Generic placeholder image

Current Drug Research Reviews

Editor-in-Chief

ISSN (Print): 2589-9775
ISSN (Online): 2589-9783

Mini-Review Article

Nanocarriers Based Ocular Therapeutics: Updates, Challenges and Future Prospectives

Author(s): Udesh Kaushal, Malkiet Kaur, Manju Nagpal*, Madhusmita Bhuyan and Kailasam Periyana Gounder

Volume 15, Issue 1, 2023

Published on: 20 October, 2022

Page: [15 - 28] Pages: 14

DOI: 10.2174/2589977514666220913120718

Price: $65

Abstract

Background: Ocular disorders mainly affect patient’s eyesight and quality of life. Formulation scientists encounter a hurdle in drug distribution to ocular tissues. Anatomical barriers (static and dynamic) and physiological barriers, such as nasolacrimal drainage system, blinking action of eye, and metabolic barriers and efflux pumps, are the principal obstacles to medication delivery to the posterior and anterior parts. Over the last twenty years, ophthalmic research has evolved rapidly for the development of innovative, safe, and patient friendly formulations and drug delivery devices or techniques that may get over these obstacles and sustain drug levels in tissues.

Methods: Literature from the past ten years has been collected using various search engines, such as ScienceDirect, J-Gate, Google Scholar, Pubmed, Sci-Hub, etc., and research data have been compiled according to various novel carrier systems.

Results: Nanocarriers have been shown to be helpful in overcoming the drawbacks of traditional ocular dosing forms. Modification of standard topical solutions by both permeability and viscosity imparters has resulted in breakthroughs in anterior segment medication delivery. Various nanocarriers, including liposomes, implants, dendrimers, nanosuspensions, nanoparticles, solid lipid nanocarriers, niosomes and proniosomes have been studied for enhanced penetration and the successful targeted drug administration to various ocular locations.

Conclusion: Recently developed nanocarriers for ocular delivery have proved to be cost-effective, efficacious, safe, and sustained-release carriers, which can be incorporated in suitable dosage forms.

In this review, the authors have discussed various challenges in ocular drug administration. Various research reports on advancements in ocular drug delivery based on modified drug delivery carriers have been analyzed and included. Additionally, marketed formulations and patent literature on ocular drug delivery have been added as a part to support the review content.

Keywords: Ocular barriers, dendrimers, implants, topical, niosomes, liposomes.

Graphical Abstract
[1]
Gaudana R, Ananthula HK, Parenky A, Mitra AK. Ocular drug delivery. AAPS J 2010; 12(3): 348-60.
[http://dx.doi.org/10.1208/s12248-010-9183-3] [PMID: 20437123]
[2]
Rodrigues GA, Lutz D, Shen J, et al. Topical drug delivery to the posterior segment of the eye: Addressing the challenge of preclinical to clinical translation. Pharm Res 2018; 35(12): 245.
[http://dx.doi.org/10.1007/s11095-018-2519-x] [PMID: 30374744]
[3]
Morrison PWJ, Khutoryanskiy VV. Advances in ophthalmic drug delivery. Ther Deliv 2014; 5(12): 1297-315.
[http://dx.doi.org/10.4155/tde.14.75] [PMID: 25531930]
[4]
Bachu R, Chowdhury P, Al-Saedi Z, Karla P, Boddu S. Ocular drug delivery barriers—role of nanocarriers in the treatment of anterior segment ocular diseases. Pharmaceutics 2018; 10(1): 28.
[http://dx.doi.org/10.3390/pharmaceutics10010028] [PMID: 29495528]
[5]
Flaxman SR, Bourne RRA, Resnikoff S, et al. Global causes of blindness and distance vision impairment 1990–2020: A systematic review and meta-analysis. Lancet Glob Health 2017; 5(12): e1221-34.
[http://dx.doi.org/10.1016/S2214-109X(17)30393-5] [PMID: 29032195]
[6]
Gorantla S, Rapalli VK, Waghule T, et al. Nanocarriers for ocular drug delivery: Current status and translational opportunity. RSC Advances 2020; 10(46): 27835-55.
[http://dx.doi.org/10.1039/D0RA04971A] [PMID: 35516960]
[7]
Gote V, Sikder S, Sicotte J, Pal D. Ocular drug delivery: Present innovations and future challenges. J Pharmacol Exp Ther 2019; 370(3): 602-24.
[http://dx.doi.org/10.1124/jpet.119.256933] [PMID: 31072813]
[8]
Sikandar MK, Sharma PK, Visht S. Ocular drug delivery system: An overview. Int J Pharm Sci Res 2011; 2(5): 1168.
[9]
Patel A, Cholkar K, Agrahari V, Mitra AK. Ocular drug delivery systems: An overview. World J Pharmacol 2013; 2(2): 47-64.
[http://dx.doi.org/10.5497/wjp.v2.i2.47] [PMID: 25590022]
[10]
Nasimi P, Haidari M. Medical use of nanoparticles: Drug delivery and diagnosis diseases. Int J Green Nanotechnol Biomed 2013; 1: 1943089213506978.
[11]
Das S, Suresh PK. Drug delivery to eye: Special reference to nanoparticle. Int J Drug Deliv 2010; 2(1): 12-21.
[http://dx.doi.org/10.5138/ijdd.2010.0975.0215.02007]
[12]
Kalepu S, Nekkanti V. Insoluble drug delivery strategies: Review of recent advances and business prospects. Acta Pharm Sin B 2015; 5(5): 442-53.
[http://dx.doi.org/10.1016/j.apsb.2015.07.003] [PMID: 26579474]
[13]
Sahoo S, Dilnawaz F, Krishnakumar S. Nanotechnology in ocular drug delivery. Drug Discov Today 2008; 13(3-4): 144-51.
[http://dx.doi.org/10.1016/j.drudis.2007.10.021] [PMID: 18275912]
[14]
Chen H, Pan H, Li P, et al. The potential use of novel chitosan-coated deformable liposomes in an ocular drug delivery system. Colloids Surf B Biointerfaces 2016; 143: 455-62.
[http://dx.doi.org/10.1016/j.colsurfb.2016.03.061] [PMID: 27037783]
[15]
Suri R, Neupane YR, Mehra N, Jain GK, Kohli K. Sirolimus loaded polyol modified liposomes for the treatment of posterior segment eye diseases. Med Hypotheses 2020; 136: 109518.
[http://dx.doi.org/10.1016/j.mehy.2019.109518] [PMID: 31837522]
[16]
dos Santos GA, Ferreira-Nunes R, Dalmolin LF, et al. Besifloxacin liposomes with positively charged additives for an improved topical ocular delivery. Sci Rep 2020; 10(1): 19285.
[http://dx.doi.org/10.1038/s41598-020-76381-y] [PMID: 33159142]
[17]
Sahoo RK, Biswas N, Guha A, Sahoo N, Kuotsu K. Nonionic surfactant vesicles in ocular delivery: Innovative approaches and perspectives. BioMed Res Int 2014; 2014: 1-12.
[http://dx.doi.org/10.1155/2014/263604] [PMID: 24995280]
[18]
Kaur IP, Rana C, Singh M, Bhushan S, Singh H, Kakkar S. Development and evaluation of novel surfactant-based elastic vesicular system for ocular delivery of fluconazole. J Ocul Pharmacol Ther 2012; 28(5): 484-96.
[http://dx.doi.org/10.1089/jop.2011.0176] [PMID: 22694593]
[19]
Khalil RM, Abdelbary GA, Basha M, Awad GEA, El-Hashemy HA. Design and evaluation of proniosomes as a carrier for ocular delivery of lomefloxacin HCl. J Liposome Res 2017; 27(2): 118-29.
[http://dx.doi.org/10.3109/08982104.2016.1167737] [PMID: 27079800]
[20]
Morais M, Coimbra P, Pina ME. Comparative analysis of morphological and release profiles in ocular implants of acetazolamide prepared by electrospinning. Pharmaceutics 2021; 13(2): 260.
[http://dx.doi.org/10.3390/pharmaceutics13020260] [PMID: 33671936]
[21]
McAvoy K, Jones D, Thakur RRS. Synthesis and characterisation of photocrosslinked poly (ethylene glycol) diacrylate implants for sustained ocular drug delivery. Pharm Res 2018; 35(2): 36.
[http://dx.doi.org/10.1007/s11095-017-2298-9] [PMID: 29368249]
[22]
Thakur RRS, Fallows SJ, McMillan HL, Donnelly RF, Jones DS. Microneedle-mediated intrascleral delivery of in situ forming thermoresponsive implants for sustained ocular drug delivery. J Pharm Pharmacol 2014; 66(4): 584-95.
[http://dx.doi.org/10.1111/jphp.12152] [PMID: 24127904]
[23]
Desai AR, Maulvi FA, Desai DM, et al. Multiple drug delivery from the drug-implants-laden silicone contact lens: Addressing the issue of burst drug release. Mater Sci Eng C 2020; 112: 110885.
[http://dx.doi.org/10.1016/j.msec.2020.110885] [PMID: 32409042]
[24]
Abdelkader H, Alany RG. Controlled and continuous release ocular drug delivery systems: Pros and cons. Curr Drug Deliv 2012; 9(4): 421-30.
[http://dx.doi.org/10.2174/156720112801323125] [PMID: 22640036]
[25]
Yavuz B, Pehlivan SB. Vural İ Ünlü N. In vitro/in vivo evaluation of dexamethasone—PAMAM dendrimer complexes for retinal drug delivery. J Pharm Sci 2015; 104(11): 3814-23.
[http://dx.doi.org/10.1002/jps.24588] [PMID: 26227825]
[26]
Holden CA, Tyagi P, Thakur A, et al. Polyamidoamine dendrimer hydrogel for enhanced delivery of antiglaucoma drugs. Nanomedicine 2012; 8(5): 776-83.
[http://dx.doi.org/10.1016/j.nano.2011.08.018] [PMID: 21930109]
[27]
Yao W, Sun K, Mu H, et al. Preparation and characterization of puerarin–dendrimer complexes as an ocular drug delivery system. Drug Dev Ind Pharm 2010; 36(9): 1027-35.
[http://dx.doi.org/10.3109/03639041003610799] [PMID: 20545508]
[28]
Patravale VB, Date AA, Kulkarni RM. Nanosuspensions: A promising drug delivery strategy. J Pharm Pharmacol 2010; 56(7): 827-40.
[http://dx.doi.org/10.1211/0022357023691] [PMID: 15233860]
[29]
Nandwani Y, Kaur A, Bansal AK. Generation of ophthalmic nanosuspension of prednisolone acetate using a novel technology. Pharm Res 2021; 38(2): 319-33.
[http://dx.doi.org/10.1007/s11095-021-02985-2] [PMID: 33560484]
[30]
Josyula A, Omiadze R, Parikh K, et al. An ionⓇpaired moxifloxacin nanosuspension eye drop provides improved prevention and treatment of ocular infection. Bioeng Transl Med 2021; 6(3): e10238.
[http://dx.doi.org/10.1002/btm2.10238] [PMID: 34589607]
[31]
Pawar P, Duduskar A, Waydande S. Design and evaluation of eudragit RS-100 based itraconazole nanosuspension for ophthalmic application. Curr Drug Res Rev 2021; 13(1): 36-48.
[http://dx.doi.org/10.2174/2589977512666200929111952] [PMID: 32990554]
[32]
Gupta H, Aqil M, Khar RK, Ali A, Bhatnagar A, Mittal G. Sparfloxacin-loaded PLGA nanoparticles for sustained ocular drug delivery. Nanomedicine 2010; 6(2): 324-33.
[http://dx.doi.org/10.1016/j.nano.2009.10.004] [PMID: 19857606]
[33]
Parveen S, Mitra M, Krishnakumar S, Sahoo SK. Retraction notice to “Enhanced antiproliferative activity of carboplatin loaded chitosan-alginate nanoparticles in retinoblastoma cell line”. Acta Biomater 2010; 6: 3120-31.
[http://dx.doi.org/10.1016/j.actbio.2013.02.025] [PMID: 23802318]
[34]
Taghe S, Mirzaeei S, Alany RG, Nokhodchi A. Polymeric inserts containing Eudragit® L100 nanoparticle for improved ocular delivery of azithromycin. Biomedicines 2020; 8(11): 466.
[http://dx.doi.org/10.3390/biomedicines8110466] [PMID: 33142768]
[35]
Swetledge S, Jung JP, Carter R, Sabliov C. Distribution of polymeric nanoparticles in the eye: Implications in ocular disease therapy. J Nanobiotechnology 2021; 19(1): 10.
[http://dx.doi.org/10.1186/s12951-020-00745-9] [PMID: 33413421]
[36]
Patil A, Lakhani P, Taskar P, et al. Formulation development, optimization, and in vitro–in vivo characterization of natamycin-loaded pegylatednano-lipid carriers for ocular applications. J Pharm Sci 2018; 107(8): 2160-71.
[http://dx.doi.org/10.1016/j.xphs.2018.04.014] [PMID: 29698725]
[37]
Janga KY, Tatke A, Balguri SP, et al. Ion-sensitive in situ hydrogels of natamycinbilosomes for enhanced and prolonged ocular pharmacotherapy: In vitro permeability, cytotoxicity and in vivo evaluation. Artif Cells Nanomed Biotechnol 2018; 46(Supp. 1): 1039-50.
[38]
Xu T, Xu X, Gu Y, Fang L, Cao F. Functional intercalated nanocomposites with chitosan-glutathione-glycylsarcosine and layered double hydroxides for topical ocular drug delivery. Int J Nanomedicine 2018; 13: 917-37.
[http://dx.doi.org/10.2147/IJN.S148104] [PMID: 29491707]
[39]
Vyas S, Rai S, Paliwal R, et al. Solid lipid nanoparticles (SLNs) as a rising tool in drug delivery science: One step up in nanotechnology. Curr Nanosci 2008; 4(1): 30-44.
[http://dx.doi.org/10.2174/157341308783591816]
[40]
Sun K, Hu K. Preparation and characterization of tacrolimus-loaded slns in situ gel for ocular drug delivery for the treatment of immune conjunctivitis. Drug Des Devel Ther 2021; 15: 141-50.
[http://dx.doi.org/10.2147/DDDT.S287721] [PMID: 33469266]
[41]
Singh M, Guzman-Aranguez A, Hussain A, Srinivas CS, Kaur IP. Solid lipid nanoparticles for ocular delivery of isoniazid: Evaluation, proof of concept and in vivo safety & kinetics. Nanomedicine 2019; 14(4): 465-91.
[http://dx.doi.org/10.2217/nnm-2018-0278] [PMID: 30694726]
[42]
Nair A, Shah J, Al-Dhubiab B, et al. Clarithromycin solid lipid nanoparticles for topical ocular therapy: Optimization, evaluation and in vivo studies. Pharmaceutics 2021; 13(4): 523.
[http://dx.doi.org/10.3390/pharmaceutics13040523] [PMID: 33918870]
[43]
Sahin NO. Niosomes as Nanocarrier Systems. In: Mozafari, M.R. Eds. Nanomaterials and Nanosystems for Biomedical Applications. Springer, Dordrecht. 2007; pp. 67-81.
[http://dx.doi.org/10.1007/978-1-4020-6289-6_4]
[44]
Bidram E, Esmaeili Y, Ranji-Burachaloo H, et al. A concise review on cancer treatment methods and delivery systems. J Drug Deliv Sci Technol 2019; 54: 101350.
[http://dx.doi.org/10.1016/j.jddst.2019.101350]
[45]
Moghassemi S, Hadjizadeh A, Omidfar K. Formulation and characterization of bovine serum albumin-loaded niosome. AAPS PharmSciTech 2017; 18(1): 27-33.
[http://dx.doi.org/10.1208/s12249-016-0487-1] [PMID: 26817764]
[46]
Farmoudeh A, Akbari J, Saeedi M, Ghasemi M, Asemi N, Nokhodchi A. Methylene blue-loaded niosome: Preparation, physicochemical characterization, and in vivo wound healing assessment. Drug Deliv Transl Res 2020; 10(5): 1428-41.
[http://dx.doi.org/10.1007/s13346-020-00715-6] [PMID: 32100265]
[47]
Gharbavi M, Amani J, Kheiri-Manjili H, Danafar H, Sharafi A. Niosome: A promising nanocarrier for natural drug delivery through blood-brain barrier. Adv Pharmacol Sci 2018; 2018: 1-15.
[http://dx.doi.org/10.1155/2018/6847971] [PMID: 30651728]
[48]
Uchegbu IF, Florence AT. Non-ionic surfactant vesicles (niosomes): Physical and pharmaceutical chemistry. Adv Colloid Interface Sci 1995; 58(1): 1-55.
[http://dx.doi.org/10.1016/0001-8686(95)00242-I]
[49]
Rinaldi F, del Favero E, Moeller J, et al. Hydrophilic silver nanoparticles loaded into niosomes: Physical–chemical characterization in view of biological applications. Nanomaterials 2019; 9(8): 1177.
[http://dx.doi.org/10.3390/nano9081177] [PMID: 31426465]
[50]
Ge X, Wei M, He S, Yuan WE. Advances of non-ionic surfactant vesicles (niosomes) and their application in drug delivery. Pharmaceutics 2019; 11(2): 55.
[http://dx.doi.org/10.3390/pharmaceutics11020055] [PMID: 30700021]
[51]
Alyami H, Abdelaziz K, Dahmash EZ, Iyire A. Nonionic surfactant vesicles (niosomes) for ocular drug delivery: Development, evaluation and toxicological profiling. J Drug Deliv Sci Technol 2020; 60: 102069.
[http://dx.doi.org/10.1016/j.jddst.2020.102069]
[52]
Gugleva V, Titeva S, Rangelov S, Momekova D. Design and in vitro evaluation of doxycycline hyclate niosomes as a potential ocular delivery system. Int J Pharm 2019; 567: 118431.
[http://dx.doi.org/10.1016/j.ijpharm.2019.06.022] [PMID: 31207279]
[53]
Fetih G. Fluconazole-loaded niosomal gels as a topical ocular drug delivery system for corneal fungal infections. J Drug Deliv Sci Technol 2016; 35: 8-15.
[http://dx.doi.org/10.1016/j.jddst.2016.06.002]
[54]
Suri R, Beg S, Kohli K. Target strategies for drug delivery bypassing ocular barriers. J Drug Deliv Sci Technol 2020; 55: 101389.
[http://dx.doi.org/10.1016/j.jddst.2019.101389]
[55]
Gaafar PME, Abdallah OY, Farid RM, Abdelkader H. Preparation, characterization and evaluation of novel elastic nano-sized niosomes (ethoniosomes) for ocular delivery of prednisolone. J Liposome Res 2014; 24(3): 204-15.
[http://dx.doi.org/10.3109/08982104.2014.881850] [PMID: 24484536]
[56]
Li Q, Li Z, Zeng W, et al. Proniosome-derived niosomes for tacrolimus topical ocular delivery: In vitro cornea permeation, ocular irritation, and in vivo anti-allograft rejection. Eur J Pharm Sci 2014; 62: 115-23.
[http://dx.doi.org/10.1016/j.ejps.2014.05.020] [PMID: 24905830]
[57]
Yasin MN, Hussain S, Malik F, et al. Preparation and characterization of chloramphenicol niosomes and comparison with chloramphenicol eye drops (0.5%w/v) in experimental conjunctivitis in albino rabbits. Pak J Pharm Sci 2012; 25(1): 117-21.
[PMID: 22186318]
[58]
Sathyavathi V, Hasansathali AA, Ilavarasan R, Sangeetha T. Formulation and evaluation of niosomalin situ gel ocular delivery system of brimonidine tartrate. Int J Life Sci Pharma Res 2012; 2(1): 82-95.
[59]
Abdelkader H, Ismail S, Kamal A, Alany RG. Design and evaluation of controlled-release niosomes and discomes for naltrexone hydrochloride ocular delivery. J Pharm Sci 2011; 100(5): 1833-46.
[http://dx.doi.org/10.1002/jps.22422] [PMID: 21246556]
[60]
Soliman OAEA, Mohamed EA, Khatera NAA. Enhanced ocular bioavailability of fluconazole from niosomal gels and microemulsions: Formulation, optimization, and in vitro–in vivo evaluation. Pharm Dev Technol 2019; 24(1): 48-62.
[http://dx.doi.org/10.1080/10837450.2017.1413658] [PMID: 29210317]
[61]
Zeng W, Li Q, Wan T, et al. Hyaluronic acid-coated niosomes facilitate tacrolimus ocular delivery: Mucoadhesion, precorneal retention, aqueous humor pharmacokinetics, and transcorneal permeability. Colloids Surf B Biointerfaces 2016; 141: 28-35.
[http://dx.doi.org/10.1016/j.colsurfb.2016.01.014] [PMID: 26820107]
[62]
Walve JR, Rane BR, Gujrathi NA, Bakaliwal SR, Pawar SP. Proniosomes: A surrogated carrier for improved transdermal drug delivery system. Int J Res Ayurveda Pharm 2011; 2(3): 743-50.
[63]
Aboali FA, Habib DA, Elbedaiwy HM, Farid RM. Curcumin-loaded proniosomal gel as a biofreindly alternative for treatment of ocular inflammation: In-vitro and in-vivo assessment. Int J Pharm 2020; 589: 119835.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119835] [PMID: 32890654]
[64]
El-Emam GA, Girgis GNS, El-Sokkary MMA, El-Azeem Soliman OA, Abd El Gawad AEGH. Ocular inserts of voriconazole-loaded proniosomal gels: Formulation, evaluation and microbiological studies. Int J Nanomedicine 2020; 15: 7825-40.
[http://dx.doi.org/10.2147/IJN.S268208] [PMID: 33116503]
[65]
Emad Eldeeb A, Salah S, Ghorab M. Proniosomal gel-derived niosomes: An approach to sustain and improve the ocular delivery of brimonidine tartrate; formulation, in-vitro characterization, and in-vivo pharmacodynamic study. Drug Deliv 2019; 26(1): 509-21.
[http://dx.doi.org/10.1080/10717544.2019.1609622] [PMID: 31090464]
[66]
Fouda NH, Abdelrehim RT, Hegazy DA, Habib BA. Sustained ocular delivery of Dorzolamide-HCl via proniosomal gel formulation: In-vitro characterization, statistical optimization, and in-vivo pharmacodynamic evaluation in rabbits. Drug Deliv 2018; 25(1): 1340-9.
[http://dx.doi.org/10.1080/10717544.2018.1477861] [PMID: 29869516]
[67]
Faisal Saim MA, Bashir L, Naz S, et al. Development and characterization of cephradine proniosomes for oral controlled drug delivery. Indian J Pharm Edu Res 2022; 56(1s): s67-74.
[http://dx.doi.org/10.5530/ijper.56.1s.44]
[68]
Bahy R, Helal D. Evaluation of the antimycotic activity of terconazole proniosomal gel. Egypt J Med Microbiol 2022; 31(2): 121-6.
[http://dx.doi.org/10.21608/ejmm.2022.229668]
[69]
Lynch CR, Kondiah PPD, Choonara YE, du Toit LC, Ally N, Pillay V. Hydrogel biomaterials for application in ocular drug delivery. Front Bioeng Biotechnol 2020; 8: 228.
[http://dx.doi.org/10.3389/fbioe.2020.00228] [PMID: 32266248]
[70]
Zioptan, Rx list. 2021. Available from: https://www.rxlist.com/zioptan-drug.htm (Accessed on: January 28, 2021).
[71]
Iopidine Eye, Rx list.2021. Available from: https://www.rxlist.com/iopidine-eye-drug.htm (Accessed on: March 28, 2018)
[72]
Oxervate, Rx list. 2021. Available from: https://www.rxlist.com/oxervate-drug.htm (Accessed on: November 15, 2021).
[73]
Cosopt Rx list. 2021. Available from: https://www.rxlist.com/cosopt-drug.htm (Accessed on: January 5, 2021).
[74]
Vitravene, Rx list. 2022. Available from: https://www.rxlist.com/vitravene-drug.htm (Accessed on: December 8, 2004).
[75]
Terra-Cortril, 2022. Rx list. Available from: https://www.rxlist.com/terra-cortril-drug.htm (Accessed on: February 15, 2005)
[76]
Xiidra, Rx list. 2022. Available from: https://www.rxlist.com/xiidra-drug.htm (Accessed on: May 23, 2022).
[77]
Photrexa Viscous, Rx list. 2018. Available from: https://www.rxlist.com/photrexa-viscous-drug.htm (Accessed on: November 8, 2018)
[78]
Zaditor, Rx list. 2022. Available from: https://www.rxlist.com/zaditor-drug.htm (Accessed on: January 26, 2021).
[79]
Natacyn, Rx list. 2022. Available from: https://www.rxlist.com/natacyn-drug.htm (Accessed on: May 5, 2022).
[80]
Latisse, Rx list. 2021 Available from: https://www.rxlist.com/latisse-drug.htm (Accessed on: September 8, 2021).
[81]
Timoptic-XE, Rx list. 2022. Available from: https://www.rxlist.com/timoptic-xe-drug.htm (Accessed on: March 21, 2022)
[82]
Pred-G, Rx list. 2018. Available from: https://www.rxlist.com/pred-g-drug.htm (Accessed on: June 26, 2018)
[83]
Trusopt, Rx list. 2022. Available from: https://www.rxlist.com/trusopt-drug.htm (Accessed on: March 17, 2021).
[84]
Lacrisert, Rx list. 2022. Available from: https://www.rxlist.com/lacrisert-drug.htm (Accessed on: April 4, 2022).
[85]
Ozurdex, Rx list.2021. Available from: https://www.rxlist.com/ozurdex-drug.htm (Accessed on: August 23, 2021).
[86]
Tobrex, Rx list. 2020. Available from: https://www.rxlist.com/tobrex-drug.htm (Accessed on: June 8, 2020).
[87]
Betoptic S. Rx list. Available from: https://www.rxlist.com/betoptic-s-drug.htm (Accessed on: February 14, 2017).
[88]
Xelpros, Rx list. 2021. Available from: https://www.rxlist.com/xelpros-drug.htm (Accessed on: January 4, 2021).
[89]
Retisert, Rx list. 2020. Available from: https://www.rxlist.com/retisert-drug.htm (Accessed on: December 21, 2020).
[90]
Schwarz J, Weisspapir M. Ophthalmic preparation containing menthyl ester of indomethacin. US Patent 20120034278A1, 2006.
[91]
Hara H, Takeuchi H. Liposome for delivery to posterior segment of eye and pharmaceutical composition for disease in posterior segment of eye. CA Patent 2717133C, 2009.
[92]
Horn G. Lipophilic and hydrophilic drug delivery vehicle formulations. US Patent 20140378401A1, 2013.
[93]
Venkatraman S, Natarajan JV, Howden T, Boey F. Stable liposomal formulations for ocular drug delivery. US Patent 20150190359A1, 2014.
[94]
Guo LSS, Redmann CT, Radhakrishnan R. Opthalmic liposomes. US Patent 4804539A, 1986.
[95]
Venkatraman S, Natarajan JV, Wong T, Boey F. Liposomal formulation for ocular drug delivery. US Patent 20130216606A1, 2011.
[96]
Chauhan A, Gulen D. Ophthalmic drug delivery system. US Patent 8273366B2, 2004.
[97]
Miller D, Li S, Higuchi W. Non-invasive ocular drug delivery. US Patent 20040071761A1, 2002.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy