Mini-Review Article

Therapeutic Approaches for Combating Aspergillus Associated Infection

Author(s): Aruna Punia, Pooja Choudhary, Namita Sharma, Sweety Dahiya, Prity Gulia and Anil K. Chhillar*

Volume 23, Issue 16, 2022

Published on: 06 October, 2022

Page: [1465 - 1488] Pages: 24

DOI: 10.2174/1389450123666220623164548

Price: $65

Abstract

Now-a-days fungal infection emerges as a significant problem to healthcare management systems due to high frequency of associated morbidity, mortality toxicity, drug-drug interactions, and resistance of the antifungal agents. Aspergillus is the most common mold that cause infection in immunocompromised hosts. It's a hyaline mold that is cosmopolitan and ubiquitous in nature. Aspergillus infects around 10 million population each year with a mortality rate of 30-90%. Clinically available antifungal formulations are restricted to four classes (i.e., polyene, triazole, echinocandin, and allylamine), and each of them have their own limitations associated with the activity spectrum, the emergence of resistance, and toxicity. Consequently, novel antifungal agents with modified and altered chemical structures are required to combat these invasive fungal infections. To overcome these limitations, there is an urgent need for new antifungal agents that can act as potent drugs in near future. Currently, some compounds have shown effective antifungal activity. In this review article, we have discussed all potential antifungal therapies that contain old antifungal drugs, combination therapies, and recent novel antifungal formulations, with a focus on the Aspergillus associated infections.

Keywords: Aspergillus, invasive aspergillosis, polyenes, azoles, echinocandins, novel drugs.

Graphical Abstract
[1]
Alastruey-Izquierdo A, Cadranel J, Flick H, et al. Treatment of chronic pulmonary aspergillosis: Current standards and future perspectives. Respiration 2018; 96(2): 159-70.
[http://dx.doi.org/10.1159/000489474] [PMID: 29982245]
[2]
Denning DW, Page ID, Chakaya J, et al. Case definition of chronic pulmonary aspergillosis in resource-constrained settings. Emerg Infect Dis 2018; 24(8): e171312.
[http://dx.doi.org/10.3201/eid2408.171312] [PMID: 30016256]
[3]
Kontoyiannis DP, Marr KA, Park BJ, et al. Prospective surveillance for invasive fungal infections in hematopoietic stem cell transplant recipients, 2001-2006: Overview of the Transplant-Associated Infection Surveillance Network (TRANSNET) Database. Clin Infect Dis 2010; 50(8): 1091-100.
[http://dx.doi.org/10.1086/651263] [PMID: 20218877]
[4]
Cornely OA, Lass-Flörl C, Lagrou K, Arsic-Arsenijevic V, Hoenigl M. Improving outcome of fungal diseases - Guiding experts and patients towards excellence. Mycoses 2017; 60(7): 420-5.
[http://dx.doi.org/10.1111/myc.12628] [PMID: 28497502]
[5]
Geiser DM. Sexual structures in Aspergillus: Morphology, importance and genomics. Med Mycol 2009; 47: S21-6.
[6]
Carmona EM, Limper AH. Overview of treatment approaches for fungal infections. Clin Chest Med 2017; 38(3): 393-402.
[http://dx.doi.org/10.1016/j.ccm.2017.04.003] [PMID: 28797484]
[7]
Meletiadis J, Antachopoulos C, Stergiopoulou T, Pournaras S, Roilides E, Walsh TJ. Differential fungicidal activities of amphotericin B and voriconazole against Aspergillus species determined by microbroth methodology. Antimicrob Agents Chemother 2007; 51(9): 3329-37.
[http://dx.doi.org/10.1128/AAC.00345-07] [PMID: 17576838]
[8]
Geißel B, Loiko V, Klugherz I, et al. Azole-induced cell wall carbohydrate patches kill Aspergillus fumigatus. Nat Commun 2018; 9(1): 3098.
[http://dx.doi.org/10.1038/s41467-018-05497-7] [PMID: 30082817]
[9]
Patil A, Majumdar S. Echinocandins in antifungal pharmacotherapy. J Pharm Pharmacol 2017; 69(12): 1635-60.
[http://dx.doi.org/10.1111/jphp.12780] [PMID: 28744860]
[10]
Prattes J, Flick H, Prüller F, et al. Novel tests for diagnosis of invasive aspergillosis in patients with underlying respiratory diseases. Am J Respir Crit Care Med 2014; 190(8): 922-9.
[http://dx.doi.org/10.1164/rccm.201407-1275OC] [PMID: 25203869]
[11]
Cornillet A, Camus C, Nimubona S, et al. Comparison of epidemiological, clinical, and biological features of invasive aspergillosis in neutropenic and nonneutropenic patients: A 6-year survey. Clin Infect Dis 2006; 43(5): 577-84.
[http://dx.doi.org/10.1086/505870] [PMID: 16886149]
[12]
Mayr A, Lass-Flörl C. Epidemiology and antifungal resistance in invasive Aspergillosis according to primary disease: Review of the literature. Eur J Med Res 2011; 16(4): 153-7.
[http://dx.doi.org/10.1186/2047-783X-16-4-153] [PMID: 21486729]
[13]
Osherov N, Kontoyiannis DP. The anti-Aspergillus drug pipeline: Is the glass half full or empty? Sabouraudia 2017; 55(1): 118-24.
[http://dx.doi.org/10.1093/mmy/myw060] [PMID: 27562862]
[14]
Roemer T, Boone C. Systems-level antimicrobial drug and drug synergy discovery. Nat Chem Biol 2013; 9(4): 222-31.
[http://dx.doi.org/10.1038/nchembio.1205] [PMID: 23508188]
[15]
Latgé J-P. Aspergillus fumigatus and aspergillosis. Clin Microbiol Rev 1999; 12(2): 310-50.
[http://dx.doi.org/10.1128/CMR.12.2.310] [PMID: 10194462]
[16]
Debeaupuis J-P, Sarfati J, Chazalet V, Latgé J-P. Genetic diversity among clinical and environmental isolates of Aspergillus fumigatus. Infect Immun 1997; 65(8): 3080-5.
[http://dx.doi.org/10.1128/iai.65.8.3080-3085.1997] [PMID: 9234757]
[17]
Wéry N. Bioaerosols from composting facilities-a review. Front Cell Infect Microbiol 2014; 4: 42.
[PMID: 24772393]
[18]
González-Ramírez AI, Ramírez-Granillo A, Medina-Canales MG, Rodríguez-Tovar AV, Martínez-Rivera MA. Analysis and description of the stages of Aspergillus fumigatus biofilm formation using scanning electron microscopy. BMC Microbiol 2016; 16(1): 243.
[http://dx.doi.org/10.1186/s12866-016-0859-4] [PMID: 27756222]
[19]
Kaur S, Singh S. Biofilm formation by Aspergillus fumigatus. Med Mycol 2014; 52(1): 2-9.
[PMID: 23962172]
[20]
Masaki K, Fukunaga K, Matsusaka M, et al. Characteristics of severe asthma with fungal sensitization. Ann Allergy Asthma Immunol 2017; 119(3): 253-7.
[http://dx.doi.org/10.1016/j.anai.2017.07.008] [PMID: 28801088]
[21]
Rapeport WG, Ito K, Denning DW. The role of antifungals in the management of patients with severe asthma. Clin Transl Allergy 2020; 10(1): 46.
[http://dx.doi.org/10.1186/s13601-020-00353-8] [PMID: 33292524]
[22]
Denning DW, O’Driscoll BR, Hogaboam CM, Bowyer P, Niven RM. The link between fungi and severe asthma: A summary of the evidence. Eur Respir J 2006; 27(3): 615-26.
[http://dx.doi.org/10.1183/09031936.06.00074705] [PMID: 16507864]
[23]
Agarwal R. Severe asthma with fungal sensitization. Curr Allergy Asthma Rep 2011; 11(5): 403-13.
[http://dx.doi.org/10.1007/s11882-011-0217-4] [PMID: 21789577]
[24]
Brown GD, Denning DW, Gow NAR, Levitz SM, Netea MG, White TC. Hidden killers: Human fungal infections. Sci Transl Med 2012; 4(165): 165rv13-165rv13.
[http://dx.doi.org/10.1126/scitranslmed.3004404]
[25]
Mistry H, Ajsivinac Soberanis HM, Kyyaly MA, et al. The clinical implications of Aspergillus fumigatus sensitization in difficult-to-treat asthma patients. J Allergy Clin Immunol Pract 2021; 9(12): 4254-67.
[http://dx.doi.org/10.1016/j.jaip.2021.08.038] [PMID: 34534722]
[26]
Agarwal R, Chakrabarti A, Shah A, et al. Allergic bronchopulmonary aspergillosis: Review of literature and proposal of new diagnostic and classification criteria. Clin Exp Allergy 2013; 43(8): 850-73.
[http://dx.doi.org/10.1111/cea.12141] [PMID: 23889240]
[27]
Kosmidis C, Denning DW. The clinical spectrum of pulmonary aspergillosis. Thorax 2015; 70(3): 270-7.
[http://dx.doi.org/10.1136/thoraxjnl-2014-206291] [PMID: 25354514]
[28]
Price TH, Boeckh M, Harrison RW, et al. Efficacy of transfusion with granulocytes from G-CSF/dexamethasone-treated donors in neutropenic patients with infection. Blood 2015; 126(18): 2153-61.
[http://dx.doi.org/10.1182/blood-2015-05-645986] [PMID: 26333778]
[29]
Vacher G, Niculita-Hirzel H, Roger T. Immune responses to airborne fungi and non-invasive airway diseases. Semin Immunopathol 2015; 37: 83-96.
[http://dx.doi.org/10.1007/s00281-014-0471-3]
[30]
O’Gorman CM, Fuller H, Dyer PS. Discovery of a sexual cycle in the opportunistic fungal pathogen Aspergillus fumigatus. Nature 2009; 457(7228): 471-4.
[http://dx.doi.org/10.1038/nature07528] [PMID: 19043401]
[31]
Pitt JI, Samson RA. Nomenclatural considerations in naming species of Aspergillus and its teleomorphs. Stud Mycol 2007; 59: 67-70.
[http://dx.doi.org/10.3114/sim.2007.59.08] [PMID: 18490944]
[32]
Dyer PS, O’Gorman CM. Sexual development and cryptic sexuality in fungi: Insights from Aspergillus species. FEMS Microbiol Rev 2012; 36(1): 165-92.
[http://dx.doi.org/10.1111/j.1574-6976.2011.00308.x] [PMID: 22091779]
[33]
Gergen PJ, Arbes SJ Jr, Calatroni A, Mitchell HE, Zeldin DC. Total IgE levels and asthma prevalence in the US population: Results from the National Health and Nutrition Examination Survey 2005-2006. J Allergy Clin Immunol 2009; 124(3): 447-53.
[http://dx.doi.org/10.1016/j.jaci.2009.06.011] [PMID: 19647861]
[34]
Denning DW, Pleuvry A, Cole DC. Global burden of allergic bronchopulmonary aspergillosis with asthma and its complication chronic pulmonary aspergillosis in adults. Med Mycol 2013; 51(4): 361-70.
[http://dx.doi.org/10.3109/13693786.2012.738312] [PMID: 23210682]
[35]
Greenberger PA, Bush RK, Demain JG, Luong A, Slavin RG, Knutsen AP. Allergic bronchopulmonary aspergillosis. J Allergy Clin Immunol Pract 2014; 2(6): 703-8.
[http://dx.doi.org/10.1016/j.jaip.2014.08.007] [PMID: 25439360]
[36]
Takazono T, Izumikawa K. Recent advances in diagnosing chronic pulmonary aspergillosis. Front Microbiol 2018; 9: 1810.
[http://dx.doi.org/10.3389/fmicb.2018.01810] [PMID: 30174658]
[37]
Patterson TF, Thompson GR III, Denning DW, et al. Practice guidelines for the diagnosis and management of aspergillosis: 2016 update by the Infectious Diseases Society of America. Clin Infect Dis 2016; 63(4): e1-e60.
[http://dx.doi.org/10.1093/cid/ciw326] [PMID: 27365388]
[38]
Denning DW, Cadranel J, Beigelman-Aubry C, et al. Chronic pulmonary aspergillosis: Rationale and clinical guidelines for diagnosis and management. Eur Respir J 2016; 47(1): 45-68.
[http://dx.doi.org/10.1183/13993003.00583-2015] [PMID: 26699723]
[39]
Maghrabi F, Denning DW. The management of chronic pulmonary aspergillosis: The UK national aspergillosis centre approach. Curr Fungal Infect Rep 2017; 11(4): 242-51.
[http://dx.doi.org/10.1007/s12281-017-0304-7] [PMID: 29213345]
[40]
Robin C, Cordonnier C, Sitbon K, et al. Mainly post-transplant factors are associated with invasive aspergillosis after allogeneic stem cell transplantation: A study from the Surveillance des Aspergilloses Invasives en France and Société Francophone de Greffe de Moelle et de Thérapie Cellulaire. Biol Blood Marrow Transplant 2019; 25(2): 354-61.
[http://dx.doi.org/10.1016/j.bbmt.2018.09.028] [PMID: 30268782]
[41]
Lortholary O, Gangneux J-P, Sitbon K, et al. Epidemiological trends in invasive aspergillosis in France: The SAIF network (2005-2007). Clin Microbiol Infect 2011; 17(12): 1882-9.
[http://dx.doi.org/10.1111/j.1469-0691.2011.03548.x] [PMID: 21668573]
[42]
Montagna MT, Lovero G, Coretti C, et al. SIMIFF study: Italian fungal registry of mold infections in hematological and non-hematological patients. Infection 2014; 42(1): 141-51.
[http://dx.doi.org/10.1007/s15010-013-0539-3] [PMID: 24150958]
[43]
Patterson TF, Kirkpatrick WR, White M, et al. Invasive aspergillosis. Disease spectrum, treatment practices, and outcomes. I3 Aspergillus study group. Medicine (Baltimore) 2000; 79(4): 250-60.
[http://dx.doi.org/10.1097/00005792-200007000-00006] [PMID: 10941354]
[44]
Pagano L, Girmenia C, Mele L, et al. Infections caused by filamentous fungi in patients with hematologic malignancies. A report of 391 cases by GIMEMA infection program. Haematologica 2001; 86(8): 862-70.
[PMID: 11522544]
[45]
Marr KA, Carter RA, Boeckh M, Martin P, Corey L. Invasive aspergillosis in allogeneic stem cell transplant recipients: Changes in epidemiology and risk factors. Blood 2002; 100(13): 4358-66.
[http://dx.doi.org/10.1182/blood-2002-05-1496] [PMID: 12393425]
[46]
Fukuda T, Boeckh M, Carter RA, et al. Risks and outcomes of invasive fungal infections in recipients of allogeneic hematopoietic stem cell transplants after nonmyeloablative conditioning. Blood 2003; 102(3): 827-33.
[http://dx.doi.org/10.1182/blood-2003-02-0456] [PMID: 12689933]
[47]
Pagano L, Caira M, Candoni A, et al. The epidemiology of fungal infections in patients with hematologic malignancies: The SEIFEM-2004 study. Haematologica 2006; 91(8): 1068-75.
[PMID: 16885047]
[48]
Neofytos D, Horn D, Anaissie E, et al. Epidemiology and outcome of invasive fungal infection in adult hematopoietic stem cell transplant recipients: analysis of multicenter Prospective Antifungal Therapy (PATH) alliance registry. Clin Infect Dis 2009; 48(3): 265-73.
[http://dx.doi.org/10.1086/595846] [PMID: 19115967]
[49]
Neofytos D, Chatzis O, Nasioudis D, et al. Epidemiology, risk factors and outcomes of invasive aspergillosis in solid organ transplant recipients in the swiss transplant cohort study. Transpl Infect Dis 2018; 20(4): e12898.
[http://dx.doi.org/10.1111/tid.12898] [PMID: 29668068]
[50]
Pappas PG, Alexander BD, Andes DR, et al. Invasive fungal infections among organ transplant recipients: results of the transplant-associated infection surveillance network (TRANSNET). Clin Infect Dis 2010; 50(8): 1101-11.
[http://dx.doi.org/10.1086/651262] [PMID: 20218876]
[51]
Azie N, Neofytos D, Pfaller M, Meier-Kriesche H-U, Quan S-P, Horn D. The PATH (Prospective Antifungal Therapy) Alliance® registry and invasive fungal infections: Update 2012. Diagn Microbiol Infect Dis 2012; 73(4): 293-300.
[http://dx.doi.org/10.1016/j.diagmicrobio.2012.06.012] [PMID: 22789847]
[52]
Kuster S, Stampf S, Gerber B, et al. Incidence and outcome of invasive fungal diseases after allogeneic hematopoietic stem cell transplantation: A Swiss transplant cohort study. Transpl Infect Dis 2018; 20(6): e12981.
[http://dx.doi.org/10.1111/tid.12981] [PMID: 30144374]
[53]
Harrison N, Mitterbauer M, Tobudic S, et al. Incidence and characteristics of invasive fungal diseases in allogeneic hematopoietic stem cell transplant recipients: A retrospective cohort study. BMC Infect Dis 2015; 15(1): 584.
[http://dx.doi.org/10.1186/s12879-015-1329-6] [PMID: 26715563]
[54]
Herbrecht R, Bories P, Moulin JC, Ledoux MP, Letscher-Bru V. Risk stratification for invasive aspergillosis in immunocompromised patients. Ann N Y Acad Sci 2012; 1272(1): 23-30.
[http://dx.doi.org/10.1111/j.1749-6632.2012.06829.x] [PMID: 23231711]
[55]
Beardsley J, Denning DW, Chau NV, Yen NTB, Crump JA, Day JN. Estimating the burden of fungal disease in Vietnam. Mycoses 2015; 58(S5): 101-6.
[http://dx.doi.org/10.1111/myc.12382] [PMID: 26449514]
[56]
Denning DW, Gugnani HC. Burden of serious fungal infections in Trinidad and Tobago. Mycoses 2015; 58 (Suppl. 5): 80-4.
[http://dx.doi.org/10.1111/myc.12394] [PMID: 26449511]
[57]
Ghez D, Calleja A, Protin C, et al. Early-onset invasive aspergillosis and other fungal infections in patients treated with ibrutinib. Blood 2018; 131(17): 1955-9.
[http://dx.doi.org/10.1182/blood-2017-11-818286] [PMID: 29437588]
[58]
Chamilos G, Lionakis MS, Kontoyiannis DP. Call for action: Invasive fungal infections associated with ibrutinib and other small molecule kinase inhibitors targeting immune signaling pathways. Clin Infect Dis 2018; 66(1): 140-8.
[http://dx.doi.org/10.1093/cid/cix687] [PMID: 29029010]
[59]
Stergiopoulou T, Meletiadis J, Roilides E, et al. Host-dependent patterns of tissue injury in invasive pulmonary aspergillosis. Am J Clin Pathol 2007; 127(3): 349-55.
[http://dx.doi.org/10.1309/UJRV9DLC11RM3G8R] [PMID: 17276936]
[60]
Bartoletti M, Pascale R, Cricca M, et al. Epidemiology of invasive pulmonary aspergillosis among COVID-19 intubated patients: A prospective study. Clin Infect Dis 2021; 73(11): e3606-14.
[PMID: 32719848]
[61]
White L, Dhillon R, Cordey A, et al. A national strategy to diagnose COVID-19 associated invasive fungal disease in the ICU. Clin Infect Dis 2021; 73(7): e1634-44.
[http://dx.doi.org/10.2139/ssrn.3644400]
[62]
Schauwvlieghe AFAD, Rijnders BJA, Philips N, et al. Invasive aspergillosis in patients admitted to the intensive care unit with severe influenza: A retrospective cohort study. Lancet Respir Med 2018; 6(10): 782-92.
[http://dx.doi.org/10.1016/S2213-2600(18)30274-1] [PMID: 30076119]
[63]
Dimopoulos G, Almyroudi M-P, Myrianthefs P, Rello J. COVID-19-associated pulmonary aspergillosis (CAPA). J Intensive Med 2021; 1(2): 71-80.
[http://dx.doi.org/10.1016/j.jointm.2021.07.001]
[64]
van Arkel ALE, Rijpstra TA, Belderbos HNA, van Wijngaarden P, Verweij PE, Bentvelsen RG. COVID-19–associated pulmonary aspergillosis. Am J Respir Crit Care Med 2020; 202(1): 132-5.
[http://dx.doi.org/10.1164/rccm.202004-1038LE] [PMID: 32396381]
[65]
Rutsaert L, Steinfort N, Vna, et al. COVID-19-associated invasive pulmonary aspergillosis. Ann Intensive Care 2020; 10(1): 71.
[http://dx.doi.org/10.1186/s13613-020-00686-4] [PMID: 32488446]
[66]
Borman AM, Palmer MD, Fraser M, et al. COVID-19-associated invasive aspergillosis: Data from the UK National Mycology Reference Laboratory. J Clin Microbiol 2020; 59(1): e02136-20.
[http://dx.doi.org/10.1128/JCM.02136-20] [PMID: 33087440]
[67]
Food and Drug Administration. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2021/050740Orig1s033lbl.pdf (Accessed on February 12, 2022).
[68]
Kim S, Chen J, Cheng T, et al. PubChem in 2021: New data content and improved web interfaces. Nucleic Acids Res 2021; 49(D1): D1388-95.
[http://dx.doi.org/10.1093/nar/gkaa971] [PMID: 33151290]
[69]
Stone NRH, Bicanic T, Salim R, Hope W. Liposomal amphotericin B (AmBisome®): A review of the pharmacokinetics, pharmacodynamics, clinical experience and future directions. Drugs 2016; 76(4): 485-500.
[http://dx.doi.org/10.1007/s40265-016-0538-7] [PMID: 26818726]
[70]
Groll AH, Rijnders BJA, Walsh TJ, Adler-Moore J, Lewis RE, Brüggemann RJM. Clinical pharmacokinetics, pharmacodynamics, safety and efficacy of liposomal amphotericin B. Clin Infect Dis 2019; 68 (Suppl. 4): S260-74.
[http://dx.doi.org/10.1093/cid/ciz076] [PMID: 31222253]
[71]
Bekersky I, Fielding RM, Dressler DE, Lee JW, Buell DN, Walsh TJ. Plasma protein binding of amphotericin B and pharmacokinetics of bound versus unbound amphotericin B after administration of intravenous liposomal amphotericin B (AmBisome) and amphotericin B deoxycholate. Antimicrob Agents Chemother 2002; 46(3): 834-40.
[http://dx.doi.org/10.1128/AAC.46.3.834-840.2002] [PMID: 11850269]
[72]
Hamill RJ. Amphotericin B formulations: A comparative review of efficacy and toxicity. Drugs 2013; 73(9): 919-34.
[http://dx.doi.org/10.1007/s40265-013-0069-4] [PMID: 23729001]
[73]
Lass-Flörl C, Kofler G, Kropshofer G, et al. In-vitro testing of susceptibility to amphotericin B is a reliable predictor of clinical outcome in invasive aspergillosis. J Antimicrob Chemother 1998; 42(4): 497-502.
[http://dx.doi.org/10.1093/jac/42.4.497] [PMID: 9818749]
[74]
Ellis M, Spence D, de Pauw B, et al. An EORTC international multicenter randomized trial (EORTC number 19923) comparing two dosages of liposomal amphotericin B for treatment of invasive aspergillosis. Clin Infect Dis 1998; 27(6): 1406-12.
[http://dx.doi.org/10.1086/515033] [PMID: 9868651]
[75]
Cornely OA, Maertens J, Bresnik M, et al. Liposomal amphotericin B as initial therapy for invasive mold infection: A randomized trial comparing a high-loading dose regimen with standard dosing (AmBiLoad trial). Clin Infect Dis 2007; 44(10): 1289-97.
[http://dx.doi.org/10.1086/514341] [PMID: 17443465]
[76]
Cordonnier C, Bresnik M, Ebrahimi R. Liposomal amphotericin B (AmBisome) efficacy in confirmed invasive aspergillosis and other filamentous fungal infections in immunocompromised hosts: A pooled analysis. Mycoses 2007; 50(3): 205-9.
[http://dx.doi.org/10.1111/j.1439-0507.2007.01362.x] [PMID: 17472618]
[77]
Hoenigl M, Prattes J, Neumeister P, Wölfler A, Krause R. Real-world challenges and unmet needs in the diagnosis and treatment of suspected invasive pulmonary aspergillosis in patients with haematological diseases: An illustrative case study. Mycoses 2018; 61(3): 201-5.
[http://dx.doi.org/10.1111/myc.12727] [PMID: 29112326]
[78]
Reichert-Lima F, Lyra L, Pontes L, et al. Surveillance for azoles resistance in Aspergillus spp. highlights a high number of amphotericin B-resistant isolates. Mycoses 2018; 61(6): 360-5.
[http://dx.doi.org/10.1111/myc.12759] [PMID: 29468746]
[79]
Alcazar-Fuoli L, Mellado E. Ergosterol biosynthesis in Aspergillus fumigatus: Its relevance as an antifungal target and role in antifungal drug resistance. Front Microbiol 2013; 3: 439.
[http://dx.doi.org/10.3389/fmicb.2012.00439] [PMID: 23335918]
[80]
Dhingra S, Cramer RA. Regulation of sterol biosynthesis in the human fungal pathogen Aspergillus fumigatus: Opportunities for therapeutic development. Front Microbiol 2017; 8: 92.
[http://dx.doi.org/10.3389/fmicb.2017.00092] [PMID: 28203225]
[81]
Food and Drug Administration. 2022. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/020083s063lbl.pdf (Accessed on February 12, 2022).
[82]
Davis JL, Salmon JH, Papich MG. Pharmacokinetics and tissue distribution of itraconazole after oral and intravenous administration to horses. Am J Vet Res 2005; 66(10): 1694-701.
[http://dx.doi.org/10.2460/ajvr.2005.66.1694] [PMID: 16273899]
[83]
Fisher MC, Hawkins NJ, Sanglard D, Gurr SJ. Worldwide emergence of resistance to antifungal drugs challenges human health and food security. Science 2018; 360(6390): 739-42.
[http://dx.doi.org/10.1126/science.aap7999]
[84]
Food and Drug Administration. 2022. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2022/021266s052,021267s062,021630s041lbl.pdf (Accessed on February 12, 2022).
[85]
Food and Drug Administration. 2022. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2022/022003Orig1s027lbl.pdf (Accessed on February 12, 2022).
[86]
Hoenigl M, Duettmann W, Raggam RB, et al. Potential factors for inadequate voriconazole plasma concentrations in intensive care unit patients and patients with hematological malignancies. Antimicrob Agents Chemother 2013; 57(7): 3262-7.
[http://dx.doi.org/10.1128/AAC.00251-13] [PMID: 23629724]
[87]
Herbrecht R, Denning DW, Patterson TF, et al. Voriconazole versus amphotericin B for primary therapy of invasive aspergillosis. N Engl J Med 2002; 347(6): 408-15.
[http://dx.doi.org/10.1056/NEJMoa020191] [PMID: 12167683]
[88]
Jenks JD, Salzer HJF, Prattes J, Krause R, Buchheidt D, Hoenigl M. Spotlight on isavuconazole in the treatment of invasive aspergillosis and mucormycosis: Design, development, and place in therapy. Drug Des Devel Ther 2018; 12: 1033-44.
[http://dx.doi.org/10.2147/DDDT.S145545] [PMID: 29750016]
[89]
Cornely OA, Mullane KM, Ostrosky-Zeichner L, et al. Isavuconazole for treatment of rare invasive fungal diseases. Mycoses 2018; 61(8): 518-33.
[http://dx.doi.org/10.1111/myc.12778] [PMID: 29611246]
[90]
Marty FM, Cornely OA, Mullane KM, et al. Isavuconazole for treatment of invasive fungal diseases caused by more than one fungal species. Mycoses 2018; 61(7): 485-97.
[http://dx.doi.org/10.1111/myc.12777] [PMID: 29611227]
[91]
Perfect JR, Cornely OA, Heep M, et al. Isavuconazole treatment for rare fungal diseases and for invasive aspergillosis in patients with renal impairment: Challenges and lessons of the VITAL trial. Mycoses 2018; 61(7): 420-9.
[http://dx.doi.org/10.1111/myc.12769] [PMID: 29570857]
[92]
Food and Drug Administration. 2022. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2021/207500s010,207501s008lbl.pdf (Accessed on February 12, 2022).
[93]
Maertens JA, Raad II, Marr KA, et al. Isavuconazole versus voriconazole for primary treatment of invasive mould disease caused by Aspergillus and other filamentous fungi (SECURE): A phase 3, randomised-controlled, non-inferiority trial. Lancet 2016; 387(10020): 760-9.
[http://dx.doi.org/10.1016/S0140-6736(15)01159-9] [PMID: 26684607]
[94]
Alexander BD, Perfect JR, Daly JS, et al. Posaconazole as salvage therapy in patients with invasive fungal infections after solid organ transplant. Transplantation 2008; 86(6): 791-6.
[http://dx.doi.org/10.1097/TP.0b013e3181837585] [PMID: 18813103]
[95]
Walsh TJ, Raad I, Patterson TF, et al. Treatment of invasive aspergillosis with posaconazole in patients who are refractory to or intolerant of conventional therapy: An externally controlled trial. Clin Infect Dis 2007; 44(1): 2-12.
[http://dx.doi.org/10.1086/508774] [PMID: 17143808]
[96]
Raad II, Hanna HA, Boktour M, et al. Novel antifungal agents as salvage therapy for invasive aspergillosis in patients with hematologic malignancies: Posaconazole compared with high-dose lipid formulations of amphotericin B alone or in combination with caspofungin. Leukemia 2008; 22(3): 496-503.
[http://dx.doi.org/10.1038/sj.leu.2405065] [PMID: 18094720]
[97]
Liu J, Balasubramanian MK. 1,3-beta-Glucan synthase: A useful target for antifungal drugs. Curr Drug Targets Infect Disord 2001; 1(2): 159-69.
[http://dx.doi.org/10.2174/1568005014606107] [PMID: 12455412]
[98]
Moreno-Velásquez SD, Seidel C, Juvvadi PR, Steinbach WJ, Read ND. Caspofungin-mediated growth inhibition and paradoxical growth in Aspergillus fumigatus involve fungicidal hyphal tip lysis coupled with regenerative intrahyphal growth and dynamic changes in β-1, 3-glucan synthase localization. Antimicrob Agents Chemother 2017; 61(10): e00710-7.
[http://dx.doi.org/10.1128/AAC.00710-17] [PMID: 28760907]
[99]
Wagener J, Loiko V. Recent insights into the paradoxical effect of echinocandins. J Fungi (Basel) 2017; 4(1): 5.
[http://dx.doi.org/10.3390/jof4010005] [PMID: 29371498]
[100]
Loiko V, Wagener J. The paradoxical effect of echinocandins in Aspergillus fumigatus relies on recovery of the β-1, 3-glucan synthase Fks1. Antimicrob Agents Chemother 2017; 61(2): e01690-16.
[http://dx.doi.org/10.1128/AAC.01690-16] [PMID: 27872079]
[101]
Li F, Zhou M, Jiao Z, Zou Z, Yu E, He Z. Caspofungin pharmacokinetics and probability of target attainment in ICU patients in China. J Glob Antimicrob Resist 2021; 25: 238-63.
[http://dx.doi.org/10.1016/j.jgar.2021.03.011] [PMID: 33845162]
[102]
Food and Drug Administration. 2022. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2021/021227Orig1s040lbl.pdf (Accessed on February 12, 2022).
[103]
Food and Drug Administration. 2022. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2020/021632s030lbl.pdf (Accessed on February 12, 2022).
[104]
Herbrecht R, Maertens J, Baila L, et al. Caspofungin first-line therapy for invasive aspergillosis in allogeneic hematopoietic stem cell transplant patients: An European organisation for research and treatment of cancer study. Bone Marrow Transplant 2010; 45(7): 1227-33.
[http://dx.doi.org/10.1038/bmt.2009.334] [PMID: 20062093]
[105]
Viscoli C, Herbrecht R, Akan H, et al. An EORTC Phase II study of caspofungin as first-line therapy of invasive aspergillosis in haematological patients. J Antimicrob Chemother 2009; 64(6): 1274-81.
[http://dx.doi.org/10.1093/jac/dkp355] [PMID: 19841031]
[106]
Hiemenz JW, Raad II, Maertens JA, et al. Efficacy of caspofungin as salvage therapy for invasive aspergillosis compared to standard therapy in a historical cohort. Eur J Clin Microbiol Infect Dis 2010; 29(11): 1387-94.
[http://dx.doi.org/10.1007/s10096-010-1013-0] [PMID: 20703506]
[107]
Kofla G, Ruhnke M. Pharmacology and metabolism of anidulafungin, caspofungin and micafungin in the treatment of invasive candidosis: Review of the literature. Eur J Med Res 2011; 16(4): 159-66.
[http://dx.doi.org/10.1186/2047-783X-16-4-159] [PMID: 21486730]
[108]
Marr KA, Schlamm HT, Herbrecht R, et al. Combination antifungal therapy for invasive aspergillosis: A randomized trial. Ann Intern Med 2015; 162(2): 81-9.
[http://dx.doi.org/10.7326/M13-2508] [PMID: 25599346]
[109]
Denning DW, Marr KA, Lau WM, et al. Micafungin (FK463), alone or in combination with other systemic antifungal agents, for the treatment of acute invasive aspergillosis. J Infect 2006; 53(5): 337-49.
[http://dx.doi.org/10.1016/j.jinf.2006.03.003] [PMID: 16678903]
[110]
Maertens J, Glasmacher A, Herbrecht R, et al. Multicenter, noncomparative study of caspofungin in combination with other antifungals as salvage therapy in adults with invasive aspergillosis. Cancer 2006; 107(12): 2888-97.
[http://dx.doi.org/10.1002/cncr.22348] [PMID: 17103444]
[111]
Krishnan BR, James KD, Polowy K, et al. CD101, a novel echinocandin with exceptional stability properties and enhanced aqueous solubility. J Antibiot (Tokyo) 2017; 70(2): 130-5.
[http://dx.doi.org/10.1038/ja.2016.89] [PMID: 27507631]
[112]
Lakota EA, Bader JC, Ong V, et al. Pharmacological basis of CD101 efficacy: Exposure shape matters. Antimicrob Agents Chemother 2017; 61(11): e00758-17.
[http://dx.doi.org/10.1128/AAC.00758-17] [PMID: 28848022]
[113]
Pfaller MA, Messer SA, Rhomberg PR, Jones RN, Castanheira M. Activity of a long-acting echinocandin, CD101, determined using CLSI and EUCAST reference methods, against Candida and Aspergillus spp., including echinocandin- and azole-resistant isolates. J Antimicrob Chemother 2016; 71(10): 2868-73.
[http://dx.doi.org/10.1093/jac/dkw214] [PMID: 27287236]
[114]
Sandison T, Ong V, Lee J, Thye D. Safety and pharmacokinetics of CD101 IV, a novel echinocandin, in healthy adults. Antimicrob Agents Chemother 2017; 61(2): e01627-16.
[http://dx.doi.org/10.1128/AAC.01627-16] [PMID: 27919901]
[115]
Locke JB, Almaguer AL, Zuill DE, Bartizal K. Characterization of in vitro resistance development to the novel echinocandin CD101 in Candida species. Antimicrob Agents Chemother 2016; 60(10): 6100-7.
[http://dx.doi.org/10.1128/AAC.00620-16] [PMID: 27480852]
[116]
Walker SS, Xu Y, Triantafyllou I, et al. Discovery of a novel class of orally active antifungal β-1,3-D-glucan synthase inhibitors. Antimicrob Agents Chemother 2011; 55(11): 5099-106.
[http://dx.doi.org/10.1128/AAC.00432-11] [PMID: 21844320]
[117]
Rubino CM, Flanagan S. Population pharmacokinetics of rezafungin in patients with fungal infections. Antimicrob Agents Chemother 2021; 65(11): e0084221.
[http://dx.doi.org/10.1128/AAC.00842-21] [PMID: 34398673]
[118]
Sofjan AK, Mitchell A, Shah DN, et al. Rezafungin (CD101), a next-generation echinocandin: A systematic literature review and assessment of possible place in therapy. J Glob Antimicrob Resist 2018; 14: 58-64.
[http://dx.doi.org/10.1016/j.jgar.2018.02.013] [PMID: 29486356]
[119]
Ong V, Wills S, Watson D, Sandison T, Flanagan S. Metabolism, excretion, and mass balance of [14c]-rezafungin in animals and humans. Antimicrob Agents Chemother 2022; 66(1): e0139021.
[http://dx.doi.org/10.1128/AAC.01390-21] [PMID: 34662192]
[120]
Pappas P, Kullberg BJ, Vazquez JA, et al. 147. Clinical safety and efficacy of novel antifungal, fosmanogepix, in the treatment of candidemia: Results from a phase 2 proof of concept trial.In: Open Forum Infectious Diseases. Oxford University Press US 2020; pp. S203-4.
[http://dx.doi.org/10.1093/ofid/ofaa439.457]
[121]
McCarty TP, Pappas PG. Antifungal pipeline. Front Cell Infect Microbiol 2021; 11: 732223.
[http://dx.doi.org/10.3389/fcimb.2021.732223] [PMID: 34552887]
[122]
Wiederhold NP, Locke JB, Daruwala P, Bartizal K. Rezafungin (CD101) demonstrates potent in vitro activity against Aspergillus, including azole-resistant Aspergillus fumigatus isolates and cryptic species. J Antimicrob Chemother 2018; 73(11): 3063-7.
[http://dx.doi.org/10.1093/jac/dky280] [PMID: 30032217]
[123]
Ong V, Hough G, Schlosser M, et al. Preclinical evaluation of the stability, safety, and efficacy of CD101, a novel echinocandin. Antimicrob Agents Chemother 2016; 60(11): 6872-9.
[http://dx.doi.org/10.1128/AAC.00701-16] [PMID: 27620474]
[124]
Hata K, Horii T, Miyazaki M, et al. Efficacy of oral E1210, a new broad-spectrum antifungal with a novel mechanism of action, in murine models of candidiasis, aspergillosis, and fusariosis. Antimicrob Agents Chemother 2011; 55(10): 4543-51.
[http://dx.doi.org/10.1128/AAC.00366-11] [PMID: 21788462]
[125]
Wring SA, Randolph R, Park S, et al. Preclinical pharmacokinetics and pharmacodynamic target of SCY-078, a first-in-class orally active antifungal glucan synthesis inhibitor, in murine models of disseminated candidiasis. Antimicrob Agents Chemother 2017; 61(4): e02068-16.
[http://dx.doi.org/10.1128/AAC.02068-16] [PMID: 28137806]
[126]
Schell WA, Jones AM, Borroto-Esoda K, Alexander BD. Antifungal activity of SCY-078 and standard antifungal agents against 178 clinical isolates of resistant and susceptible Candida species. Antimicrob Agents Chemother 2017; 61(11): e01102-17.
[http://dx.doi.org/10.1128/AAC.01102-17] [PMID: 28827419]
[127]
Lee A, Prideaux B, Zimmerman M, et al. Penetration of Ibrexafungerp (formerly SCY-078) at the site of infection in an Intra-abdominal candidiasis mouse model. Antimicrob Agents Chemother 2020; 64(3): e02268-19.
[http://dx.doi.org/10.1128/AAC.02268-19] [PMID: 31871074]
[128]
Van Daele R, Spriet I, Wauters J, et al. Antifungal drugs: What brings the future? Med Mycol 2019; 57 (Suppl. 3): S328-43.
[http://dx.doi.org/10.1093/mmy/myz012] [PMID: 31292663]
[129]
Wring S, Murphy G, Atiee G, et al. Lack of impact by SCY-078, a first-in-class oral fungicidal glucan synthase inhibitor, on the pharmacokinetics of rosiglitazone, a substrate for CYP450 2C8, supports the low risk for clinically relevant metabolic drug-drug interactions. J Clin Pharmacol 2018; 58(10): 1305-13.
[http://dx.doi.org/10.1002/jcph.1146] [PMID: 29746713]
[130]
Wring S, Murphy G, Atiee G, et al. Clinical pharmacokinetics and drug-drug interaction potential for coadministered SCY-078, an oral fungicidal glucan synthase inhibitor, and tacrolimus. Clin Pharmacol Drug Dev 2019; 8(1): 60-9.
[http://dx.doi.org/10.1002/cpdd.588] [PMID: 29947477]
[131]
Azie N, Angulo D, Dehn B, Sobel JD. Oral Ibrexafungerp: An investigational agent for the treatment of vulvovaginal candidiasis. Expert Opin Investig Drugs 2020; 29(9): 893-900.
[http://dx.doi.org/10.1080/13543784.2020.1791820] [PMID: 32746636]
[132]
Davis MR, Donnelley MA, Thompson GR III. Ibrexafungerp: A novel oral glucan synthase inhibitor. Med Mycol 2020; 58(5): 579-92.
[http://dx.doi.org/10.1093/mmy/myz083] [PMID: 31342066]
[133]
Allos BM. Campylobacter jejuni Infections: Update on emerging issues and trends. Clin Infect Dis 2001; 32(8): 1201-6.
[http://dx.doi.org/10.1086/319760] [PMID: 11283810]
[134]
Food And Drug Administration. 2022. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2021/214900s000lbl.pdf (Accessed on February 12, 2022).
[135]
Pfaller MA, Messer SA, Motyl MR, Jones RN, Castanheira M. In vitro activity of a new oral glucan synthase inhibitor (MK-3118) tested against Aspergillus spp. by CLSI and EUCAST broth microdilution methods. Antimicrob Agents Chemother 2013; 57(2): 1065-8.
[http://dx.doi.org/10.1128/AAC.01588-12] [PMID: 23229479]
[136]
Jiménez-Ortigosa C, Paderu P, Motyl MR, Perlin DS. Enfumafungin derivative MK-3118 shows increased in vitro potency against clinical echinocandin-resistant Candida Species and Aspergillus species isolates. Antimicrob Agents Chemother 2014; 58(2): 1248-51.
[http://dx.doi.org/10.1128/AAC.02145-13] [PMID: 24323472]
[137]
Miyazaki M, Horii T, Hata K, et al. In vitro activity of E1210, a novel antifungal, against clinically important yeasts and molds. Antimicrob Agents Chemother 2011; 55(10): 4652-8.
[http://dx.doi.org/10.1128/AAC.00291-11] [PMID: 21825291]
[138]
Zhao M, Lepak AJ, Marchillo K, et al. APX001 pharmacokinetic/pharmacodynamic target determination against Aspergillus fumigatus in an in vivo model of invasive pulmonary aspergillosis. Antimicrob Agents Chemother 2019; 63(4): e02372-18.
[http://dx.doi.org/10.1128/AAC.02372-18] [PMID: 30670426]
[139]
Petraitiene R, Petraitis V, Maung BBW, et al. Efficacy and pharmacokinetics of fosmanogepix (APX001) in the treatment of candida endophthalmitis and hematogenous meningoencephalitis in nonneutropenic rabbits. Antimicrob Agents Chemother 2021; 65(3): e01795-20.
[http://dx.doi.org/10.1128/AAC.01795-20] [PMID: 33361304]
[140]
Alkhazraji S, Gebremariam T, Alqarihi A, et al. Fosmanogepix (APX001) is effective in the treatment of immunocompromised mice infected with invasive pulmonary scedosporiosis or disseminated fusariosis. Antimicrob Agents Chemother 2020; 64(3): e01735-19.
[http://dx.doi.org/10.1128/AAC.01735-19] [PMID: 31818813]
[141]
Watanabe NA, Miyazaki M, Horii T, Sagane K, Tsukahara K, Hata K. E1210, a new broad-spectrum antifungal, suppresses Candida albicans hyphal growth through inhibition of glycosylphosphatidylinositol biosynthesis. Antimicrob Agents Chemother 2012; 56(2): 960-71.
[http://dx.doi.org/10.1128/AAC.00731-11] [PMID: 22143530]
[142]
Warrilow AGS, Hull CM, Parker JE, et al. The clinical candidate VT-1161 is a highly potent inhibitor of Candida albicans CYP51 but fails to bind the human enzyme. Antimicrob Agents Chemother 2014; 58(12): 7121-7.
[http://dx.doi.org/10.1128/AAC.03707-14] [PMID: 25224009]
[143]
Warrilow AGS, Parker JE, Price CL, et al. The investigational drug VT-1129 is a highly potent inhibitor of Cryptococcus species CYP51 but only weakly inhibits the human enzyme. Antimicrob Agents Chemother 2016; 60(8): 4530-8.
[http://dx.doi.org/10.1128/AAC.00349-16] [PMID: 27161631]
[144]
Hoekstra WJ, Garvey EP, Moore WR, Rafferty SW, Yates CM, Schotzinger RJ. Design and optimization of highly-selective fungal CYP51 inhibitors. Bioorg Med Chem Lett 2014; 24(15): 3455-8.
[http://dx.doi.org/10.1016/j.bmcl.2014.05.068] [PMID: 24948565]
[145]
Wiederhold NP, Shubitz LF, Najvar LK, et al. The novel fungal Cyp51 inhibitor VT-1598 is efficacious in experimental models of central nervous system coccidioidomycosis caused by Coccidioides posadasii and Coccidioides immitis. Antimicrob Agents Chemother 2018; 62(4): e02258-17.
[http://dx.doi.org/10.1128/AAC.02258-17] [PMID: 29437615]
[146]
Wiederhold NP, Patterson HP, Tran BH, Yates CM, Schotzinger RJ, Garvey EP. Fungal-specific Cyp51 inhibitor VT-1598 demonstrates in vitro activity against Candida and Cryptococcus species, endemic fungi, including Coccidioides species, Aspergillus species and Rhizopus arrhizus. J Antimicrob Chemother 2018; 73(2): 404-8.
[http://dx.doi.org/10.1093/jac/dkx410] [PMID: 29190379]
[147]
Colley T, Sharma C, Alanio A, et al. Anti-fungal activity of a novel triazole, PC1244, against emerging azole-resistant Aspergillus fumigatus and other species of Aspergillus. J Antimicrob Chemother 2019; 74(10): 2950-8.
[http://dx.doi.org/10.1093/jac/dkz302] [PMID: 31361006]
[148]
Gintjee TJ, Donnelley MA, Thompson GR III. Aspiring antifungals: Review of current antifungal pipeline developments. J Fungi (Basel) 2020; 6(1): 28.
[http://dx.doi.org/10.3390/jof6010028] [PMID: 32106450]
[149]
Gonzalez-Lara MF, Sifuentes-Osornio J, Ostrosky-Zeichner L. Drugs in clinical development for fungal infections. Drugs 2017; 77(14): 1505-18.
[http://dx.doi.org/10.1007/s40265-017-0805-2] [PMID: 28840541]
[150]
Santangelo R, Paderu P, Delmas G, et al. Efficacy of oral cochleate-amphotericin B in a mouse model of systemic candidiasis. Antimicrob Agents Chemother 2000; 44(9): 2356-60.
[http://dx.doi.org/10.1128/AAC.44.9.2356-2360.2000] [PMID: 10952579]
[151]
Zarif L, Graybill JR, Perlin D, Najvar L, Bocanegra R, Mannino RJ. Antifungal activity of amphotericin B cochleates against Candida albicans infection in a mouse model. Antimicrob Agents Chemother 2000; 44(6): 1463-9.
[http://dx.doi.org/10.1128/AAC.44.6.1463-1469.2000] [PMID: 10817694]
[152]
Delmas G, Park S, Chen ZW, et al. Efficacy of orally delivered cochleates containing amphotericin B in a murine model of aspergillosis. Antimicrob Agents Chemother 2002; 46(8): 2704-7.
[http://dx.doi.org/10.1128/AAC.46.8.2704-2707.2002] [PMID: 12121962]
[153]
Cuddihy G, Wasan EK, Di Y, Wasan KM. The development of oral amphotericin B to treat systemic fungal and parasitic infections: Has the myth been finally realized? Pharmaceutics 2019; 11(3): 99.
[http://dx.doi.org/10.3390/pharmaceutics11030099] [PMID: 30813569]
[154]
Wasan KM, Wasan EK, Hnik P. Assessing the safety, tolerability, pharmacokinetics, and biodistribution of novel oral formulations of amphotericin B following single-and multiple-dose administration to beagle dogs. Antimicrob Agents Chemother 2020; 64(11): e01111-20.
[http://dx.doi.org/10.1128/AAC.01111-20] [PMID: 32816728]
[155]
Lu R, Hollingsworth C, Qiu J, et al. Efficacy of oral encochleated amphotericin B in a mouse model of cryptococcal meningoencephalitis. MBio 2019; 10(3): e00724-19.
[http://dx.doi.org/10.1128/mBio.00724-19] [PMID: 31138748]
[156]
Wang XH, Guo X-J, Li H-Y, Gou P. Characteristics of inositol phosphorylceramide synthase and effects of aureobasidin A on growth and pathogenicity of Botrytis cinerea. J Gen Appl Microbiol 2015; 61(4): 108-16.
[http://dx.doi.org/10.2323/jgam.61.108] [PMID: 26377130]
[157]
Perfect JR. The antifungal pipeline: A reality check. Nat Rev Drug Discov 2017; 16(9): 603-16.
[http://dx.doi.org/10.1038/nrd.2017.46] [PMID: 28496146]
[158]
Lamoth F, Juvvadi PR, Steinbach WJ. Histone deacetylase inhibition as an alternative strategy against invasive aspergillosis. Front Microbiol 2015; 6: 96.
[http://dx.doi.org/10.3389/fmicb.2015.00096] [PMID: 25762988]
[159]
Wurtele H, Tsao S, Lépine G, et al. Modulation of histone H3 lysine 56 acetylation as an antifungal therapeutic strategy. Nat Med 2010; 16(7): 774-80.
[http://dx.doi.org/10.1038/nm.2175] [PMID: 20601951]
[160]
Nishikawa H, Yamada E, Shibata T, et al. Uptake of T-2307, a novel arylamidine, in Candida albicans. J Antimicrob Chemother 2010; 65(8): 1681-7.
[http://dx.doi.org/10.1093/jac/dkq177] [PMID: 20513704]
[161]
Mitsuyama J, Nomura N, Hashimoto K, et al. In vitro and in vivo antifungal activities of T-2307, a novel arylamidine. Antimicrob Agents Chemother 2008; 52(4): 1318-24.
[http://dx.doi.org/10.1128/AAC.01159-07] [PMID: 18227186]
[162]
Tan HW, Tay ST. The inhibitory effects of aureobasidin A on Candida planktonic and biofilm cells. Mycoses 2013; 56(2): 150-6.
[http://dx.doi.org/10.1111/j.1439-0507.2012.02225.x] [PMID: 22882276]
[163]
Takesako K, Kuroda H, Inoue T, et al. Biological properties of aureobasidin A, a cyclic depsipeptide antifungal antibiotic. J Antibiot (Tokyo) 1993; 46(9): 1414-20.
[http://dx.doi.org/10.7164/antibiotics.46.1414] [PMID: 8226319]
[164]
Zhong W, Jeffries MW, Georgopapadakou NH. Inhibition of inositol phosphorylceramide synthase by aureobasidin A in Candida and Aspergillus species. Antimicrob Agents Chemother 2000; 44(3): 651-3.
[http://dx.doi.org/10.1128/AAC.44.3.651-653.2000] [PMID: 10681333]
[165]
Nicola AM, Albuquerque P, Paes HC, et al. Antifungal drugs: New insights in research & development. Pharmacol Ther 2019; 195: 21-38.
[http://dx.doi.org/10.1016/j.pharmthera.2018.10.008] [PMID: 30347212]
[166]
Nakamura I, Kanasaki R, Yoshikawa K, et al. Discovery of a new antifungal agent ASP2397 using a silkworm model of Aspergillus fumigatus infection. J Antibiot (Tokyo) 2017; 70(1): 41-4.
[http://dx.doi.org/10.1038/ja.2016.106] [PMID: 27577982]
[167]
Arendrup MC, Jensen RH, Cuenca-Estrella M. In vitro activity of ASP2397 against Aspergillus isolates with or without acquired azole resistance mechanisms. Antimicrob Agents Chemother 2015; 60(1): 532-6.
[http://dx.doi.org/10.1128/AAC.02336-15] [PMID: 26552973]
[168]
Lackner M, Birch M, Naschberger V, et al. Dihydroorotate dehydrogenase inhibitor olorofim exhibits promising activity against all clinically relevant species within Aspergillus section Terrei. J Antimicrob Chemother 2018; 73(11): 3068-73.
[http://dx.doi.org/10.1093/jac/dky329] [PMID: 30351438]
[169]
Nakamura I, Ohsumi K, Takeda S, et al. ASP2397 is a novel natural compound that exhibits rapid and potent fungicidal activity against Aspergillus species through a specific transporter. Antimicrob Agents Chemother 2019; 63(10): e02689-18.
[http://dx.doi.org/10.1128/AAC.02689-18] [PMID: 31405853]
[170]
Mammen MP, Armas D, Hughes FH, et al. First-in-human phase 1 study to assess safety, tolerability, and pharmacokinetics of a novel antifungal drug, VL-2397, in healthy adults. Antimicrob Agents Chemother 2019; 63(11): e00969-19.
[http://dx.doi.org/10.1128/AAC.00969-19] [PMID: 31427299]
[171]
Kovanda LL, Sullivan SM, Smith LR, Desai AV, Bonate PL, Hope WW. Population pharmacokinetic modeling of VL-2397, a novel systemic antifungal agent: Analysis of a single-and multiple-ascending-dose study in healthy subjects. Antimicrob Agents Chemother 2019; 63(6): e00163-19.
[http://dx.doi.org/10.1128/AAC.00163-19] [PMID: 30988142]
[172]
Oliver JD, Sibley GEM, Beckmann N, et al. F901318 represents a novel class of antifungal drug that inhibits dihydroorotate dehydrogenase. Proc Natl Acad Sci USA 2016; 113(45): 12809-14.
[http://dx.doi.org/10.1073/pnas.1608304113] [PMID: 27791100]
[173]
Hope WW, McEntee L, Livermore J, et al. Pharmacodynamics of the orotomides against Aspergillus fumigatus: New opportunities for treatment of multidrug-resistant fungal disease. MBio 2017; 8(4): e01157-17.
[http://dx.doi.org/10.1128/mBio.01157-17] [PMID: 28830945]
[174]
du Pré S, Beckmann N, Almeida MC, et al. Effect of the novel antifungal drug F901318 (olorofim) on growth and viability of Aspergillus fumigatus. Antimicrob Agents Chemother 2018; 62(8): e00231-18.
[http://dx.doi.org/10.1128/AAC.00231-18] [PMID: 29891595]
[175]
Wiederhold NP. Review of the novel investigational antifungal olorofim. J Fungi (Basel) 2020; 6(3): 122.
[http://dx.doi.org/10.3390/jof6030122] [PMID: 32751765]
[176]
Buil JB, Rijs AJMM, Meis JF, et al. In vitro activity of the novel antifungal compound F901318 against difficult-to-treat Aspergillus isolates. J Antimicrob Chemother 2017; 72(9): 2548-52.
[http://dx.doi.org/10.1093/jac/dkx177] [PMID: 28605488]
[177]
Rivero-Menendez O, Cuenca-Estrella M, Alastruey-Izquierdo A. In vitro activity of olorofim (F901318) against clinical isolates of cryptic species of Aspergillus by EUCAST and CLSI methodologies. J Antimicrob Chemother 2019; 74(6): 1586-90.
[http://dx.doi.org/10.1093/jac/dkz078] [PMID: 30891600]
[178]
Negri CE, Johnson A, McEntee L, et al. Pharmacodynamics of the novel antifungal agent F901318 for acute sinopulmonary aspergillosis caused by Aspergillus flavus. J Infect Dis 2018; 217(7): 1118-27.
[http://dx.doi.org/10.1093/infdis/jix479] [PMID: 28968675]
[179]
Singh SB, Liu W, Li X, et al. Antifungal spectrum, in vivo efficacy, and structure-activity relationship of ilicicolin h. ACS Med Chem Lett 2012; 3(10): 814-7.
[http://dx.doi.org/10.1021/ml300173e] [PMID: 24900384]
[180]
Gutierrez-Cirlos EB, Merbitz-Zahradnik T, Trumpower BL. Inhibition of the yeast cytochrome bc1 complex by ilicicolin H, a novel inhibitor that acts at the Qn site of the bc1 complex. J Biol Chem 2004; 279(10): 8708-14.
[http://dx.doi.org/10.1074/jbc.M311805200] [PMID: 14670947]
[181]
Singh SB, Liu W, Li X, et al. Structure-activity relationship of cytochrome bc1 reductase inhibitor broad spectrum antifungal ilicicolin H. Bioorg Med Chem Lett 2013; 23(10): 3018-22.
[http://dx.doi.org/10.1016/j.bmcl.2013.03.023] [PMID: 23562597]
[182]
Kino T, Hatanaka H, Hashimoto M, et al. FK-506, a novel immunosuppressant isolated from a Streptomyces. I. Fermentation, isolation, and physico-chemical and biological characteristics. J Antibiot (Tokyo) 1987; 40(9): 1249-55.
[http://dx.doi.org/10.7164/antibiotics.40.1249] [PMID: 2445721]
[183]
High KP. The antimicrobial activities of cyclosporine, FK506, and rapamycin. Transplantation 1994; 57(12): 1689-700.
[http://dx.doi.org/10.1097/00007890-199457120-00001] [PMID: 7517076]
[184]
Juvvadi PR, Lamoth F, Steinbach WJ. Calcineurin as a multifunctional regulator: Unraveling novel functions in fungal stress responses, hyphal growth, drug resistance, and pathogenesis. Fungal Biol Rev 2014; 28(2-3): 56-69.
[http://dx.doi.org/10.1016/j.fbr.2014.02.004] [PMID: 25383089]
[185]
Gao L, Sun Y. In vitro interactions of antifungal agents and tacrolimus against Aspergillus biofilms. Antimicrob Agents Chemother 2015; 59(11): 7097-9.
[http://dx.doi.org/10.1128/AAC.01510-15] [PMID: 26303797]
[186]
Steinbach WJ, Schell WA, Blankenship JR, Onyewu C, Heitman J, Perfect JR. In vitro interactions between antifungals and immunosuppressants against Aspergillus fumigatus. Antimicrob Agents Chemother 2004; 48(5): 1664-9.
[http://dx.doi.org/10.1128/AAC.48.5.1664-1669.2004] [PMID: 15105118]
[187]
High KP, Washburn RG. Invasive aspergillosis in mice immunosuppressed with cyclosporin A, tacrolimus (FK506), or sirolimus (rapamycin). J Infect Dis 1997; 175(1): 222-5.
[http://dx.doi.org/10.1093/infdis/175.1.222] [PMID: 8985226]
[188]
Bauer I, Varadarajan D, Pidroni A, et al. A class 1 histone deacetylase with potential as an antifungal target. MBio 2016; 7(6): e00831-16.
[http://dx.doi.org/10.1128/mBio.00831-16] [PMID: 27803184]
[189]
Lamoth F, Alexander BD, Juvvadi PR, Steinbach WJ. Antifungal activity of compounds targeting the Hsp90-calcineurin pathway against various mould species. J Antimicrob Chemother 2015; 70(5): 1408-11.
[http://dx.doi.org/10.1093/jac/dku549] [PMID: 25558076]
[190]
Lamoth F, Juvvadi PR, Soderblom EJ, Moseley MA, Asfaw YG, Steinbach WJ. Identification of a key lysine residue in heat shock protein 90 required for azole and echinocandin resistance in Aspergillus fumigatus. Antimicrob Agents Chemother 2014; 58(4): 1889-96.
[http://dx.doi.org/10.1128/AAC.02286-13] [PMID: 24395240]
[191]
Ochel H-J, Eichhorn K, Gademann G. Geldanamycin: The prototype of a class of antitumor drugs targeting the heat shock protein 90 family of molecular chaperones. Cell Stress Chaperones 2001; 6(2): 105-12.
[http://dx.doi.org/10.1379/1466-1268(2001)006<0105:GTPOAC>2.0.CO;2] [PMID: 11599571]
[192]
Lamoth F, Juvvadi PR, Gehrke C, Steinbach WJ. In vitro activity of calcineurin and heat shock protein 90 Inhibitors against Aspergillus fumigatus azole- and echinocandin-resistant strains. Antimicrob Agents Chemother 2013; 57(2): 1035-9.
[http://dx.doi.org/10.1128/AAC.01857-12] [PMID: 23165466]
[193]
Kontoyiannis DP, Lewis RE, Osherov N, Albert ND, May GS. Combination of caspofungin with inhibitors of the calcineurin pathway attenuates growth in vitro in Aspergillus species. J Antimicrob Chemother 2003; 51(2): 313-6.
[http://dx.doi.org/10.1093/jac/dkg090] [PMID: 12562696]
[194]
Dalhoff AAH, Levy SB. Does use of the polyene natamycin as a food preservative jeopardise the clinical efficacy of amphotericin B? A word of concern. Int J Antimicrob Agents 2015; 45(6): 564-7.
[http://dx.doi.org/10.1016/j.ijantimicag.2015.02.011] [PMID: 25862309]
[195]
Ciesielski F, Griffin DC, Loraine J, Rittig M, Delves-Broughton J, Bonev BB. Recognition of membrane sterols by polyene antifungals amphotericin B and natamycin, a 13C MAS NMR study. Front Cell Dev Biol 2016; 4: 57.
[http://dx.doi.org/10.3389/fcell.2016.00057] [PMID: 27379235]
[196]
Streekstra H, Verkennis AEE, Jacobs R, Dekker A, Stark J, Dijksterhuis J. Fungal strains and the development of tolerance against natamycin. Int J Food Microbiol 2016; 238: 15-22.
[http://dx.doi.org/10.1016/j.ijfoodmicro.2016.08.006] [PMID: 27589020]
[197]
Posch W, Blatzer M, Wilflingseder D, Lass-Flörl C. Aspergillus terreus: Novel lessons learned on amphotericin B resistance. Med Mycol 2018; 56 (Suppl. 1): 73-82.
[http://dx.doi.org/10.1093/mmy/myx119] [PMID: 29538736]
[198]
Gsaller F, Furukawa T, Carr PD, et al. Mechanistic basis of pH-dependent 5-flucytosine resistance in Aspergillus fumigatus. Antimicrob Agents Chemother 2018; 62(6): e02593-17.
[http://dx.doi.org/10.1128/AAC.02593-17] [PMID: 29610197]
[199]
Perlin DS, Rautemaa-Richardson R, Alastruey-Izquierdo A. The global problem of antifungal resistance: Prevalence, mechanisms, and management. Lancet Infect Dis 2017; 17(12): e383-92.
[http://dx.doi.org/10.1016/S1473-3099(17)30316-X] [PMID: 28774698]
[200]
Verweij PE, Chowdhary A, Melchers WJG, Meis JF. Azole resistance in Aspergillus fumigatus: Can we retain the clinical use of mold-active antifungal azoles? Clin Infect Dis 2016; 62(3): 362-8.
[http://dx.doi.org/10.1093/cid/civ885] [PMID: 26486705]
[201]
Verweij PE, Zhang J, Debets AJM, et al. In-host adaptation and acquired triazole resistance in Aspergillus fumigatus: A dilemma for clinical management. Lancet Infect Dis 2016; 16(11): e251-60.
[http://dx.doi.org/10.1016/S1473-3099(16)30138-4] [PMID: 27638360]
[202]
Lelièvre L, Groh M, Angebault C, Maherault A-C, Didier E, Bougnoux M-E. Azole resistant Aspergillus fumigatus: An emerging problem. Med Mal Infect 2013; 43(4): 139-45.
[http://dx.doi.org/10.1016/j.medmal.2013.02.010] [PMID: 23562488]
[203]
Howard SJ, Cerar D, Anderson MJ, et al. Frequency and evolution of Azole resistance in Aspergillus fumigatus associated with treatment failure. Emerg Infect Dis 2009; 15(7): 1068-76.
[http://dx.doi.org/10.3201/eid1507.090043] [PMID: 19624922]
[204]
Dannaoui E, Persat F, Monier M-F, Borel E, Piens M-A, Picot S. In-vitro susceptibility of Aspergillus spp. isolates to amphotericin B and itraconazole. J Antimicrob Chemother 1999; 44(4): 553-5.
[http://dx.doi.org/10.1093/jac/44.4.553] [PMID: 10588320]
[205]
Alanio A, Sitterlé E, Liance M, et al. Low prevalence of resistance to azoles in Aspergillus fumigatus in a French cohort of patients treated for haematological malignancies. J Antimicrob Chemother 2011; 66(2): 371-4.
[http://dx.doi.org/10.1093/jac/dkq450] [PMID: 21131690]
[206]
Mortensen KL, Mellado E, Lass-Flörl C, Rodriguez-Tudela JL, Johansen HK, Arendrup MC. Environmental study of azole-resistant Aspergillus fumigatus and other aspergilli in Austria, Denmark, and Spain. Antimicrob Agents Chemother 2010; 54(11): 4545-9.
[http://dx.doi.org/10.1128/AAC.00692-10] [PMID: 20805399]
[207]
Abdolrasouli A, Petrou MA, Park H, et al. Surveillance for Azole-Resistant Aspergillus fumigatus in a Centralized Diagnostic Mycology Service, London, United Kingdom, 1998-2017. Front Microbiol 2018; 9: 2234.
[http://dx.doi.org/10.3389/fmicb.2018.02234] [PMID: 30294314]
[208]
Zoran T, Sartori B, Sappl L, et al. Azole-resistance in Aspergillus terreus and related species: An emerging problem or a rare phenomenon? Front Microbiol 2018; 9: 516.
[http://dx.doi.org/10.3389/fmicb.2018.00516] [PMID: 29643840]
[209]
van de Veerdonk FL, Kolwijck E, Lestrade PPA, et al. Influenza-associated aspergillosis in critically ill patients. Am J Respir Crit Care Med 2017; 196(4): 524-7.
[http://dx.doi.org/10.1164/rccm.201612-2540LE] [PMID: 28387526]
[210]
Schauwvlieghe AFAD, de Jonge N, van Dijk K, et al. The diagnosis and treatment of invasive aspergillosis in Dutch haematology units facing a rapidly increasing prevalence of azole-resistance. A nationwide survey and rationale for the DB-MSG 002 study protocol. Mycoses 2018; 61(9): 656-64.
[http://dx.doi.org/10.1111/myc.12788] [PMID: 29687483]
[211]
Vermeulen E, Lagrou K, Verweij PE. Azole resistance in Aspergillus fumigatus: A growing public health concern. Curr Opin Infect Dis 2013; 26(6): 493-500.
[http://dx.doi.org/10.1097/QCO.0000000000000005] [PMID: 24126719]
[212]
Vermeulen E, Maertens J, De Bel A, et al. Nationwide surveillance of azole resistance in Aspergillus diseases. Antimicrob Agents Chemother 2015; 59(8): 4569-76.
[http://dx.doi.org/10.1128/AAC.00233-15] [PMID: 25987612]
[213]
Chowdhary A, Sharma C, Meis JF. Azole-resistant aspergillosis: Epidemiology, molecular mechanisms, and treatment. J Infect Dis 2017; 216 (Suppl. 3): S436-44.
[http://dx.doi.org/10.1093/infdis/jix210] [PMID: 28911045]
[214]
Verweij PE, Kema GHJ, Zwaan B, Melchers WJG. Triazole fungicides and the selection of resistance to medical triazoles in the opportunistic mould Aspergillus fumigatus. Pest Manag Sci 2013; 69(2): 165-70.
[http://dx.doi.org/10.1002/ps.3390] [PMID: 23109245]
[215]
van der Linden JWM, Arendrup MC, Warris A, et al. Prospective multicenter international surveillance of azole resistance in Aspergillus fumigatus. Emerg Infect Dis 2015; 21(6): 1041-4.
[http://dx.doi.org/10.3201/eid2106.140717] [PMID: 25988348]
[216]
Alastruey-Izquierdo A, Mellado E, Peláez T, et al. Population-based survey of filamentous fungi and antifungal resistance in Spain (FILPOP Study). Antimicrob Agents Chemother 2013; 57(7): 3380-7.
[http://dx.doi.org/10.1128/AAC.00383-13] [PMID: 23669377]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy