, J.L. Design, synthesis and evaluation of antiestrogen and histone deacetylase inhibitor molecular hybrids. Bioorg. Med. Chem., 2015, 23(24), 7597-7606.
[http://dx.doi.org/10.1016/j.bmc.2015.11.005] [PMID: 26613635]
[176]
Tang, C.; Li, C.; Zhang, S.; Hu, Z.; Wu, J.; Dong, C.; Huang, J.; Zhou, H.B. Novel bioactive hybrid compound dual targeting estrogen receptor and histone deacetylase for the treatment of breast cancer. J. Med. Chem., 2015, 58(11), 4550-4572.
[http://dx.doi.org/10.1021/acs.jmedchem.5b00099] [PMID: 25993269]
[177]
Duan, R.; Du, W.; Guo, W. EZH2: A novel target for cancer treatment. J. Hematol. Oncol., 2020, 13(1), 104.
[http://dx.doi.org/10.1186/s13045-020-00937-8] [PMID: 32723346]
[178]
Romanelli, A.; Stazi, G.; Fioravanti, R.; Zwergel, C.; Di Bello, E.; Pomella, S.; Perrone, C.; Battistelli, C.; Strippoli, R.; Tripodi, M.; del Bufalo, D.; Rota, R.; Trisciuoglio, D.; Mai, A.; Valente, S. Design of first-in-class dual EZH2/HDAC inhibitor: Biochemical activity and biological evaluation in cancer cells. ACS Med. Chem. Lett., 2020, 11(5), 977-983.
[http://dx.doi.org/10.1021/acsmedchemlett.0c00014] [PMID: 32435414]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy