Generic placeholder image

Current Proteomics

Editor-in-Chief

ISSN (Print): 1570-1646
ISSN (Online): 1875-6247

Review Article

Unraveling Major Proteins of Mycobacterium tuberculosis Envelope

Author(s): Rananjay Singh, Devesh Sharma, Divakar Sharma, Sakshi Gautam, Mahendra Kumar Gupta and Deepa Bisht*

Volume 19, Issue 5, 2022

Published on: 13 October, 2022

Page: [372 - 379] Pages: 8

DOI: 10.2174/1570164619666220908141130

Price: $65

Abstract

Although treatable, resistant form of tuberculosis (TB) has posed a major impediment to the effective TB control programme. As the Mycobacterium tuberculosis cell envelope is closely associated with its virulence and resistance, it is very important to understand the cell envelope for better treatment of causative pathogens. Cell membrane plays a crucial role in imparting various cell functions. Proteins being the functional moiety, it is impossible to characterize the functional properties based on genetic analysis alone. Proteomic based research has indicated mycobacterial envelope as a good source of antigens/proteins. Envelope/membrane and associated proteins have an anticipated role in biological processes, which could be of vital importance to the microbe, and hence could qualify as drug targets. This review provides an overview of the prominent and biologically important cell envelope and highlights the different functions offered by the proteins associated with it. Selective targeting of the mycobacterial envelope offers an untapped opportunity to address the problems associated with the current drug regimen and also will lead to the development of more potent and safer drugs against all forms of tuberculous infections.

Keywords: Mycobacterium tuberculosis, cell envelope, cell membrane, proteins, tuberculosis, drug-resistant.

Graphical Abstract
[1]
World Health Organization. Global Tuberculosis Report 2020; Geneva, Switzerland 2020. Available from: https://www.who.int/publica-tions/i/item/9789240013131
[2]
Jarlier, V.; Nikaido, H. Mycobacterial cell wall: Structure and role in natural resistance to antibiotics. FEMS Microbiol. Lett., 1994, 123(1-2), 11-18.
[http://dx.doi.org/10.1111/j.1574-6968.1994.tb07194.x] [PMID: 7988876]
[3]
Brennan, P.J.; Nikaido, H. The envelope of mycobacteria. Annu. Rev. Biochem., 1995, 64(1), 29-63.
[http://dx.doi.org/10.1146/annurev.bi.64.070195.000333] [PMID: 7574484]
[4]
Sigler, K.; Höfer, M. Biotechnological aspects of membrane function. Crit. Rev. Biotechnol., 1997, 17(2), 69-86.
[http://dx.doi.org/10.3109/07388559709146607] [PMID: 9192471]
[5]
Hoffmann, C.; Leis, A.; Niederweis, M.; Plitzko, J.M.; Engelhardt, H. Disclosure of the mycobacterial outer membrane: Cryo-electron tomography and vitreous sections reveal the lipid bilayer structure. Proc. Natl. Acad. Sci., 2008, 105(10), 3963-3967.
[http://dx.doi.org/10.1073/pnas.0709530105] [PMID: 18316738]
[6]
Sharma, D.; Kumar, B.; Lata, M.; Joshi, B.; Venkatesan, K.; Shukla, S.; Bisht, D. Comparative proteomic analysis of aminoglycosides resistant and susceptible Mycobacterium tuberculosis clinical isolates for exploring potential drug targets. PLoS One, 2015, 10(10), e0139414.
[http://dx.doi.org/10.1371/journal.pone.0139414] [PMID: 26436944]
[7]
Abrahams, K.A.; Besra, G.S. Mycobacterial cell wall biosynthesis: A multifaceted antibiotic target. Parasitology, 2018, 145(2), 116-133.
[http://dx.doi.org/10.1017/S0031182016002377] [PMID: 27976597]
[8]
Chen, H.; Nyantakyi, S.A.; Li, M.; Gopal, P.; Aziz, D.B.; Yang, T.; Moreira, W.; Gengenbacher, M.; Dick, T.; Go, M.L. The mycobacterial membrane: A novel target space for anti-tubercular drugs. Front. Microbiol., 2018, 9, 1627.
[http://dx.doi.org/10.3389/fmicb.2018.01627] [PMID: 30072978]
[9]
Niederweis, M.; Danilchanka, O.; Huff, J.; Hoffmann, C.; Engelhardt, H. Mycobacterial outer membranes: In search of proteins. Trends Microbiol., 2010, 18(3), 109-116.
[http://dx.doi.org/10.1016/j.tim.2009.12.005] [PMID: 20060722]
[10]
Jackson, M.; McNeil, M.R.; Brennan, P.J. Progress in targeting cell envelope biogenesis in Mycobacterium tuberculosis. Future Microbiol., 2013, 8(7), 855-875.
[http://dx.doi.org/10.2217/fmb.13.52] [PMID: 23841633]
[11]
Daffé, M.; Marrakchi, H. Unraveling the structure of the mycobacterial envelope. Microbiol. Spectr., 2019, 7(4), 7.4.1. http://dx.doi.org/ PMID: , 2019, 7(4), 7.4.1.
[http://dx.doi.org/10.1128/microbiolspec.GPP3-0027-2018] [PMID: 31267927]
[12]
Maitra, A.; Munshi, T.; Healy, J.; Martin, L.T.; Vollmer, W.; Keep, N.H.; Bhakta, S. Cell wall peptidoglycan in Mycobacterium tuberculosis: An Achilles’ heel for the TB-causing pathogen. FEMS Microbiol. Rev., 2019, 43(5), 548-575.
[http://dx.doi.org/10.1093/femsre/fuz016] [PMID: 31183501]
[13]
Pucadyil, T.; Kulkarni, K.; Sengupta, D. Molecular interplay at the membrane and impact on cellular physiology. J. Membr. Biol., 2021, 254(3), 239-242.
[http://dx.doi.org/10.1007/s00232-021-00183-0] [PMID: 34041579]
[14]
Minnikin, D.E. Complex lipids, their chemistry biosynthesis and roles. Biol Mycobact, 1982, 1, 95-184.
[15]
Rastogi, N.; Legrand, E.; Sola, C. The mycobacteria: An introduction to nomenclature and pathogenesis. Rev. Sci. Tech., 2001, 20(1), 21-54.
[http://dx.doi.org/10.20506/rst.20.1.1265] [PMID: 11288513]
[16]
Daffé, M.; Draper, P. The envelope layers of mycobacteria with reference to their pathogenicity. Adv. Microb. Physiol., 1997, 39, 131-203.
[http://dx.doi.org/10.1016/S0065-2911(08)60016-8] [PMID: 9328647]
[17]
Marrakchi, H.; Lanéelle, M.A.; Daffé, M. Mycolic acids: Structures, biosynthesis, and beyond. Chem. Biol., 2014, 21(1), 67-85.
[http://dx.doi.org/10.1016/j.chembiol.2013.11.011] [PMID: 24374164]
[18]
Daffé, M.; Quémard, A.; Marrakchi, H. Mycolic acids: From chemistry to biology. In: Biogenesis of Fatty Acids, Lipids and Membranes.Handbook of hydrocarbon and lipid microbiology; Geiger, O., Ed.; Springer: Berlin, 2017, pp. 176-211.
[http://dx.doi.org/10.1007/978-3-319-43676-0_18-1]
[19]
Bansal-Mutalik, R.; Nikaido, H. Mycobacterial outer membrane is a lipid bilayer and the inner membrane is unusually rich in diacyl phos-phatidylinositol dimannosides. Proc. Natl. Acad. Sci., 2014, 111(13), 4958-4963.
[http://dx.doi.org/10.1073/pnas.1403078111] [PMID: 24639491]
[20]
Chiaradia, L.; Lefebvre, C.; Parra, J.; Marcoux, J.; Burlet-Schiltz, O.; Etienne, G.; Tropis, M.; Daffé, M. Dissecting the mycobacterial cell envelope and defining the composition of the native mycomembrane. Sci. Rep., 2017, 7(1), 12807.
[http://dx.doi.org/10.1038/s41598-017-12718-4] [PMID: 28993692]
[21]
Singh, P.; Rameshwaram, N.R.; Ghosh, S.; Mukhopadhyay, S. Cell envelope lipids in the pathophysiology of Mycobacterium tuberculosis. Future Microbiol., 2018, 13(6), 689-710.
[http://dx.doi.org/10.2217/fmb-2017-0135] [PMID: 29771143]
[22]
Garcia-Vilanova, A.; Chan, J.; Torrelles, J.B. Underestimated manipulative roles of Mycobacterium tuberculosis cell envelope glycolipids during infection. Front. Immunol., 2019, 10, 2909.
[http://dx.doi.org/10.3389/fimmu.2019.02909] [PMID: 31921168]
[23]
Zuber, B.; Chami, M.; Houssin, C.; Dubochet, J.; Griffiths, G.; Daffé, M. Direct visualization of the outer membrane of mycobacteria and corynebacteria in their native state. J. Bacteriol., 2008, 190(16), 5672-5680.
[http://dx.doi.org/10.1128/JB.01919-07] [PMID: 18567661]
[24]
Sinha, S.; Arora, S.; Kosalai, K.; Namane, A.; Pym, A.S.; Cole, S.T. Proteome analysis of the plasma membrane of Mycobacterium tuber-culosis. Comp. Funct. Genomics, 2002, 3(6), 470-483.
[http://dx.doi.org/10.1002/cfg.211] [PMID: 18629250]
[25]
Deres, K.; Schild, H.; Wiesmüller, K.H.; Jung, G.; Rammensee, H.G. In vivo priming of virus-specific cytotoxic T lymphocytes with syn-thetic lipopeptide vaccine. Nature, 1989, 342(6249), 561-564.
[http://dx.doi.org/10.1038/342561a0] [PMID: 2586628]
[26]
Akins, D.R.; Purcell, B.K.; Mitra, M.M.; Norgard, M.V.; Radolf, J.D. Lipid modification of the 17-kilodalton membrane immunogen of Treponema pallidum determines macrophage activation as well as amphiphilicity. Infect. Immun., 1993, 61(4), 1202-1210.
[http://dx.doi.org/10.1128/iai.61.4.1202-1210.1993] [PMID: 8454324]
[27]
Frankenburg, S.; Axelrod, O.; Kutner, S.; Greenblatt, C.L.; Klaus, S.N.; Pirak, E.A.; McMaster, R.; Lowell, G.H. Effective immunization of mice against cutaneous leishmaniasis using an intrinsically adjuvanted synthetic lipopeptide vaccine. Vaccine, 1996, 14(9), 923-929.
[http://dx.doi.org/10.1016/0264-410X(95)00245-V] [PMID: 8843636]
[28]
Bendre, A.D.; Peters, P.J.; Kumar, J. Recent insights into the structure and function of mycobacterial membrane proteins facilitated by Cryo-EM. J. Membr. Biol., 2021, 254(3), 321-341.
[http://dx.doi.org/10.1007/s00232-021-00179-w] [PMID: 33954837]
[29]
Niederweis, M. Nutrient acquisition by mycobacteria. Microbiology, 2008, 154(3), 679-692.
[http://dx.doi.org/10.1099/mic.0.2007/012872-0] [PMID: 18310015]
[30]
Faller, M.; Niederweis, M.; Schulz, G.E. The structure of a mycobacterial outer-membrane channel. Science, 2004, 303(5661), 1189-1192.
[http://dx.doi.org/10.1126/science.1094114] [PMID: 14976314]
[31]
Mailaender, C.; Reiling, N.; Engelhardt, H.; Bossmann, S.; Ehlers, S.; Niederweis, M. The MspA porin promotes growth and increases antibiotic susceptibility of both Mycobacterium bovis BCG and Mycobacterium tuberculosis. Microbiology, 2004, 150(4), 853-864.
[http://dx.doi.org/10.1099/mic.0.26902-0] [PMID: 15073295]
[32]
Danilchanka, O.; Mailaender, C.; Niederweis, M. Identification of a novel multidrug efflux pump of Mycobacterium tuberculosis. Antimicrob. Agents Chemother., 2008, 52(7), 2503-2511.
[http://dx.doi.org/10.1128/AAC.00298-08] [PMID: 18458127]
[33]
Niederweis, M.; Ehrt, S.; Heinz, C.; Klöcker, U.; Karosi, S.; Swiderek, K.M.; Riley, L.W.; Benz, R. Cloning of the mspA gene encoding a porin from Mycobacterium smegmatis. Mol. Microbiol., 1999, 33(5), 933-945.
[http://dx.doi.org/10.1046/j.1365-2958.1999.01472.x] [PMID: 10476028]
[34]
Cole, S.T.; Brosch, R.; Parkhill, J.; Garnier, T.; Churcher, C.; Harris, D.; Gordon, S.V.; Eiglmeier, K.; Gas, S.; Barry, C.E., III; Tekaia, F.; Badcock, K.; Basham, D.; Brown, D.; Chillingworth, T.; Connor, R.; Davies, R.; Devlin, K.; Feltwell, T.; Gentles, S.; Hamlin, N.; Holroyd, S.; Hornsby, T.; Jagels, K.; Krogh, A.; McLean, J.; Moule, S.; Murphy, L.; Oliver, K.; Osborne, J.; Quail, M.A.; Rajandream, M.A.; Rogers, J.; Rutter, S.; Seeger, K.; Skelton, J.; Squares, R.; Squares, S.; Sulston, J.E.; Taylor, K.; Whitehead, S.; Barrell, B.G. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature, 1998, 393(6685), 537-544.
[http://dx.doi.org/10.1038/31159] [PMID: 9634230]
[35]
Senaratne, R.H.; Mobasheri, H.; Papavinasasundaram, K.G.; Jenner, P.; Lea, E.J.A.; Draper, P. Expression of a gene for a porin-like pro-tein of the OmpA family from Mycobacterium tuberculosis H37Rv. J. Bacteriol., 1998, 180(14), 3541-3547.
[http://dx.doi.org/10.1128/JB.180.14.3541-3547.1998] [PMID: 9657995]
[36]
Raynaud, C.; Papavinasasundaram, K.G.; Speight, R.A.; Springer, B.; Sander, P.; Böttger, E.C.; Colston, M.J.; Draper, P. The functions of OmpATb, a pore-forming protein of Mycobacterium tuberculosis. Mol. Microbiol., 2002, 46(1), 191-201.
[http://dx.doi.org/10.1046/j.1365-2958.2002.03152.x] [PMID: 12366842]
[37]
Stephan, J.; Mailaender, C.; Etienne, G.; Daffé, M.; Niederweis, M. Multidrug resistance of a porin deletion mutant of Mycobacterium smegmatis. Antimicrob. Agents Chemother., 2004, 48(11), 4163-4170.
[http://dx.doi.org/10.1128/AAC.48.11.4163-4170.2004] [PMID: 15504836]
[38]
Danilchanka, O.; Sun, J.; Pavlenok, M.; Maueröder, C.; Speer, A.; Siroy, A.; Marrero, J.; Trujillo, C.; Mayhew, D.L.; Doornbos, K.S.; Muñoz, L.E.; Herrmann, M.; Ehrt, S.; Berens, C.; Niederweis, M. An outer membrane channel protein of Mycobacterium tuberculosis with exotoxin activity. Proc. Natl. Acad. Sci., 2014, 111(18), 6750-6755.
[http://dx.doi.org/10.1073/pnas.1400136111] [PMID: 24753609]
[39]
Haeili, M.; Speer, A.; Rowland, J.L.; Niederweis, M.; Wolschendorf, F. The role of porins in copper acquisition by mycobacteria. Int. J. Mycobacteriol., 2015, 4(5), 91-92.
[http://dx.doi.org/10.1016/j.ijmyco.2014.11.052]
[40]
Machado, D.; Couto, I.; Perdigão, J.; Rodrigues, L.; Portugal, I.; Baptista, P.; Veigas, B.; Amaral, L.; Viveiros, M. Contribution of efflux to the emergence of isoniazid and multidrug resistance in Mycobacterium tuberculosis. PLoS One, 2012, 7(4), e34538.
[http://dx.doi.org/10.1371/journal.pone.0034538] [PMID: 22493700]
[41]
Li, X.Z.; Elkins, C.A.; Zgurskaya, H.I. Efflux-mediated antimicrobial resistance in bacteria: Mechanisms. In:Regulation and Clinical Implications; Helen, I.Z., Ed.; Springer International Publishing, 2016, pp. 324-326.
[42]
Machado, D.; Lecorche, E.; Mougari, F.; Cambau, E.; Viveiros, M. Insights on Mycobacterium leprae efflux pumps and their implications in drug resistance and virulence. Front. Microbiol., 2018, 9, 3072.
[http://dx.doi.org/10.3389/fmicb.2018.03072] [PMID: 30619157]
[43]
Sandhu, P.; Akhter, Y. Evolution of structural fitness and multifunctional aspects of mycobacterial RND family transporters. Arch. Microbiol., 2018, 200(1), 19-31.
[http://dx.doi.org/10.1007/s00203-017-1434-6] [PMID: 28951954]
[44]
Ma, S.; Huang, Y.; Xie, F.; Gong, Z.; Zhang, Y.; Stojkoska, A.; Xie, J. Transport mechanism of Mycobacterium tuberculosis MmpL/S fami-ly proteins and implications in pharmaceutical targeting. Biol. Chem., 2020, 401(3), 331-348.
[http://dx.doi.org/10.1515/hsz-2019-0326] [PMID: 31652116]
[45]
Laws, M.; Jin, P.; Rahman, K.M. Efflux pumps in Mycobacterium tuberculosis and their inhibition to tackle antimicrobial resistance. Trends Microbiol., 2022, 30(1), 57-68.
[http://dx.doi.org/10.1016/j.tim.2021.05.001] [PMID: 34052094]
[46]
Master, S.S.; Rampini, S.K.; Davis, A.S.; Keller, C.; Ehlers, S.; Springer, B.; Timmins, G.S.; Sander, P.; Deretic, V. Mycobacterium tuber-culosis prevents inflammasome activation. Cell Host Microbe, 2008, 3(4), 224-232.
[http://dx.doi.org/10.1016/j.chom.2008.03.003] [PMID: 18407066]
[47]
Wang, J.; Li, B.X.; Ge, P.P.; Li, J.; Wang, Q.; Gao, G.F.; Qiu, X.B.; Liu, C.H. Mycobacterium tuberculosis suppresses innate immunity by coopting the host ubiquitin system. Nat. Immunol., 2015, 16(3), 237-245.
[http://dx.doi.org/10.1038/ni.3096] [PMID: 25642820]
[48]
Li, F.; Feng, L.; Jin, C.; Wu, X.; Fan, L.; Xiong, S.; Dong, Y.; Lpq, T. LpqT improves mycobacteria survival in macrophages by inhibiting TLR2 mediated inflammatory cytokine expression and cell apoptosis. Tuberculosis, 2018, 111, 57-66.
[http://dx.doi.org/10.1016/j.tube.2018.05.007] [PMID: 30029916]
[49]
Cui, T.; Zhang, L.; Wang, X.; He, Z.G. Uncovering new signaling proteins and potential drug targets through the interactome analysis of Mycobacterium tuberculosis. BMC Genomics, 2009, 10(1), 118.
[http://dx.doi.org/10.1186/1471-2164-10-118] [PMID: 19298676]
[50]
Dey, B.; Bishai, W.R. Crosstalk between Mycobacterium tuberculosis and the host cell. Semin. Immunol., 2014, 26(6), 486-496.
[http://dx.doi.org/10.1016/j.smim.2014.09.002] [PMID: 25303934]
[51]
Stutz, M.D.; Clark, M.P.; Doerflinger, M.; Pellegrini, M. Mycobacterium tuberculosis: Rewiring host cell signaling to promote infection. J. Leukoc. Biol., 2018, 103(2), 259-268.
[http://dx.doi.org/10.1002/JLB.4MR0717-277R] [PMID: 29345343]
[52]
Fenn, K.; Wong, C.T.; Darbari, V.C. Mycobacterium tuberculosis uses mce proteins to interfere with host cell signaling. Front. Mol. Biosci., 2020, 6, 149.
[http://dx.doi.org/10.3389/fmolb.2019.00149] [PMID: 31998747]
[53]
Lindberg, F.; Lund, B.; Johansson, L.; Normark, S. Localization of the receptor-binding protein adhesin at the tip of the bacterial pilus. Nature, 1987, 328(6125), 84-87.
[http://dx.doi.org/10.1038/328084a0] [PMID: 2885755]
[54]
Beswick, E.J.; Suarez, G.; Reyes, V.E.H. pylori and host interactions that influence pathogenesis. World J. Gastroenterol., 2006, 12(35), 5599-5605.
[http://dx.doi.org/10.3748/wjg.v12.i35.5599] [PMID: 17007010]
[55]
Chemani, C.; Imberty, A.; de Bentzmann, S.; Pierre, M.; Wimmerová, M.; Guery, B.P.; Faure, K. Role of LecA and LecB lectins in Pseu-domonas aeruginosa-induced lung injury and effect of carbohydrate ligands. Infect. Immun., 2009, 77(5), 2065-2075.
[http://dx.doi.org/10.1128/IAI.01204-08] [PMID: 19237519]
[56]
Ghosh, S.; Chakraborty, K.; Nagaraja, T.; Basak, S.; Koley, H.; Dutta, S.; Mitra, U.; Das, S. An adhesion protein of Salmonella enterica serovar Typhi is required for pathogenesis and potential target for vaccine development. Proc. Natl. Acad. Sci., 2011, 108(8), 3348-3353.
[http://dx.doi.org/10.1073/pnas.1016180108] [PMID: 21300870]
[57]
Chatterjee, M.; Pushkaran, A.C.; Vasudevan, A.K.; Menon, K.K.N.; Biswas, R.; Mohan, C.G. Understanding the adhesion mechanism of a mucin binding domain from Lactobacillus fermentum and its role in enteropathogen exclusion. Int. J. Biol. Macromol., 2018, 110, 598-607.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.10.107] [PMID: 29061520]
[58]
Baur, S.; Rautenberg, M.; Faulstich, M.; Grau, T.; Severin, Y.; Unger, C.; Hoffmann, W.H.; Rudel, T.; Autenrieth, I.B.; Weidenmaier, C. A nasal epithelial receptor for Staphylococcus aureus WTA governs adhesion to epithelial cells and modulates nasal colonization. PLoS Pathog., 2014, 10(5), e1004089.
[http://dx.doi.org/10.1371/journal.ppat.1004089] [PMID: 24788600]
[59]
Govender, V.S.; Ramsugit, S.; Pillay, M. Mycobacterium tuberculosis adhesins: Potential biomarkers as anti-tuberculosis therapeutic and diagnostic targets. Microbiology, 2014, 160(9), 1821-1831.
[http://dx.doi.org/10.1099/mic.0.082206-0] [PMID: 25009234]
[60]
Vinod, V.; Vijayrajratnam, S.; Vasudevan, A.K.; Biswas, R. The cell surface adhesins of Mycobacterium tuberculosis. Microbiol. Res., 2020, 232, 126392.
[http://dx.doi.org/10.1016/j.micres.2019.126392] [PMID: 31841935]
[61]
Henderson, B.; Martin, A. Bacterial virulence in the moonlight: Multitasking bacterial moonlighting proteins are virulence determinants in infectious disease. Infect. Immun., 2011, 79(9), 3476-3491.
[http://dx.doi.org/10.1128/IAI.00179-11] [PMID: 21646455]
[62]
Ramsugit, S.; Pillay, M. Identification of Mycobacterium tuberculosis adherence-mediating components: A review of key methods to con-firm adhesin function. Iran. J. Basic Med. Sci., 2016, 19(6), 579-584.
[PMID: 27482337]
[63]
Gu, S.; Chen, J.; Dobos, K.M.; Bradbury, E.M.; Belisle, J.T.; Chen, X. Comprehensive proteomic profiling of the membrane constituents of a Mycobacterium tuberculosis strain. Mol. Cell. Proteomics, 2003, 2(12), 1284-1296.
[http://dx.doi.org/10.1074/mcp.M300060-MCP200] [PMID: 14532352]
[64]
Squeglia, F.; Ruggiero, A.; De Simone, A.; Berisio, R. A structural overview of mycobacterial adhesins: Key biomarkers for diagnostics and therapeutics. Protein Sci., 2018, 27(2), 369-380.
[http://dx.doi.org/10.1002/pro.3346] [PMID: 29139177]
[65]
Menozzi, F.D.; Reddy, V.M.; Cayet, D.; Raze, D.; Debrie, A.S.; Dehouck, M.P.; Cecchelli, R.; Locht, C. Mycobacterium tuberculosis Heparin-Binding Haemagglutinin Adhesin (HBHA) triggers receptor-mediated transcytosis without altering the integrity of tight junctions. Microbes Infect., 2005, 8(1), 1-9.
[66]
Be, N.A.; Lamichhane, G.; Grosset, J.; Tyagi, S.; Cheng, Q.J.; Kim, K.S.; Bishai, W.R.; Jain, S.K. Murine model to study the invasion and survival of Mycobacterium tuberculosis in the central nervous system. J. Infect. Dis., 2008, 198(10), 1520-1528.
[http://dx.doi.org/10.1086/592447] [PMID: 18956986]
[67]
Kumar, S.; Puniya, B.L.; Parween, S.; Nahar, P.; Ramachandran, S. Identification of novel adhesins of M. tuberculosis H37Rv using inte-grated approach of multiple computational algorithms and experimental analysis. PLoS One, 2013, 8(7), e69790.
[http://dx.doi.org/10.1371/journal.pone.0069790] [PMID: 23922800]
[68]
Xu, W.; Zhang, L.; Mai, J.; Peng, R.; Yang, E.; Peng, C.; Wang, H. The Wag31 protein interacts with AccA3 and coordinates cell wall lipid permeability and lipophilic drug resistance in Mycobacterium smegmatis. Biochem. Biophys. Res. Commun., 2014, 448(3), 255-260.
[http://dx.doi.org/10.1016/j.bbrc.2014.04.116] [PMID: 24792177]
[69]
Alderwick, L.J.; Harrison, J.; Lloyd, G.S.; Birch, H.L. The mycobacterial cell wall-peptidoglycan and arabinogalactan. Cold Spring Harb. Perspect. Med., 2015, 5(8), a021113.
[http://dx.doi.org/10.1101/cshperspect.a021113] [PMID: 25818664]
[70]
Jankute, M.; Cox, J.A.G.; Harrison, J.; Besra, G.S. Assembly of the mycobacterial cell wall. Annu. Rev. Microbiol., 2015, 69(1), 405-423.
[http://dx.doi.org/10.1146/annurev-micro-091014-104121] [PMID: 26488279]
[71]
Nasiri, M.J.; Haeili, M.; Ghazi, M.; Goudarzi, H.; Pormohammad, A.; Imani, A.A.; Feizabadi, M.M. New insights in to the intrinsic and acquired drug resistance mechanisms in mycobacteria. Front. Microbiol., 2017, 8, 681.
[http://dx.doi.org/10.3389/fmicb.2017.00681] [PMID: 28487675]
[72]
Crick, D.C.; Schulbach, M.C.; Zink, E.E.; Macchia, M.; Barontini, S.; Besra, G.S.; Brennan, P.J. Polyprenyl phosphate biosynthesis in Mycobacterium tuberculosis and Mycobacterium smegmatis. J. Bacteriol., 2000, 182(20), 5771-5778.
[http://dx.doi.org/10.1128/JB.182.20.5771-5778.2000] [PMID: 11004176]
[73]
Makinoshima, H.; Glickman, M.S. Regulation of Mycobacterium tuberculosis cell envelope composition and virulence by intramembrane proteolysis. Nature, 2005, 436(7049), 406-409.
[http://dx.doi.org/10.1038/nature03713] [PMID: 16034419]
[74]
Turapov, O.; Forti, F.; Kadhim, B.; Ghisotti, D.; Sassine, J.; Straatman-Iwanowska, A.; Bottrill, A.R.; Moynihan, P.J.; Wallis, R.; Barthe, P.; Cohen-Gonsaud, M.; Ajuh, P.; Vollmer, W.; Mukamolova, G.V. Two faces of CwlM, an essential PknB substrate, in Mycobacterium tu-berculosis. Cell Rep., 2018, 25(1), 57-67.e5.
[http://dx.doi.org/10.1016/j.celrep.2018.09.004] [PMID: 30282038]
[75]
Qu, D.; Zhao, X.; Sun, Y.; Wu, F.L.; Tao, S.C. Mycobacterium tuberculosis thymidylyltransferase RmlA is negatively regulated by Ser/Thr protein kinase PknB. Front. Microbiol., 2021, 12, 643951.
[http://dx.doi.org/10.3389/fmicb.2021.643951] [PMID: 33868202]
[76]
Yang, Z.; Zeng, X.; Tsui, S.K.W. Investigating function roles of hypothetical proteins encoded by the Mycobacterium tuberculosis H37Rv genome. BMC Genomics, 2019, 20(1), 394.
[http://dx.doi.org/10.1186/s12864-019-5746-6] [PMID: 31113361]
[77]
Rachman, H.; Strong, M.; Schaible, U.; Schuchhardt, J.; Hagens, K.; Mollenkopf, H.; Eisenberg, D.; Kaufmann, S.H.E. Mycobacterium tuberculosis gene expression profiling within the context of protein networks. Microbes Infect., 2006, 8(3), 747-757.
[http://dx.doi.org/10.1016/j.micinf.2005.09.011] [PMID: 16513384]
[78]
Garg, R.; Tripathi, D.; Kant, S.; Chandra, H.; Bhatnagar, R.; Banerjee, N. The conserved hypothetical protein Rv0574c is required for cell wall integrity, stress tolerance, and virulence of Mycobacterium tuberculosis. Infect. Immun., 2015, 83(1), 120-129.
[http://dx.doi.org/10.1128/IAI.02274-14] [PMID: 25312955]
[79]
Sharma, D.; Bisht, D.M. tuberculosis hypothetical proteins and proteins of unknown function: Hope for exploring novel resistance mech-anisms as well as future target of drug resistance. Front. Microbiol., 2017, 8, 465.
[http://dx.doi.org/10.3389/fmicb.2017.00465] [PMID: 28377758]
[80]
Raj, U.; Sharma, A.K.; Aier, I.; Varadwaj, P.K. In silico characterization of hypothetical proteins obtained from Mycobacterium tuberculo-sis H37Rv. Netw. Model. Anal. Health Inform. Bioinform., 2017, 6(1), 5.
[http://dx.doi.org/10.1007/s13721-017-0147-8]
[81]
Bharti, S.; Maurya, R.K.; Venugopal, U.; Singh, R.; Akhtar, M.S.; Krishnan, M.Y. Rv1717 is a cell wall - associated β-galactosidase of Mycobacterium tuberculosis that is involved in biofilm dispersion. Front. Microbiol., 2021, 11, 611122.
[http://dx.doi.org/10.3389/fmicb.2020.611122] [PMID: 33584576]
[82]
Ali, M.K.; Nzungize, L.; Abbas, K.; Eckzechel, N.S.A.; Abo-kadoum, M.A.; Moure, U.A.E.; Asaad, M.; Alam, A.; Xu, J.; Xie, J. Mycobac-terium tuberculosis Rv0580c impedes the intracellular survival of recombinant mycobacteria, manipulates the cytokines, and induces ER stress and apoptosis in host macrophages via NF-κB and p38/JNK signaling. Pathogens, 2021, 10(2), 143.
[http://dx.doi.org/10.3390/pathogens10020143] [PMID: 33535567]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy