Generic placeholder image

Current Indian Science

Editor-in-Chief

ISSN (Print): 2210-299X
ISSN (Online): 2210-3007

Research Article

Chronic Inflammatory Pain Modulating Potential of Rubiadin: In-vivo, In-vitro and In-silico Investigations

Author(s): Atul R. Chopade, Suraj N. Mali*, Vijay R. Salunkhe, Madhav R. Burade and Prakash M. Somade

Volume 1, 2023

Published on: 25 January, 2023

Article ID: e140922208819 Pages: 10

DOI: 10.2174/2210299X01666220914113809

open_access

conference banner
Abstract

Background: The study model of chronic musculoskeletal inflammatory pain, Rubiadin [1,3-dihydroxy-2-methylanthracene-9,10-dione] choice of a drug, aimed to evaluate the anti-hyperalgesic effects.

Objective: To induce gastrocnemius muscle-stimulated hyperalgesia, 3% carrageenan was injected intraperitoneally.

Methods: The response to heat and mechanical stimuli was monitored for 9 days. The effect of 1st dose of rubiadin started monitoring after the 14th day of carrageenan injection and continued monitoring until the 22nd day. After the administration of rubiadin intraperitoneally, antihyperanalgesic activity was observed.

Results: Furthermore, increasing the temperature and mechanical threshold supports histopathological observations with extreme reduction in prostaglandin E2 (PGE2) level.

Conclusion: The objective is to observe anti-inflammatory and anti-hyperalgesic activity of rubiadin in a pain model that is initiated via supraspinal or spinal neuronal mechanisms, predominantly by inhibition of PEG2. Rubiadin provides a wide range of activities in the treatment of chronic muscle pain and chronic muscular inflammation.

Keywords: Rubiadin, Anti-hyperalgesic activity, Chronic muscle pain, Anti-inflammatroy, In-silico, Docking, Cronic musculoskeletal inflammatory pain.

[1]
Blyth, F.M.; Briggs, A.M.; Schneider, C.H.; Hoy, D.G.; March, L.M. The global burden of musculoskeletal pain—where to from here? Am. J. Public Health, 2019, 109(1), 35-40.
[http://dx.doi.org/10.2105/AJPH.2018.304747] [PMID: 30495997]
[2]
Mogil, J.S.; Crager, S.E. What should we be measuring in behavioral studies of chronic pain in animals? Pain, 2004, 112(1), 12-15.
[http://dx.doi.org/10.1016/j.pain.2004.09.028] [PMID: 15494180]
[3]
Lomazzo, E.; Bindila, L.; Remmers, F.; Lerner, R.; Schwitter, C.; Hoheisel, U.; Lutz, B. Therapeutic potential of inhibitors of endocannabinoid degradation for the treatment of stress-related hyperalgesia in an animal model of chronic pain. Neuropsychopharmacology, 2015, 40(2), 488-501.
[http://dx.doi.org/10.1038/npp.2014.198] [PMID: 25100669]
[4]
Ulrich-Lai, Y.M.; Xie, W.; Meij, J.T.A.; Dolgas, C.M.; Yu, L.; Herman, J.P. Limbic and HPA axis function in an animal model of chronic neuropathic pain. Physiol. Behav., 2006, 88(1-2), 67-76.
[http://dx.doi.org/10.1016/j.physbeh.2006.03.012] [PMID: 16647726]
[5]
Rehn, A.E.; Van Den Buuse, M.; Copolov, D.; Briscoe, T.; Lambert, G.; Rees, S. An animal model of chronic placental insufficiency: Relevance to neurodevelopmental disorders including schizophrenia. Neuroscience, 2004, 129(2), 381-391.
[http://dx.doi.org/10.1016/j.neuroscience.2004.07.047] [PMID: 15501595]
[6]
Nunan, R.; Harding, K.G.; Martin, P. Clinical challenges of chronic wounds: Searching for an optimal animal model to recapitulate their complexity. Dis. Model. Mech., 2014, 7(11), 1205-1213.
[http://dx.doi.org/10.1242/dmm.016782] [PMID: 25359790]
[7]
Samy, R.P.; Pushparaj, P.N.; Gopalakrishnakone, P. A compilation of bioactive compounds from Ayurveda. Bioinformation, 2008, 3(3), 100-110.
[http://dx.doi.org/10.6026/97320630003100] [PMID: 19238245]
[8]
Tyler, V.M.; Premila, M.S. Antirheumatic agents. In: Ayurvedic Herbs; Routledge, 2012; pp. 187-216.
[http://dx.doi.org/10.4324/9780203049204-14]
[9]
Hasani-Ranjbar, S.; Nayebi, N.; Moradi, L.; Mehri, A.; Larijani, B.; Abdollahi, M. The efficacy and safety of herbal medicines used in the treatment of hyperlipidemia; a systematic review. Curr. Pharm. Des., 2010, 16(26), 2935-2947.
[http://dx.doi.org/10.2174/138161210793176464] [PMID: 20858178]
[10]
Xu, Z.; Chang, L. Rubiaceae. In: Identification and Control of Common Weeds; Springer: Singapore, 2017; Vol. 3, pp. 375-403.
[11]
Shen, C.H.; Liu, C.T.; Song, X.J.; Zeng, W.Y.; Lu, X.Y.; Zheng, Z.L.; Jie-Pan; Zhan, R.T.; Ping-Yan Evaluation of analgesic and anti-inflammatory activities of Rubia cordifolia L. by spectrum-effect relationships. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2018, 1090, 73-80.
[http://dx.doi.org/10.1016/j.jchromb.2018.05.021] [PMID: 29793098]
[12]
Mohr, E.T.B.; dos Santos Nascimento, M.V.P.; da Rosa, J.S.; Vieira, G.N.; Kretzer, I.F.; Sandjo, L.P.; Dalmarco, E.M. Evidence that the anti-inflammatory effect of rubiadin-1-methyl ether has an immunomodulatory context. Mediators Inflamm., 2019, 2019, 1-12.
[http://dx.doi.org/10.1155/2019/6474168] [PMID: 31780865]
[13]
Tripathi, Y.B.; Sharma, M.; Manickam, M. Rubiadin, a new antioxidant from Rubia cordifolia. Indian J. Biochem. Biophys., 1997, 34(3), 302-306.
[PMID: 9425750]
[14]
Rao, G.M.M.; Rao, C.V.; Pushpangadan, P.; Shirwaikar, A. Hepatoprotective effects of rubiadin, a major constituent of Rubia cordifolia Linn. J. Ethnopharmacol., 2006, 103(3), 484-490.
[http://dx.doi.org/10.1016/j.jep.2005.08.073] [PMID: 16213120]
[15]
Russell, F.A.; Fernandes, E.S.; Courade, J.P.; Keeble, J.E.; Brain, S.D. Tumour necrosis factor α mediates transient receptor potential vanilloid 1-dependent bilateral thermal hyperalgesia with distinct peripheral roles of interleukin-1β, protein kinase C and cyclooxygenase-2 signalling. Pain, 2009, 142(3), 264-274.
[http://dx.doi.org/10.1016/j.pain.2009.01.021] [PMID: 19231080]
[16]
Salat, K.; Moniczewski, A.; Librowski, T. Nitrogen, oxygen or sulfur containing heterocyclic compounds as analgesic drugs used as modulators of the nitroxidative stress. Mini Rev. Med. Chem., 2013, 13(3), 335-352.
[PMID: 22876956]
[17]
Guerrero-Solano, J.A.; Jaramillo-Morales, O.A.; Velázquez-González, C.; De la O-Arciniega, M.; Castañeda-Ovando, A.; Betanzos-Cabrera, G.; Bautista, M. Pomegranate as a potential alternative of pain management: A review. Plants, 2020, 9(4), 419.
[http://dx.doi.org/10.3390/plants9040419] [PMID: 32235455]
[18]
Urban, M.O.; Gebhart, G.F. Supraspinal contributions to hyperalgesia. Proc. Natl. Acad. Sci. USA, 1999, 96(14), 7687-7692.
[http://dx.doi.org/10.1073/pnas.96.14.7687] [PMID: 10393881]
[19]
Mali, S.N.; Pandey, A.; Thorat, B.R.; Lai, C.H. Multiple 3D- and 2D-quantitative structure–activity relationship models (QSAR), theoretical study and molecular modeling to identify structural requirements of imidazopyridine analogues as anti-infective agents against tuberculosis. Struct. Chem., 2022, 33(3), 679-694.
[http://dx.doi.org/10.1007/s11224-022-01879-2]
[20]
Nagre, D.T.; Thorat, B.R.; Mali, S.N.; Farooqui, M.; Agrawal, B. Experimental and computational insights into bis-indolylmethane derivatives as potent antimicrobial agents inhibiting 2, 2-dialkylglycine decarboxylase. Curr. Enzym. Inhib., 2021, 17(3), 204-216.
[http://dx.doi.org/10.2174/1573408017666210914105731]
[21]
Mali, S.N.; Pandey, A. Unveiling naturally occurring green tea polyphenol epigallocatechin-3-gallate (EGCG) targeting mycobacterium DPRE1 for anti-tb drug discovery. Eng. Proc., 2021, 11, 31.
[http://dx.doi.org/10.3390/ASEC2021-11185]
[22]
Ghosh, S.; Mali, S.N.; Bhowmick, D.N.; Pratap, A.P. Neem oil as natural pesticide: Pseudo ternary diagram and computational study. J. Indian Chem. Soc., 2021, 98(7), 100088.
[http://dx.doi.org/10.1016/j.jics.2021.100088]
[23]
Desale, V.J.; Mali, S.N.; Thorat, B.R.; Yamgar, R.S. Synthesis, admetSAR predictions, DPPH radical scavenging activity, and potent anti-mycobacterial studies of hydrazones of substituted 4-(anilino methyl) benzohydrazides (Part 2). Curr. Computeraided Drug Des., 2021, 17(4), 493-503.
[http://dx.doi.org/10.2174/1573409916666200615141047] [PMID: 32538732]
[24]
Kshatriya, R.; Shelke, P.; Mali, S.; Yashwantrao, G.; Pratap, A.; Saha, S. Synthesis and evaluation of anticancer activity of pyrazolone appended triarylmethanes (TRAMs). ChemistrySelect, 2021, 6(24), 6230-6239.
[http://dx.doi.org/10.1002/slct.202101083]
[25]
Mali, S.N.; Pandey, A. Multiple QSAR and molecular modelling for identification of potent human adenovirus inhibitors. J. Indian Chem. Soc., 2021, 98(6), 100082.
[http://dx.doi.org/10.1016/j.jics.2021.100082]
[26]
Mali, S.N.; Pandey, A. Molecular modeling studies on 2, 4-disubstituted imidazopyridines as anti-malarials: Atom-based 3D-QSAR, molecular docking, virtual screening, in-silico ADMET and theoretical analysis. J. Comput. Biophys. Chemist, 2021, 20(3), 267-282.
[http://dx.doi.org/10.1142/S2737416521500125]
[27]
Chopade, A.R.; Somade, P.M.; Somade, P.P.; Mali, S.N. Identification of anxiolytic potential of niranthin: In-vivo and computational investigations. Nat. Prod. Bioprospect., 2021, 11(2), 223-233.
[http://dx.doi.org/10.1007/s13659-020-00284-8] [PMID: 33175328]
[28]
Thorat, B.R.; Mali, S.N.; Rani, D.; Yamgar, R.S. Synthesis, in silico and in vitro analysis of hydrazones as potential antituberculosis agents. Curr. Comput. Aided Drug Des., 2021, 17(2), 294-306.
[http://dx.doi.org/10.2174/15734099MTA0sOTQ3x] [PMID: 32141422]
[29]
Chopade, A.R.; Pol, R.P.; Patil, P.A.; Dharanguttikar, V.R.; Naikwade, N.S.; Dias, R.J.; Mali, S.N. An insight into the anxiolytic effects of lignans (phyllanthin and hypophyllanthin) and tannin (corilagin) rich extracts of Phyllanthus amarus: An in-silico and in-vivo approaches. Comb. Chem. High Throughput Screen., 2021, 24(3), 415-422.
[http://dx.doi.org/10.2174/1386207323666200605150915] [PMID: 32503404]
[30]
Mali, S.N.; Thorat, B.R.; Gupta, D.R.; Pandey, A. Mini-review of the importance of hydrazides and their derivatives-synthesis and biological activity. Eng. Proceed., 2021, 11(1), 21.
[31]
Nagre, D.T.; Mali, S.N.; Thorat, B.R.; Thorat, S.A.; Chopade, A.R.; Farooqui, M.; Agrawal, B. Synthesis, in-silico potential enzymatic target predictions, pharmacokinetics, toxicity, anti-microbial and anti-inflammatory studies of bis-(2-methylindolyl) methane derivatives. Curr. Enzym. Inhib., 2021, 17(2), 127-143.
[http://dx.doi.org/10.2174/1573408017666210203203735]
[32]
Chopade, A.R.; Pol, R.P.; Patil, P.A.; Dharanguttikar, V.R.; Naikwade, N.S.; Dias, R.J.; Mali, S.N. Pharmacological and in-silico investigations of anxiolytic-like effects of Phyllanthus fraternus: A probable involvement of GABA-A receptor. Curr. Enzym. Inhib., 2021, 17(1), 42-48.
[http://dx.doi.org/10.2174/1573408016999201026200650]
[33]
Anuse, D.G.; Mali, S.N.; Thorat, B.R.; Yamgar, R.S.; Chaudhari, H.K. Synthesis, SAR, in silico appraisal and anti-microbial study of substituted 2-aminobenzothiazoles derivatives. Curr. Comput. Aided Drug Des., 2021, 16(6), 802-813.
[http://dx.doi.org/10.2174/1573409915666191210125647] [PMID: 31820704]
[34]
Jadhav, B.S.; Yamgar, R.S.; Kenny, R.S.; Mali, S.N.; Chaudhari, H.K.; Mandewale, M.C. Synthesis, in silico and biological studies of thiazolyl-2h-chromen-2-one derivatives as potent antitubercular agents. Curr. Comput. Aided Drug Des., 2020, 16(5), 511-522.
[http://dx.doi.org/10.2174/1386207322666190722162100] [PMID: 31438831]
[35]
Desale, V.J.; Mali, S.N.; Chaudhari, H.K.; Mali, M.C.; Thorat, B.R.; Yamgar, R.S. Synthesis and anti-mycobacterium study on halo-substituted 2-aryl oxyacetohydrazones. Curr. Comput. Aided Drug Des., 2020, 16(5), 618-628.
[http://dx.doi.org/10.2174/1573409915666191018120611] [PMID: 31648645]
[36]
Anuse, D.G.; Thorat, B.R.; Sawant, S.; Yamgar, R.S.; Chaudhari, H.K.; Mali, S.N. Synthesis, SAR, molecular docking and anti-microbial study of substituted N-bromoamido-2-aminobenzothiazoles. Curr. Computeraided Drug Des., 2020, 16(5), 530-540.
[http://dx.doi.org/10.2174/1573409915666190902143648] [PMID: 31475902]
[37]
Thorat, B.R.; Rani, D.; Yamgar, R.S.; Mali, S.N. Synthesis, spectroscopic, in-vitro and computational analysis of hydrazones as potential antituberculosis agents: (part-I). Comb. Chem. High Throughput Screen., 2020, 23(5), 392-401.
[http://dx.doi.org/10.2174/1386207323999200325125858] [PMID: 32209038]
[38]
Mali, S.N.; Pandey, A. Synthesis of new hydrazones using a biodegradable catalyst, their biological evaluations and molecular modeling studies (Part-II). J. Comput. Biophys. Chem., 2022, 21(7), 857-82.
[http://dx.doi.org/10.1142/S2737416522500387]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy