Generic placeholder image

Current Physical Chemistry

Editor-in-Chief

ISSN (Print): 1877-9468
ISSN (Online): 1877-9476

Research Article

Solvatochromic, Photophysical and DFT Studies of Newer 1-(2- oxo-2-(2-oxo-2H-chromen-3-yl)ethyl)pyridin-1-ium Bromide and 1-methyl-3-(2-oxo-2-(2-oxo-2H-chromen-3-yl)ethyl)-1H-imidazol- 3-ium Bromide Synthesized under Microwave Irradiation

Author(s): Atul S. Patil, Raosaheb S. Patil, Vikas S. Patil and Pramod P. Mahulikar*

Volume 12, Issue 3, 2022

Published on: 10 October, 2022

Page: [233 - 242] Pages: 10

DOI: 10.2174/1877946812666220908143126

Price: $65

Open Access Journals Promotions 2
Abstract

Background: Pyridinium and imidazolium-based compounds show diverse applications with basic skeleton designs in order to achieve improved optical and thermal behavior.

Aim: The aim of the study was to design and develop a greener, efficient protocol towards newer pyridinium and imidazolium compounds, and investigate optical, solvatochromic, thermal, and theoretical properties.

Objectives: The purpose is to study the optical properties of pyridinium and imidazolium compounds, for which we illustrate the solvent polarity effect on the absorption and emission behavior as a function of orientation polarizability and ET(30) solvent parameters. The study focuses on thermal stability and computes the molecular orbital orientation and HOMO- LUMO energies using theoretical simulation by the DFT approach.

Methods: The structures were confirmed by FT-IR, Mass, 1H NMR and 13C NMR, and optical properties were investigated using a UV-Visible spectrophotometer and fluorometer. The thermal behavior was investigated using thermal gravimetric analysis, and molecular orbital orientation and energies were determined using GAUSSIAN 16 software.

Results: The newer compounds with good thermal stability and optical behavior have been synthesized and characterized. The study interprets the intermolecular electron transfer amongst the molecules and the effect of solvents on their excitation and emission properties. The experimental and theoretical study illustrates the optical, thermal, and electronic properties of both compounds.

Conclusion: The present work describes the solvatochromic optical behavior of pyridinium bromide and imidazolium bromide synthesized by a microwave-assisted, greener and efficient strategy. The solvatochromic study interprets the presence of non-specific solutesolvent interactions. The photophysical, thermal, and DFT study revealed that both pyridinium and imidazolium compounds are used for optoelectronic applications. Moreover, the work could be helpful to researchers for developing new skeletons for optoelectronic applications.

Keywords: Microwave-assisted synthesis, photophysical, solvatochromism, Lippert-Mataga plot, DFT, theoretical simulation.

Graphical Abstract
[1]
Walden, P.I. Bulletin of the Imperial Academy of Sciences of St. Petersburg, Math Net. Ru., 1914, 8(6), 405-422.
[2]
Rogers, R.D. Ionic liquids: Industrial applications to green chemistry. J. Am. Chem. Soc., 2003, 125, 7480.
[3]
Seddon, K.R. Ionic liquids for clean technology. J. Chem. Technol. Biotechnol., 1997, 68, 351-356.
[4]
Sato, T.; Masuda, G.; Takagi, K. Electrochemical properties of novel ionic liquids for electric double layer capacitor applications. Electrochim. Acta, 2004, 49(21), 3603-3611.
[http://dx.doi.org/10.1016/j.electacta.2004.03.030]
[5]
Wei, D.; Ivaska, A. Applications of ionic liquids in electrochemical sensors. Anal. Chim. Acta, 2008, 607(2), 126-135.
[http://dx.doi.org/10.1016/j.aca.2007.12.011] [PMID: 18190800]
[6]
Wasserscheid, P.; Welton, T. Ionic liquids in synthesis; Wiley: Hoboken, 2003.
[7]
Sakaebe, H.; Matsumoto, H. N-Methyl-N-propylpiperidi-niumbis(trifluoromethanesulfonyl) imide (PP13–TFSI) – novel electrolyte base for Li battery. Electrochem. Commun., 2003, 5(7), 594-598.
[http://dx.doi.org/10.1016/S1388-2481(03)00137-1]
[8]
Dong, K.; Zhang, S.; Wang, D.; Yao, X. Hydrogen bonds in imidazolium ionic liquids. J. Phys. Chem. A, 2006, 110(31), 9775-9782.
[http://dx.doi.org/10.1021/jp054054c] [PMID: 16884211]
[9]
Wang, C.; Guo, L.; Li, H.; Wang, Y.; Weng, J.; Wu, L. Preparation of simple ammonium ionic liquids and their applica-tion in the cracking of dialkoxypropanes. Green Chem., 2006, 8(7), 603-607.
[http://dx.doi.org/10.1039/b600041j]
[10]
Soriano, A.N.; Doma, B.T., Jr; Li, M.H. Measurements of the density and refractive index for 1-n-butyl-3-methylimidazolium-based ionic liquids. J. Chem. Thermodyn., 2009, 41(3), 301-307.
[http://dx.doi.org/10.1016/j.jct.2008.08.010]
[11]
Koel, M. Ionic liquids in chemical analysis. Crit. Rev. Anal. Chem., 2005, 35(3), 177-192.
[http://dx.doi.org/10.1080/10408340500304016]
[12]
Shamsipur, M.; Beigi, A.A.M.; Teymouri, M.; Pourmortazavi, S.M.; Irandoust, M. Physical and electrochemical proper-ties of ionic liquids 1-ethyl-3-methylimidazolium tetrafluoroborate, 1-butyl-3-methylimidazolium trifluoromethanesul-fonate and 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide. J. Mol. Liq., 2010, 157(1), 43-50.
[http://dx.doi.org/10.1016/j.molliq.2010.08.005]
[13]
Welton, T. Room-temperature ionic liquids. Solvents for synthesis and catalysis. Chem. Rev., 1999, 99(8), 2071-2084.
[http://dx.doi.org/10.1021/cr980032t] [PMID: 11849019]
[14]
Śliwa, W. N-substituted salts of pyridine and related compounds; Monograph; Częstochowa, Poland WSP, 1996.
[15]
Xiao, H.; Mei, C.; Ding, N.; Wei, T.; Zhang, Y.; Li, B. Synthesis and photophysical properties of a novel pyridinium salt based on dipicolinate. J. Photochem. Photobiol. Chem., 2014, 273, 29-33.
[http://dx.doi.org/10.1016/j.jphotochem.2013.09.005]
[16]
Dehmlow, E.V.; Dehmlow, S.S. Phase Transfer Catalysis, 2nd ed; Verlag Chemie: Weinheim, Germany, 1983.
[17]
Scriven, E.F.V. 4-Dialkylaminopyridines: Super acylation and alkylation catalysts. Chem. Soc. Rev., 1983, 12(2), 129-161.
[http://dx.doi.org/10.1039/cs9831200129]
[18]
Madaan, P.; Tyagi, V.K. Quaternary pyridinium salts: A review. J. Oleo Sci., 2008, 57(4), 197-215.
[http://dx.doi.org/10.5650/jos.57.197] [PMID: 18332584]
[19]
Lim, C.; Kim, S.H.; Yoh, S.D.; Fujio, M.; Tsuno, Y. The menschutkin reaction of 1-arylethyl bromides with pyridine: Evidence for the duality of clean SN1 and SN2 mechanisms. Tetrahedron Lett., 1997, 38(18), 3243-3246.
[http://dx.doi.org/10.1016/S0040-4039(97)00574-1]
[20]
Kondo, Y.; Ogasa, M.; Kusabayashi, S. Menschutkin reaction of triethylamine and of pyridine with methyl iodide. Acti-vation enthalpy versus activation entropy correlations and extended Brönsted treatments in acetonitrile–methanol mix-tures. J. Chem. Soc., Perkin Trans. 2, 1984, 2(12), 2093-2097.
[http://dx.doi.org/10.1039/P29840002093]
[21]
Abramovitch, R.A.; Boodman, N.S.; Hawthorne, J.O.; Lyle, R.E.; Masciantonio, P.X.; Rodig, O.R.; Simon, A.W.; Singer, G.M. Pyridine and its Derivatives; John Wiley & Sons: New York, NY, 1974.
[22]
Marek, J.; Stodulka, P.; Cabal, J.; Soukup, O.; Pohanka, M.; Korabecny, J.; Musilek, K.; Kuca, K. Preparation of the pyridinium salts differing in the length of the N-alkyl substituent. Molecules, 2010, 15(3), 1967-1972.
[http://dx.doi.org/10.3390/molecules15031967] [PMID: 20336025]
[23]
Zhao, S.; Xu, X.; Zheng, L.; Liu, H. An efficient ultrasonic-assisted synthesis of imidazolium and pyridinium salts based on the Zincke reaction. Ultrason. Sonochem., 2010, 17(4), 685-689.
[http://dx.doi.org/10.1016/j.ultsonch.2009.12.019] [PMID: 20117956]
[24]
Petit, S.; Azzouz, R.; Fruit, C.; Bischoff, L.; Marsais, F. An efficient protocol for the preparation of pyridinium and im-idazolium salts based on the Mitsunobu reaction. Tetrahedron Lett., 2008, 49(22), 3663-3665.
[http://dx.doi.org/10.1016/j.tetlet.2008.03.146]
[25]
Marvell, E.N.; Shahidi, I. Influence of para substituents on the rate of cyclization of 5-anilino-N-phenyl-2,4-pentadienylidenimine. J. Am. Chem. Soc., 1970, 92(19), 5646-5649.
[http://dx.doi.org/10.1021/ja00722a017]
[26]
Wang, S.F.; Chen, T.; Zhang, Z.L.; Shen, X.C.; Lu, Z.X.; Pang, D.W.; Wong, K.Y. Direct electrochemistry and electroca-talysis of heme proteins entrapped in agarose hydrogel films in room-temperature ionic liquids. Langmuir, 2005, 21(20), 9260-9266.
[http://dx.doi.org/10.1021/la050947k] [PMID: 16171360]
[27]
Rozniecka, E.; Shul, G.; Sirieix-Plenet, J.; Gaillon, L.; Opallo, M. Electroactive ceramic carbon electrode modified with ionic liquid. Electrochem. Commun., 2005, 7(3), 299-304.
[http://dx.doi.org/10.1016/j.elecom.2005.01.013]
[28]
Kakiuchi, T.; Yoshimatsu, T. A new salt bridge based on the hydrophobic room-temperature molten salt. Bull. Chem. Soc. Jpn., 2006, 79(7), 1017-1024.
[http://dx.doi.org/10.1246/bcsj.79.1017]
[29]
Aggarwal, K.; Khurana, J.M. Effect of hydroxyl group on the photophysical properties of benzo[a]xanthenes – Solva-tochromic studies and estimation of dipole moment. J. Photochem. Photobiol. Chem., 2014, 276, 71-82.
[http://dx.doi.org/10.1016/j.jphotochem.2013.11.014]
[30]
Kumar, D.; Thomas, K.R.J. Optical properties of pyrene and anthracene containing imidazoles: Experimental and theo-retical investigations. J. Photochem. Photobiol. Chem., 2011, 218(1), 162-173.
[http://dx.doi.org/10.1016/j.jphotochem.2010.12.018]
[31]
Valeur, B. Molecular Fluorescence: Principles and Applications; WILEY-VCHVerlag GmbH: Weinheim, 2002.
[32]
Zhang, Q.; Luo, L.; Xu, H.; Hu, Z.; Brommesson, C.; Wu, J.; Sun, Z.; Tian, Y.; Uvdal, K. Design, synthesis, linear and nonlinear photophysical properties of novel pyrimidine-based imidazole derivatives. New J. Chem., 2016, 40(4), 3456-3463.
[http://dx.doi.org/10.1039/C5NJ02874D]
[33]
Patil, R.S.; Patil, A.S.; Patil, V.S.; Jirimali, H.D.; Mahulikar, P.P. Synthesis, photophysical, solvatochromic and DFT stud-ies of (Z)-2-(2-Phenyl-4H-benzo[4,5]thiazolo[3,2-a]pyrimidin-4-ylidene)acetonitrile derivatives. J. Lumin., 2019, 210, 303-310.
[http://dx.doi.org/10.1016/j.jlumin.2019.02.026]
[34]
Patil, R.S.; Patil, A.S.; Patil, V.S.; Mahulikar, P.P. Base Promoted Synthesis of 2-((5-methoxynaphthalen-1-yl)me-thyl)-3-methyl-5-sec-amino-[1,1′-biphenyl]-4-carbonitrile derivatives: Photophysical, Solvatochromic and DFT studies. J. Mol. Struct., 2021, 1226, 129339-129346.
[http://dx.doi.org/10.1016/j.molstruc.2020.129339]
[35]
Lippert, E.; Naturforsch, Z. Dipole moment and electronic structure of excited molecules. Phys. Sci. A, 1955, 10, 541-545.
[36]
Baryshnikov, G.V.; Bondarchuk, S.V.; Minaeva, V.A.; Ågren, H.; Minaev, B.F. Solvatochromic effect in absorption and emission spectra of star-shaped bipolar derivatives of 1,3,5-triazine and carbazole. A time-dependent density functional study. J. Mol. Model., 2017, 23(2), 55.
[http://dx.doi.org/10.1007/s00894-017-3234-y] [PMID: 28161782]
[37]
Minaev, B.F.; Valiev, R.R.; Nikonova, E.N.; Gadirov, R.M.; Solodova, T.A.; Kopylova, T.N.; Tel’minov, E.N. Computa-tional and experimental investigation of the optical properties of the chromene dyes. J. Phys. Chem. A, 2015, 119(10), 1948-1956.
[http://dx.doi.org/10.1021/acs.jpca.5b00394] [PMID: 25710251]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy