Generic placeholder image

Current Chinese Science

Editor-in-Chief

ISSN (Print): 2210-2981
ISSN (Online): 2210-2914

Research Article Section: Marine Sciences

Stable Isotopic Analysis of Long-whiskered Catfish (Sperata aor) Otoliths for Characterization of their Habitat and Relationship with Water Temperature in the Ganges River

Author(s): Aafaq Nazir, Prosenjit Ghosh*, Thamizharasan Sakthivel and M. Afzal Khan

Volume 3, Issue 1, 2023

Published on: 13 October, 2022

Page: [57 - 66] Pages: 10

DOI: 10.2174/2210298102666220909110222

Price: $65

Open Access Journals Promotions 2
Abstract

Background: Spatial variability of stable isotope ratios in water from River Ganges is preserved in aragonite or calcite present in otoliths and formed at equilibrium with ambient water. This technique is used for a set of long-whiskered catfish aragonite otoliths from four different locations along the course of the River Ganges.

Methods: Acid digestion of otolith and the analysis of δ13C and δ18O in these carbonates using an isotope ratio mass spectrometer allowed the distinction of fish habitat and provided an idea about environmental conditions of water along the Ganges River.

Results: The δ18O signature of otolith carbonate revealed a distinct compositional trend denoting glacial water input in the upstream segment of the Ganges, close to the water reservoir at Narora. However, the δ13C values remained constant, suggesting similar bicarbonate composition and food intake along the stream length. The δ18O signature in otolith from Varanasi was unexpectedly lighter and showed a tendency of the catfish population to migrate upstream segment of the river. The fish from the Narora location showed the lowest δ18O values, denoting the signature of water derived from the melting of a glacier. The heavier δ18O values were seen in the population from Kanpur. The upstream migration of fish population is indicated from the δ18O values of a fish otolith from Varanasi and Bhagalpur. The Varanasi location shows aberration in δ18O signature in otoliths, and this exists because this catfish moves to other places to avoid anthropogenic stress at this location.

Conclusion: The δ18O of otolith carbonate covaries with average environmental temperature recorded at the individual location and serves as an important thermometric measurement for marking environmental conditions and stress in changing climatic parameters along the stream length of River Ganges and its tributaries.

Keywords: Catfish, otoliths, stable isotopes, habitat, migration, ambient water.

Graphical Abstract
[1]
Talwar, P.K.; Jhingran, A.G. Inland Fishes of India and Adjacent Countries; Oxford & IBH Publishing Co.: New Delhi, , 1991. 2, pp. 548
[2]
Sarkar, U.K.; Pathak, A.K.; Sinha, R.K.; Sivakumar, K.; Pandian, A.K.; Pandey, A.; Dubey, V.K.; Lakra, W.S. Freshwater fish biodiversity in the River Ganga (India): Changing pattern, threats and conservation perspectives. Rev. Fish Biol. Fish., 2012, 22(1), 251-272.
[http://dx.doi.org/10.1007/s11160-011-9218-6]
[3]
Vass, K.K.; Das, M.K.; Srivastava, P.K.; Dey, S. Assessing the impact of climate change on inland fisheries in River Ganga and its plains in India. Aquat. Ecosyst. Health Manage., 2009, 12(2), 138-151.
[http://dx.doi.org/10.1080/14634980902908746]
[4]
Lakra, W.S.; Sarkar, U.K.; Gopalakrishnan, A.; Kathirvelpandian, A. Threatened freshwater fishes of India; National Bureau of Fish Genetic Resources: Lucknow, 2010, p. 25.
[5]
Khan, M.A.; Nazir, A. Stock delineation of the long-whiskered catfish, Sperata aor (Hamilton 1822), from River Ganga by using morphometrics. Mar. Freshw. Res., 2019, 70(1), 107-113. a.
[http://dx.doi.org/10.1071/MF17306]
[6]
Saigal, B.N.; Motwani, M.P. Studies on the fishery and biology of the commercial catfishes of the Ganga River system. Indian J. Fish., 1964, 11, 1-44.
[7]
Rahman, M.A.; Uddin, K.M.A.; Zaher, M. Development of artificial breeding techniques for long-whiskered catfish, Sperata aor and giant river catfish, Sperata seenghala of Bangladesh. Bangladesh J. Fish. Res., 2005, 9, 11-12.
[8]
Smith, K.T.; Whitledge, G. Trace element and stable isotopic signatures in otoliths and pectoral spines as potential indicators of catfish environmental history. Am. Fish. Soc. Symp., 2011, 77, 645-660.
[9]
Landsman, S.J.; Nguyen, V.M.; Gutowsky, L.F.G.; Gobin, J.; Cook, K.V.; Binder, T.R.; Lower, N.; McLaughlin, R.L.; Cooke, S.J. Fish movement and migration studies in the Laurentian Great Lakes: Research trends and knowledge gaps. J. Great Lakes Res., 2011, 37(2), 365-379.
[http://dx.doi.org/10.1016/j.jglr.2011.03.003]
[10]
Nazir, A.; Khan, M.A. Using otoliths for fish stock discrimination: Status and challenges. Acta Ichthyol. Piscat., 2021, 51(2), 199-218.
[http://dx.doi.org/10.3897/aiep.51.64166]
[11]
Correia, A.T.; Barros, F.; Sial, A.N. Stock discrimination of European congereel (Conger conger L.) using otolith stable isotope ratios. Fish. Res., 2011, 108(1), 88-94.
[http://dx.doi.org/10.1016/j.fishres.2010.12.002]
[12]
Darnaude, A.M.; Sturrock, A.; Trueman, C.N.; Mouillot, D. Eimf; Campana, S.E.; Hunter, E. Listening in on the past: What can otolith δ18O values really tell us about the environmental history of fishes? PLoS One, 2014, 9(10), e108539.
[http://dx.doi.org/10.1371/journal.pone.0108539] [PMID: 25279667]
[13]
Ghosh, P.; Rajawat, V.S.; Nazir, A.; Banerjee, Y.; Nath, A.K.; Sakthivel, T. Stable isotope on hilsa shad (Tenualosa ilisha) otoliths revealed migratory behavior of a population found in Hooghly River, West Bengal, India. Environ. Biol. Fishes, 2022, 1-10.
[http://dx.doi.org/10.1007/s10641-022-01215-x]
[14]
Campana, S.E. Chemistry and composition of fish otoliths: Pathways, mechanisms and applications. Mar. Ecol. Prog. Ser., 1999, 188, 263-297.
[http://dx.doi.org/10.3354/meps188263]
[15]
Walther, B.D.; Thorrold, S.R.; Olney, J.E. Geochemical signatures in otoliths record natal origins of American shad. Trans. Am. Fish. Soc., 2008, 137(1), 57-69.
[http://dx.doi.org/10.1577/T07-029.1]
[16]
Carlson, A.K.; Phelps, Q.E.; Graeb, B.D.S. Chemistry to conservation: Using otoliths to advance recreational and commercial fisheries management. J. Fish Biol., 2017, 90(2), 505-527.
[http://dx.doi.org/10.1111/jfb.13155] [PMID: 27704556]
[17]
Whitledge, G.W.; Johnson, B.M.; Martinez, P.J.; Martinez, A.M. Sources of nonnative centrarchids in the upper Colorado River revealed by stable isotope and microchemical analyses of otoliths. Trans. Am. Fish. Soc., 2007, 136(5), 1263-1275.
[http://dx.doi.org/10.1577/T06-045.1]
[18]
Kalish, J.M. 13C and 18O isotopic disequilibria in fish otoliths: Metabolic and kinetic effects. Mar. Ecol. Prog. Ser., 1991, 75, 191-203.
[http://dx.doi.org/10.3354/meps075191]
[19]
Ghosh, P.; Eiler, J.; Campana, S.E.; Feeney, R.F. Calibration of the carbonate ‘clumped isotope’ paleothermometer for otoliths. Geochim. Cosmochim. Acta, 2007, 71(11), 2736-2744.
[http://dx.doi.org/10.1016/j.gca.2007.03.015]
[20]
Radtke, R.L.; Lenz, P.; Showers, W.; Moksness, E. Environmental information stored in otoliths: Insights from stable isotopes. Mar. Biol., 1996, 127(1), 161-170.
[http://dx.doi.org/10.1007/BF00993656]
[21]
Zeigler, J.M.; Whitledge, G.W. Otolith trace element and stable isotopic compositions differentiate fishes from the Middle Mississippi River, its tributaries, and floodplain lakes. Hydrobiologia, 2011, 661(1), 289-302.
[http://dx.doi.org/10.1007/s10750-010-0538-7]
[22]
Nazir, A.; Khan, M.A. Stock discrimination of Sperata aor from river Ganga using microsatellite markers: Implications for conservation and management. Aquat. Living Resour., 2017, 30, 33.
[http://dx.doi.org/10.1051/alr/2017033]
[23]
Nazir, A.; Khan, M.A. Spatial and temporal variation in otolith chemistry and its relationship with water chemistry: Stock discrimination of Sperata aor. Ecol. Freshwat. Fish, 2019, 28(3), 499-511. b.
[http://dx.doi.org/10.1111/eff.12471]
[24]
Edmonds, J.S.; Fletcher, W.J. Stock discrimination of pilchards Sardinops sagax by stable isotope ratio analysis of otolith carbonate. Mar. Ecol. Prog. Ser., 1997, 152, 241-247.
[http://dx.doi.org/10.3354/meps152241]
[25]
Kumar, A.; Sanyal, P.; Agrawal, S. Spatial distribution of δ18O values of water in the Ganga river basin: Insight into the hydrological processes. J. Hydrol. (Amst.), 2019, 571, 225-234.
[http://dx.doi.org/10.1016/j.jhydrol.2019.01.044]
[26]
Misra, A.K. Impact of urbanization on the hydrology of Ganga Basin (India). Water Resour. Manage., 2011, 25(2), 705-719.
[http://dx.doi.org/10.1007/s11269-010-9722-9]
[27]
Dwivedi, S.; Mishra, S.; Tripathi, R.D. Ganga water pollution: A potential health threat to inhabitants of Ganga basin. Environ. Int., 2018, 117, 327-338.
[http://dx.doi.org/10.1016/j.envint.2018.05.015] [PMID: 29783191]
[28]
Sinha, M.; Khan, M.A. Impact of environmental aberrations on fisheries of the Ganga (Ganges) River. Aquat. Ecosyst. Health Manage., 2001, 4(4), 493-504.
[http://dx.doi.org/10.1080/146349801317276143]
[29]
Payne, A.I.; Sinha, R.; Singh, H.R.; Huq, S. A review of the Ganges Basin: its fish and fisheries. Proceedings of the Second International Symposium on the Management of Large Rivers for Fisheries, 2004, pp. 229-251.
[30]
Khan, M.A.; Nazir, A.; Banday, U.Z. Utility of otolith weight to estimate age of Labeo bata inhabiting river Ganga. Acta Ichthyol. Piscat., 2018, 48(3), 257-260.
[http://dx.doi.org/10.3750/AIEP/02342]
[31]
Nazir, A.; Khan, M.A. Using otolith weight to predict the age of different stocks of Sperata aor (Siluriformes: Bagridae) from the River Ganga. Rev. Biol. Trop., 2019, 67(3), 534-540. c.
[http://dx.doi.org/10.15517/rbt.v67i3.33985]
[32]
Nazir, A.; Khan, M.A. Stock-specific assessment of precise age and growth in the long-whiskered catfish Sperata aor from the Ganges River. Mar. Freshw. Res., 2020, 71(12), 1693-1701.
[http://dx.doi.org/10.1071/MF19315]
[33]
Fosu, B.R.; Ghosh, P.; Mishra, D.; Banerjee, Y.K,P.; Sarkar, A. Acid digestion of carbonates using break seal method for clumped isotope analysis. Rapid Commun. Mass Spectrom., 2019, 33(2), 203-214.
[http://dx.doi.org/10.1002/rcm.8304] [PMID: 30304582]
[34]
Prasanna, K.; Ghosh, P.; Eagle, R.A.; Tripati, A.; Kapur, V.V.; Feeney, R. F. Temperature estimates of lower miocene (Burdigali66 Current Chinese Science, 2023, Vol. 3, No. 1 Nazir et al. an) coastal water of Southern India using a revised otolith “clumped” isotope paleothermometer. Geochem. Geophys. Geosyst., 2021, 22(12) e2020GC009601.
[http://dx.doi.org/10.1029/2020GC009601]
[35]
Coplen, T.B.; Brand, W.A.; Gehre, M.; Gröning, M.; Meijer, H.A.J.; Toman, B.; Verkouteren, R.M. New guidelines for δ13C measurements. Anal. Chem., 2006, 78(7), 2439-2441.
[http://dx.doi.org/10.1021/ac052027c] [PMID: 16579631]
[36]
Thorrold, S.R.; Campana, S.E.; Jones, C.M.; Swart, P.K. Factors determining δ13C and δ18O fractionation in aragonitic otoliths of marine fish. Geochim. Cosmochim. Acta, 1997, 61(14), 2909-2919.
[http://dx.doi.org/10.1016/S0016-7037(97)00141-5]
[37]
Sharp, Z. Principles of Stable Isotope Geochemistry 2nd ed; Open Educational Resources, University of New Mexico: Albuquerque,; , 2017.
[38]
Rai, S.P.; Noble, J.; Singh, D.; Rawat, Y.S.; Kumar, B. Spatiotemporal variability in stable isotopes of the Ganga River and factors affecting their distributions. Catena, 2021, 204, 105360.
[http://dx.doi.org/10.1016/j.catena.2021.105360]
[39]
Pereira, N.S.; Sial, A.N.; Pinheiro, P.B.; Freitas, F.L.; Silva, A.M.C. Carbon and oxygen stable isotopes of freshwater fish otoliths from the São Francisco River, northeastern Brazil. An. Acad. Bras. Cienc., 2021, 93(1), e20191050.
[http://dx.doi.org/10.1590/0001-3765202120191050] [PMID: 33759955]
[40]
Burbank, J.; Drake, D.A.R.; Power, M. Field-based oxygen isotope fractionation for the conservation of imperilled fishes: An application with the threatened silver shiner Notropis photogenis. Endanger. Species Res., 2020, 42, 83-93.
[http://dx.doi.org/10.3354/esr01040]
[41]
Midhun, M.; Lekshmy, P.R.; Ramesh, R.; Yoshimura, K.; Sandeep, K.K.; Kumar, S.; Sinha, R.; Singh, A.; Srivastava, S. The effect of monsoon circulation on the stable isotopic composition of rainfall. J. Geophys. Res. Atmos., 2018, 123(10), 5205-5221.
[http://dx.doi.org/10.1029/2017JD027427]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy