Generic placeholder image

当代肿瘤药物靶点

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Research Article

AHNAK2通过PI3K/AKT信号通路促进分化型甲状腺癌的进展

卷 24, 期 2, 2024

发表于: 04 December, 2023

页: [220 - 229] 页: 10

弟呕挨: 10.2174/1568009622666220908092506

价格: $65

Open Access Journals Promotions 2
摘要

目标:甲状腺癌(TC)是内分泌癌中最常见的恶性肿瘤,近几十年来发病率呈上升趋势。 背景:为了了解DTC的分子机制,我们对79对DTC组织和正常甲状腺组织进行了新一代测序(NGS)。rna测序(RNA-seq)数据分析结果显示,AHNAK核蛋白2 (AHNAK2)在甲状腺癌患者组织中显著上调。 方法:我们还分析了来自癌症基因组图谱(TCGA)的DTC组织和正常组织的AHNAK2 mRNA水平。在TCGA队列中评估AHNAK2表达水平与临床病理特征之间的关系。采用实时荧光定量聚合酶链反应(qRT-PCR)分析了AHNAK2基因在40对DTC组织和邻近正常甲状腺组织中的表达。采用受试者工作特征(ROC)曲线评价AHNAK2的诊断价值。在体外细胞实验中,利用小干扰RNA (small interfering RNA, siRNA)敲低AHNAK2,研究AHNAK2在TC细胞系中的生物学功能。在TCGA组和局部组中,AHNAK2的表达均显著上调。 结果:TCGA队列分析结果显示,AHNAK2表达上调与肿瘤大小(P < 0.001)、淋巴结转移(P < 0.001)、疾病分期(P < 0.001)相关。曲线下面积(AUC, TCGA: P < 0.0001;本地验证队列:P < 0.0001)的ROC曲线显示,AHNAK2可能被认为是TC的诊断性生物标志物。AHNAK2基因的表达降低了TC细胞的增殖、集落形成、迁移、侵袭、细胞周期,并诱导细胞凋亡。 结论:此外,转染后的TC细胞中磷酸化- pi3激酶p85和磷酸化- akt蛋白水平下调。我们的研究结果表明,AHNAK2可能通过PI3K/AKT信号通路促进甲状腺癌的转移和增殖。因此,AHNAK2可作为TC诊断和治疗的候选标志物。

关键词: AHNAK2,分化型甲状腺癌,进展,PI3K/AKT,癌症,治疗。

« Previous
[1]
Cabanillas, M.E.; McFadden, D.G.; Durante, C. Thyroid cancer. Lancet, 2016, 388(10061), 2783-2795.
[http://dx.doi.org/10.1016/S0140-6736(16)30172-6] [PMID: 27240885]
[2]
Rahib, L; Smith, B; Aizenberg, R; Rosenzweig, A; Fleshman, J Projecting cancer incidence and deaths to 2030: The unexpected burden of thyroid, liver, and pancreas cancers in the United States. Cancer Res., 2014, 74(11), 2913-2921.
[3]
Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2019. CA Cancer J. Clin., 2019, 69(1), 7-34.
[http://dx.doi.org/10.3322/caac.21551] [PMID: 30620402]
[4]
Chen, W.; Zheng, R.; Baade, P.D.; Zhang, S.; Zeng, H.; Bray, F.; Jemal, A.; Yu, X.Q.; He, J. Cancer statistics in China, 2015. CA Cancer J. Clin., 2016, 66(2), 115-132.
[http://dx.doi.org/10.3322/caac.21338] [PMID: 26808342]
[5]
Davies, L.; Welch, H.G. Increasing incidence of thyroid cancer in the United States, 1973-2002. JAMA, 2006, 295(18), 2164-2167.
[http://dx.doi.org/10.1001/jama.295.18.2164] [PMID: 16684987]
[6]
Kebebew, E.; Clark, O.H. Differentiated thyroid cancer: “Complete” rational approach. World J. Surg., 2000, 24(8), 942-951.
[http://dx.doi.org/10.1007/s002680010165] [PMID: 10865038]
[7]
Grant, C.S. Recurrence of papillary thyroid cancer after optimized surgery. Gland Surg., 2015, 4(1), 52-62.
[8]
Leboulleux, S.; Rubino, C.; Baudin, E.; Caillou, B.; Hartl, D.M.; Bidart, J.M.; Travagli, J.P.; Schlumberger, M. Prognostic factors for persistent or recurrent disease of papillary thyroid carcinoma with neck lymph node metastases and/or tumor extension beyond the thyroid capsule at initial diagnosis. J. Clin. Endocrinol. Metab., 2005, 90(10), 5723-5729.
[http://dx.doi.org/10.1210/jc.2005-0285] [PMID: 16030160]
[9]
Aschebrook-Kilfoy, B; Ward, M; Sabra, M Thyroid cancer incidence patterns in the United States by histologic type, 1992-2006. Thyroid., 2011, 21(2), 125-134.
[10]
Haugen, B.R.; Alexander, E.K.; Bible, K.C.; Doherty, G.M.; Mandel, S.J.; Nikiforov, Y.E.; Pacini, F.; Randolph, G.W.; Sawka, A.M.; Schlumberger, M.; Schuff, K.G.; Sherman, S.I.; Sosa, J.A.; Steward, D.L.; Tuttle, R.M.; Wartofsky, L. 2015 American Thyroid Association management guidelines for adult patients with thyroid nodules and differentiated thyroid cancer: The American Thyroid Association guidelines task force on thyroid nodules and differentiated thyroid cancer. Thyroid, 2016, 26(1), 1-133.
[http://dx.doi.org/10.1089/thy.2015.0020] [PMID: 26462967]
[11]
Kim, S.; Kwon, A.; Back, K.; Park, I.; Hur, N.; Lee, J. Predictive factors of lymph node metastasis in follicular variant of papillary thyroid carcinoma. Ann. Surg. Oncol., 2017, 24(9), 2617-2623.
[12]
Lundgren, C; Hall, P; Dickman, P; Zedenius, JJC Clinically significant prognostic factors for differentiated thyroid carcinoma: A population-based, nested case-control study. Cancer., 2006, 106(3), 524-531.
[http://dx.doi.org/10.1002/cncr.21653]
[13]
Vogelstein, B.; Papadopoulos, N.; Velculescu, V.E.; Zhou, S.; Diaz, L.A., Jr; Kinzler, K.W. Cancer genome landscapes. Science, 2013, 339(6127), 1546-1558.
[http://dx.doi.org/10.1126/science.1235122] [PMID: 23539594]
[14]
Tang, K.T.; Lee, C.H. BRAF mutation in papillary thyroid carcinoma: pathogenic role and clinical implications. J. Chin. Med. Assoc., 2010, 73(3), 113-128.
[http://dx.doi.org/10.1016/S1726-4901(10)70025-3] [PMID: 20230995]
[15]
Xie, H.; Wei, B.; Shen, H.; Gao, Y.; Wang, L.; Liu, H. BRAF mutation in papillary thyroid carcinoma (PTC) and its association with clinicopathological features and systemic inflammation response index (SIRI). Am. J. Transl. Res., 2018, 10(8), 2726-2736.
[PMID: 30210710]
[16]
Xing, M. BRAF mutation in papillary thyroid cancer: pathogenic role, molecular bases, and clinical implications. Endocr. Rev., 2007, 28(7), 742-762.
[http://dx.doi.org/10.1210/er.2007-0007] [PMID: 17940185]
[17]
Min, K.W.; Choe, J.Y.; Kwon, M.J.; Lee, H.K.; Kang, H.S.; Nam, E.S.; Cho, S.J.; Park, H.R.; Min, S.K.; Seo, J.; Kim, Y.J.; Kim, N.Y.; Kim, H.Y. BRAF and NRAS mutations and antitumor immunity in Korean malignant melanomas and their prognostic relevance: Gene set enrichment analysis and CIBERSORT analysis. Pathol. Res. Pract., 2019, 215(12), 152671.
[http://dx.doi.org/10.1016/j.prp.2019.152671] [PMID: 31630873]
[18]
Zhang, X.Y.; Mao, L. Circular RNA Circ_0000442 acts as a sponge of MiR-148b-3p to suppress breast cancer via PTEN/PI3K/Akt signaling pathway. Gene, 2021, 766, 145113.
[http://dx.doi.org/10.1016/j.gene.2020.145113] [PMID: 32891771]
[19]
Levine, A.J.; Momand, J.; Finlay, C.A. The p53 tumour suppressor gene. Nature, 1991, 351(6326), 453-456.
[http://dx.doi.org/10.1038/351453a0] [PMID: 2046748]
[20]
García-Rostán, G.; Costa, A.M.; Pereira-Castro, I.; Salvatore, G.; Hernandez, R.; Hermsem, M.J.A.; Herrero, A.; Fusco, A.; Cameselle-Teijeiro, J.; Santoro, M. Mutation of the PIK3CA gene in anaplastic thyroid cancer. Cancer Res., 2005, 65(22), 10199-10207.
[http://dx.doi.org/10.1158/0008-5472.CAN-04-4259] [PMID: 16288007]
[21]
Komuro, A.; Masuda, Y.; Kobayashi, K.; Babbitt, R.; Gunel, M.; Flavell, R.A.; Marchesi, V.T. The AHNAKs are a class of giant propeller-like proteins that associate with calcium channel proteins of cardiomyocytes and other cells. Proc. Natl. Acad. Sci. USA, 2004, 101(12), 4053-4058.
[http://dx.doi.org/10.1073/pnas.0308619101] [PMID: 15007166]
[22]
Davis, T.A.; Loos, B.; Engelbrecht, A.M. AHNAK: The giant jack of all trades. Cell. Signal., 2014, 26(12), 2683-2693.
[http://dx.doi.org/10.1016/j.cellsig.2014.08.017] [PMID: 25172424]
[23]
Lu, D.; Wang, J.; Shi, X.; Yue, B.; Hao, J. AHNAK2 is a potential prognostic biomarker in patients with PDAC. Oncotarget, 2017, 8(19), 31775-31784.
[http://dx.doi.org/10.18632/oncotarget.15990] [PMID: 28423668]
[24]
Wang, M.; Li, X.; Zhang, J.; Yang, Q.; Chen, W.; Jin, W.; Huang, Y.R.; Yang, R.; Gao, W.Q. AHNAK2 is a novel prognostic marker and oncogenic protein for clear cell renal cell carcinoma. Theranostics, 2017, 7(5), 1100-1113.
[http://dx.doi.org/10.7150/thno.18198] [PMID: 28435451]
[25]
Li, M.; Liu, Y.; Meng, Y.; Zhu, Y. AHNAK nucleoprotein 2 performs a promoting role in the proliferation and migration of uveal melanoma cells. Cancer Biother. Radiopharm., 2019, 34(10), 626-633.
[http://dx.doi.org/10.1089/cbr.2019.2778] [PMID: 31621397]
[26]
Zhang, S.; Lu, Y.; Qi, L.; Wang, H.; Wang, Z.; Cai, Z. AHNAK2 is associated with poor prognosis and cell migration in lung adenocarcinoma. BioMed Res. Int., 2020, 2020, 1-14.
[http://dx.doi.org/10.1155/2020/8571932] [PMID: 32904605]
[27]
Wang, D.W.; Zheng, H.Z.; Cha, N.; Zhang, X.J.; Zheng, M.; Chen, M.M.; Tian, L.X. Down-regulation of AHNAK2 inhibits cell proliferation, migration and invasion through inactivating the MAPK pathway in lung adenocarcinoma. Technol. Cancer Res. Treat., 2020, 19.
[http://dx.doi.org/10.1177/1533033820957006] [PMID: 33000678]
[28]
Xie, Z.; Lun, Y.; Li, X.; He, Y.; Wu, S.; Wang, S.; Sun, J.; He, Y.; Zhang, J. Bioinformatics analysis of the clinical value and potential mechanisms of AHNAK2 in papillary thyroid carcinoma. Aging, 2020, 12(18), 18163-18180.
[http://dx.doi.org/10.18632/aging.103645] [PMID: 32966238]
[29]
Davies, L.; Welch, H.G. Current thyroid cancer trends in the United States. JAMA Otolaryngol. Head Neck Surg., 2014, 140(4), 317-322.
[http://dx.doi.org/10.1001/jamaoto.2014.1] [PMID: 24557566]
[30]
Garraway, L.A.; Lander, E.S. Lessons from the cancer genome. Cell, 2013, 153(1), 17-37.
[http://dx.doi.org/10.1016/j.cell.2013.03.002] [PMID: 23540688]
[31]
Shtivelman, E.; Cohen, F.E.; Bishop, J.M. A human gene (AHNAK) encoding an unusually large protein with a 1.2-microns polyionic rod structure. Proc. Natl. Acad. Sci. USA, 1992, 89(12), 5472-5476.
[http://dx.doi.org/10.1073/pnas.89.12.5472] [PMID: 1608957]
[32]
Li, B.; Cheung, P.Y.; Wang, X.; Tsao, S.W.; Ling, M.T.; Wong, Y.C.; Cheung, A.L.M. Id-1 activation of PI3K/Akt/NF B signaling pathway and its significance in promoting survival of esophageal cancer cells. Carcinogenesis, 2007, 28(11), 2313-2320.
[http://dx.doi.org/10.1093/carcin/bgm152] [PMID: 17638919]
[33]
Aoki, M.; Fujishita, T. Oncogenic Roles of the PI3K/AKT/mTOR Axis. Curr. Top. Microbiol. Immunol., 2017, 407, 153-189.
[http://dx.doi.org/10.1007/82_2017_6] [PMID: 28550454]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy