Perspective

长链非编码RNA疗法:最新进展和挑战

卷 23, 期 16, 2022

发表于: 10 October, 2022

页: [1457 - 1464] 页: 8

弟呕挨: 10.2174/1389450123666220919122520

摘要

除了信使RNA(如核酶)之外,还发现了调控RNA(如microRNA和长非编码RNA)的作用,这是令人着迷的。RNA现在被认为是几乎参与每个生物过程的重要调节因子。多年来,非编码RNA领域的研究,特别是microRNA(miRNA)和长非编码RNA(LncRNA)得到了极大的发展。最近的研究确定了不同的RNA,包括非编码RNA,如LncRNA,以及它们在细胞中的各种作用模式。这些RNA有望成为治疗各种疾病的关键靶标,因为它们控制着广泛的生物途径。LncRNA靶向药物平台为制药行业提供了无数的机会,并有可能在基因水平上调节疾病,同时克服不一致蛋白质的局限性。本文重点介绍该领域的最新进展和主要挑战,并描述了各种基于RNA的疗法,这些疗法改变了许多疾病的医疗保健质量,并使个性化药物成为现实。本文还总结了正在临床试验中进行测试或已获得FDA批准的基于RNA的疗法。

关键词: 微小RNA,长非编码RNA,环状RNA,急性髓性白血病, 慢性髓性白血病,核酶

[1]
Boland RC. Non-coding RNA: It’s not junk. Dig Dis Sci 2017; 62(5): 1107-9.
[http://dx.doi.org/10.1007/s10620-017-4506-1] [PMID: 28271304]
[2]
Zhang P, Wu W, Chen Q, Chen M. Non-coding RNAs and their integrated networks. J Integr Bioinform 2019; 16(3): 20190027.
[http://dx.doi.org/10.1515/jib-2019-0027] [PMID: 31301674]
[3]
Losko M, Kotlinowski J, Jura J. Long noncoding RNAs in metabolic syndrome related disorders. Mediators Inflamm 2016; 2016: 1-12.
[http://dx.doi.org/10.1155/2016/5365209] [PMID: 27881904]
[4]
Ma L, Bajic VB, Zhang Z. On the classification of long non-coding RNAs. RNA Biol 2013; 10(6): 924-33.
[http://dx.doi.org/10.4161/rna.24604] [PMID: 23696037]
[5]
Dahariya S, Paddibhatla I, Kumar S, Raghuwanshi S, Pallepati A, Gutti RK. Long non-coding RNA: Classification, biogenesis and functions in blood cells. Mol Immunol 2019; 112: 82-92.
[http://dx.doi.org/10.1016/j.molimm.2019.04.011] [PMID: 31079005]
[6]
Sun M, Kraus WL. From discovery to function: The expanding roles of long noncoding RNAs in physiology and disease. Endocr Rev 2015; 36(1): 25-64.
[http://dx.doi.org/10.1210/er.2014-1034] [PMID: 25426780]
[7]
Kung JTY, Colognori D, Lee JT. Long noncoding RNAs: Past, present, and future. Genetics 2013; 193(3): 651-69.
[http://dx.doi.org/10.1534/genetics.112.146704] [PMID: 23463798]
[8]
Derrien T, Johnson R, Bussotti G, et al. The GENCODE v7 catalog of human long noncoding RNAs: Analysis of their gene structure, evolution, and expression. Genome Res 2012; 22(9): 1775-89.
[http://dx.doi.org/10.1101/gr.132159.111] [PMID: 22955988]
[9]
Jarroux J, Morillon A, Pinskaya M. History, discovery, and classification of lncRNAs. Adv Exp Med Biol 2017; 1008: 1-46.
[http://dx.doi.org/10.1007/978-981-10-5203-3_1] [PMID: 28815535]
[10]
Quinn JJ, Chang HY. Unique features of long non-coding RNA biogenesis and function. Nat Rev Genet 2016; 17(1): 47-62.
[http://dx.doi.org/10.1038/nrg.2015.10] [PMID: 26666209]
[11]
Amin N, McGrath A, Chen YPP. Evaluation of deep learning in non-coding RNA classification. Nat Mach Intell 2019; 1(5): 246-56.
[http://dx.doi.org/10.1038/s42256-019-0051-2]
[12]
Dhanoa JK, Sethi RS, Verma R, Arora JS, Mukhopadhyay CS. Long non-coding RNA: Its evolutionary relics and biological implications in mammals: A review. J Anim Sci Technol 2018; 60(1): 25.
[http://dx.doi.org/10.1186/s40781-018-0183-7] [PMID: 30386629]
[13]
Ma L, Cao J, Liu L, et al. LncBook: A curated knowledgebase of human long non-coding RNAs. Nucleic Acids Res 2019; 47(D1): D128-34.
[http://dx.doi.org/10.1093/nar/gky960] [PMID: 30329098]
[14]
Wang Y, Fang Z, Hong M, Yang D, Xie W. Long-noncoding RNAs (lncRNAs) in drug metabolism and disposition, implications in cancer chemo-resistance. Acta Pharm Sin B 2020; 10: 105-2.
[15]
Jiang MC, Ni JJ, Cui WY, Wang BY, Zhuo W. Emerging roles of lncRNA in cancer and therapeutic opportunities. Am J Cancer Res 2019; 9(7): 1354-66.
[PMID: 31392074]
[16]
Ma N, Tie C, Yu B, Zhang W, Wan J. Identifying lncRNA–miRNA–mRNA networks to investigate Alzheimer’s disease pathogenesis and therapy strategy. Aging 2020; 12(3): 2897-920.
[http://dx.doi.org/10.18632/aging.102785] [PMID: 32035423]
[17]
Wu Y. The therapeutic potential and role of miRNA, lncRNA, and circRNA in osteoarthritis. Curr Gene Ther 2019; 19(4): 255-63.
[18]
Kumar MM, Goyal R. LncRNA as a therapeutic target for angiogenesis. Curr Top Med Chem 2017; 17(15): 1750-7.
[http://dx.doi.org/10.2174/1568026617666161116144744] [PMID: 27848894]
[19]
Crooke ST. Molecular mechanisms of antisense oligonucleotides. Nucleic Acid Therapeut 2017; 27(2): 70-7.
[20]
Khvorova A, Watts JK. The chemical evolution of oligonucleotide therapies of clinical utility. Nat Biotechnol 2017; 35: 238-48.
[http://dx.doi.org/10.1038/nbt.3765]
[21]
Esposito R, Bosch N. Hacking the cancer genome: Profiling therapeutically actionable long non-coding RNAs using CRISPR-Cas9 screening. Canc Cell 2019; 35(4): 545-57.
[22]
El-Hammadi MM, Arias JL. An update on liposomes in drug delivery: A patent review (2014e2018). Expert Opin Ther Pat 2019; 29(11): 891-907.
[23]
Haney MJ, Klyachko NL, Zhao YL, et al. Exosomes as drug delivery vehicles for Parkinson’s disease therapy. J Control Release 2015; 207: 18-30.
[http://dx.doi.org/10.1016/j.jconrel.2015.03.033]
[24]
Rinaldi C, Wood MJA. Antisense oligonucleotides: The next frontier for treatment of neurological disorders. Nat Rev Neurol 2018; 14(1): 9-21.
[http://dx.doi.org/10.1038/nrneurol.2017.148]
[25]
Kocak DD, Josephs EA, Bhandarkar V, Adkar SS, Kwon JB, Gersbach CA. Increasing the specificity of CRISPR systems with engineered RNA secondary structures. Nat Biotechnol 2019; 37: 657-66.
[http://dx.doi.org/10.1038/s41587-019-0095-1]
[26]
Mishra S, Verma SS, Rai V, Awasthee N. Long non-coding RNAs are emerging targets of phytochemicals for cancer and other chronic diseases. Cell Mol Life Sci 2019; 76(10): 1947-66.
[27]
Burel SA, Hart CE, Cauntay P, et al. Hepatotoxicity of high affinity gapmer antisense oligonucleotides is mediated by RNase H1 dependent promiscuous reduction of very long pre-mRNA transcripts. Nucleic Acids Res 2016; 445: 2093-109.
[http://dx.doi.org/10.1093/nar/gkv1210]
[28]
Fatemi PR, Salah-Uddin S, Modarresi F, Khoury N. Screening for small-molecule modulators of long noncoding RNAeprotein interactions using AlphaScreen. J Biomol Screen 2015; 20(9): 1132-41.
[29]
Guo Q, Zheng X, Yang P, et al. Small interfering RNA delivery to the neurons near the amyloid plaques for improved treatment of Alzheimer’s disease. Acta Pharm Sin B 2019; 9(3): 590-603.
[30]
Tao SC, Rui BY, Wang QY, Zhou D, Zhang Y, Guo SC. Extracellular vesicle-mimetic nanovesicles transport LncRNA-H19 as competing endogenous RNA for the treatment of diabetic wounds. Drug Deliv 2018; 25(1): 241-55.
[http://dx.doi.org/10.1080/10717544.2018.1425774]
[31]
Kamerkar S, LeBleu VS, Sugimoto H, et al. Exosomes facilitate therapeutic targeting of oncogenic KRAS in pancreatic cancer. Nature 2017; 546(7659): 498-503.
[http://dx.doi.org/10.1038/nature22341] [PMID: 28607485]
[32]
Huang CK, Kafert-Kasting S, Thum T. Preclinical and clinical development of noncoding RNA therapeutics for cardiovascular disease. Circ Res 2020; 126(5): 663-78.
[http://dx.doi.org/10.1161/CIRCRESAHA.119.315856] [PMID: 32105576]
[33]
Matsui M, Corey DR. Non-coding RNAs as drug targets. Nat Rev Drug Discov 2017; 16(3): 167-79.
[http://dx.doi.org/10.1038/nrd.2016.117] [PMID: 27444227]
[34]
Kim YK. RNA therapy: Current status and future potential. Chonnam Med J 2020; 56(2): 87-93.
[http://dx.doi.org/10.4068/cmj.2020.56.2.87] [PMID: 32509554]
[35]
Smekalova EM, Kotelevtsev YV, Leboeuf D, et al. lncRNA in the liver: Prospects for fundamental research and therapy by RNA interference. Biochimie 2016; 131: 59-72.
[http://dx.doi.org/10.1016/j.biochi.2016.06.007] [PMID: 27318030]
[36]
Pan X, Zheng G, Gao C. LncRNA PVT1: A novel therapeutic target for cancers. Clin Lab 2018; 64(5): 655-62.
[http://dx.doi.org/10.7754/Clin.Lab.2018.171216] [PMID: 29739059]
[37]
Ren Y, Li RQ, Cai YR, Xia T, Yang M, Xu F-J. Effective codelivery of lncRNA and pDNA by pullulan-based nanovectors for promising therapy of hepatocellular carcinoma. Adv Funct Mater 2016; 26(40): 7314-25.
[http://dx.doi.org/10.1002/adfm.201603041]
[38]
Tai Z, Ma J, Ding J, et al. Aptamer-Functionalized dendrimer delivery of plasmid-encoding lncRNA MEG3 enhances gene therapy in castration-resistant prostate cancer. Int J Nanomedicine 2020; 15: 10305-20.
[http://dx.doi.org/10.2147/IJN.S282107] [PMID: 33376323]
[39]
Huang X, Wu W, Jing D, et al. Engineered exosome as targeted lncRNA MEG3 delivery vehicles for osteosarcoma therapy. J Control Release 2022; 343: 107-17.
[http://dx.doi.org/10.1016/j.jconrel.2022.01.026] [PMID: 35077741]
[40]
Herrera-Solorio AM, Peralta-Arrieta I, López LA. LncRNA SOX2-OT regulates AKT/ERK and SOX2/GLI-1 expression, hinders therapy, and worsens clinical prognosis in malignant lung diseases. Mol Oncol 2021; 15(4): 1110-29.
[http://dx.doi.org/10.1002/1878-0261.12875]
[41]
Shi P, Li M, Song C. Neutrophil-like cell membrane-coated siRNA of lncRNA AABR07017145.1 therapy for cardiac hypertrophy via inhibiting ferroptosis of CMECs. Mol Ther 2022; 7: 16-36.
[42]
Ge Y, Song X, Liu J, Liu C, Xu C. The Combined therapy of berberine treatment with lncRNA BACE1-AS depletion attenuates Aβ25–35 induced neuronal injury through regulating the expression of miR-132-3p in neuronal cells. Neurochem Res 2020; 45(4): 741-51.
[http://dx.doi.org/10.1007/s11064-019-02947-6] [PMID: 31898085]
[43]
Ye H, Chu X, Cao Z, et al. A novel targeted therapy system for cervical cancer: Co-delivery system of antisense LncRNA of MDC1 and oxaliplatin magnetic thermosensitive cationic liposome drug carrier. Int J Nanomedicine 2021; 16: 1051-66.
[http://dx.doi.org/10.2147/IJN.S258316] [PMID: 33603368]
[44]
Cheng J, Zhou X, Feng W, et al. Risk stratification by long non‐coding RNAs profiling in COVID‐19 patients. J Cell Mol Med 2021; 25(10): 4753-64.
[http://dx.doi.org/10.1111/jcmm.16444] [PMID: 33759345]
[45]
Huang K, Wang C, Vagts C, et al. Long non-coding RNAs (lncRNAs) NEAT1 and MALAT1 are differentially expressed in severe COVID-19 patients: An integrated single cell analysis. medRxiv 2021.
[http://dx.doi.org/10.1101/2021.03.26.21254445]

© 2024 Bentham Science Publishers | Privacy Policy