Generic placeholder image

Current Cancer Drug Targets

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Research Article

AHNAK2 Promotes the Progression of Differentiated Thyroid Cancer through PI3K/AKT Signaling Pathway

Author(s): Min Xu, Jialiang Wen, Qiding Xu, Huihui Li, Bangyi Lin, Adheesh Bhandari* and Jinmiao Qu*

Volume 24, Issue 2, 2024

Published on: 04 December, 2023

Page: [220 - 229] Pages: 10

DOI: 10.2174/1568009622666220908092506

Price: $65

Open Access Journals Promotions 2
Abstract

Aims: AHNAK2 may be used as a candidate marker for TC diagnosis and treatment.

Background: Thyroid cancer (TC) is the most frequent malignancy in endocrine carcinoma, and the incidence has been increasing for decades.

Objective: To understand the molecular mechanism of DTC, we performed next-generation sequencing (NGS) on 79 paired DTC tissues and normal thyroid tissues. The RNA-sequencing (RNA-seq) data analysis results indicated that AHNAK nucleoprotein 2 (AHNAK2) was significantly upregulated in the thyroid cancer patient’s tissue.

Methods: We also analyzed AHNAK2 mRNA levels of DTC tissues and normal tissues from The Cancer Genome Atlas (TCGA). The association between the expression level of AHNAK2 and clinicopathological features was evaluated in the TCGA cohort. Furthermore, AHNAK2 gene expression was analyzed by quantitative real-time polymerase chain reaction (qRT-PCR) in 40 paired DTC tissues and adjacent normal thyroid tissues. The receiver operating characteristic (ROC) curve was performed to evaluate the diagnostic value of AHNAK2. For cell experiments in vitro, AHNAK2 was knocked down using small interfering RNA (siRNA), and the biological function of AHNAK2 in TC cell lines was investigated. The expression of AHNAK2 was significantly upregulated in both the TCGA cohort and the local cohort.

Results: The analysis results of the TCGA cohort indicated that the upregulation of AHNAK2 was associated with tumor size (P < 0.001), lymph node metastasis (P < 0.001), and disease stage (P < 0.001). The area under the curve (AUC, TCGA: P < 0.0001; local validated cohort: P < 0.0001) in the ROC curve revealed that AHNAK2 might be considered a diagnostic biomarker for TC. The knockdown of AHNAK2 reduced TC cell proliferation, colony formation, migration, invasion, cell cycle, and induced cell apoptosis.

Conclusion: Furthermore, the protein levels of phospho-PI3 Kinase p85 and phospho-AKT were downregulated in the transfected TC cell. Our study results indicate that AHNAK2 may promote metastasis and proliferation of thyroid cancer through PI3K/AKT signaling pathway. Thus, AHNAK2 may be used as a candidate marker for TC diagnosis and treatment.

Keywords: AHNAK2, differentiated thyroid cancer, progression, PI3K/AKT, cancer, treatment.

« Previous
[1]
Cabanillas, M.E.; McFadden, D.G.; Durante, C. Thyroid cancer. Lancet, 2016, 388(10061), 2783-2795.
[http://dx.doi.org/10.1016/S0140-6736(16)30172-6] [PMID: 27240885]
[2]
Rahib, L; Smith, B; Aizenberg, R; Rosenzweig, A; Fleshman, J Projecting cancer incidence and deaths to 2030: The unexpected burden of thyroid, liver, and pancreas cancers in the United States. Cancer Res., 2014, 74(11), 2913-2921.
[3]
Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2019. CA Cancer J. Clin., 2019, 69(1), 7-34.
[http://dx.doi.org/10.3322/caac.21551] [PMID: 30620402]
[4]
Chen, W.; Zheng, R.; Baade, P.D.; Zhang, S.; Zeng, H.; Bray, F.; Jemal, A.; Yu, X.Q.; He, J. Cancer statistics in China, 2015. CA Cancer J. Clin., 2016, 66(2), 115-132.
[http://dx.doi.org/10.3322/caac.21338] [PMID: 26808342]
[5]
Davies, L.; Welch, H.G. Increasing incidence of thyroid cancer in the United States, 1973-2002. JAMA, 2006, 295(18), 2164-2167.
[http://dx.doi.org/10.1001/jama.295.18.2164] [PMID: 16684987]
[6]
Kebebew, E.; Clark, O.H. Differentiated thyroid cancer: “Complete” rational approach. World J. Surg., 2000, 24(8), 942-951.
[http://dx.doi.org/10.1007/s002680010165] [PMID: 10865038]
[7]
Grant, C.S. Recurrence of papillary thyroid cancer after optimized surgery. Gland Surg., 2015, 4(1), 52-62.
[8]
Leboulleux, S.; Rubino, C.; Baudin, E.; Caillou, B.; Hartl, D.M.; Bidart, J.M.; Travagli, J.P.; Schlumberger, M. Prognostic factors for persistent or recurrent disease of papillary thyroid carcinoma with neck lymph node metastases and/or tumor extension beyond the thyroid capsule at initial diagnosis. J. Clin. Endocrinol. Metab., 2005, 90(10), 5723-5729.
[http://dx.doi.org/10.1210/jc.2005-0285] [PMID: 16030160]
[9]
Aschebrook-Kilfoy, B; Ward, M; Sabra, M Thyroid cancer incidence patterns in the United States by histologic type, 1992-2006. Thyroid., 2011, 21(2), 125-134.
[10]
Haugen, B.R.; Alexander, E.K.; Bible, K.C.; Doherty, G.M.; Mandel, S.J.; Nikiforov, Y.E.; Pacini, F.; Randolph, G.W.; Sawka, A.M.; Schlumberger, M.; Schuff, K.G.; Sherman, S.I.; Sosa, J.A.; Steward, D.L.; Tuttle, R.M.; Wartofsky, L. 2015 American Thyroid Association management guidelines for adult patients with thyroid nodules and differentiated thyroid cancer: The American Thyroid Association guidelines task force on thyroid nodules and differentiated thyroid cancer. Thyroid, 2016, 26(1), 1-133.
[http://dx.doi.org/10.1089/thy.2015.0020] [PMID: 26462967]
[11]
Kim, S.; Kwon, A.; Back, K.; Park, I.; Hur, N.; Lee, J. Predictive factors of lymph node metastasis in follicular variant of papillary thyroid carcinoma. Ann. Surg. Oncol., 2017, 24(9), 2617-2623.
[12]
Lundgren, C; Hall, P; Dickman, P; Zedenius, JJC Clinically significant prognostic factors for differentiated thyroid carcinoma: A population-based, nested case-control study. Cancer., 2006, 106(3), 524-531.
[http://dx.doi.org/10.1002/cncr.21653]
[13]
Vogelstein, B.; Papadopoulos, N.; Velculescu, V.E.; Zhou, S.; Diaz, L.A., Jr; Kinzler, K.W. Cancer genome landscapes. Science, 2013, 339(6127), 1546-1558.
[http://dx.doi.org/10.1126/science.1235122] [PMID: 23539594]
[14]
Tang, K.T.; Lee, C.H. BRAF mutation in papillary thyroid carcinoma: pathogenic role and clinical implications. J. Chin. Med. Assoc., 2010, 73(3), 113-128.
[http://dx.doi.org/10.1016/S1726-4901(10)70025-3] [PMID: 20230995]
[15]
Xie, H.; Wei, B.; Shen, H.; Gao, Y.; Wang, L.; Liu, H. BRAF mutation in papillary thyroid carcinoma (PTC) and its association with clinicopathological features and systemic inflammation response index (SIRI). Am. J. Transl. Res., 2018, 10(8), 2726-2736.
[PMID: 30210710]
[16]
Xing, M. BRAF mutation in papillary thyroid cancer: pathogenic role, molecular bases, and clinical implications. Endocr. Rev., 2007, 28(7), 742-762.
[http://dx.doi.org/10.1210/er.2007-0007] [PMID: 17940185]
[17]
Min, K.W.; Choe, J.Y.; Kwon, M.J.; Lee, H.K.; Kang, H.S.; Nam, E.S.; Cho, S.J.; Park, H.R.; Min, S.K.; Seo, J.; Kim, Y.J.; Kim, N.Y.; Kim, H.Y. BRAF and NRAS mutations and antitumor immunity in Korean malignant melanomas and their prognostic relevance: Gene set enrichment analysis and CIBERSORT analysis. Pathol. Res. Pract., 2019, 215(12), 152671.
[http://dx.doi.org/10.1016/j.prp.2019.152671] [PMID: 31630873]
[18]
Zhang, X.Y.; Mao, L. Circular RNA Circ_0000442 acts as a sponge of MiR-148b-3p to suppress breast cancer via PTEN/PI3K/Akt signaling pathway. Gene, 2021, 766, 145113.
[http://dx.doi.org/10.1016/j.gene.2020.145113] [PMID: 32891771]
[19]
Levine, A.J.; Momand, J.; Finlay, C.A. The p53 tumour suppressor gene. Nature, 1991, 351(6326), 453-456.
[http://dx.doi.org/10.1038/351453a0] [PMID: 2046748]
[20]
García-Rostán, G.; Costa, A.M.; Pereira-Castro, I.; Salvatore, G.; Hernandez, R.; Hermsem, M.J.A.; Herrero, A.; Fusco, A.; Cameselle-Teijeiro, J.; Santoro, M. Mutation of the PIK3CA gene in anaplastic thyroid cancer. Cancer Res., 2005, 65(22), 10199-10207.
[http://dx.doi.org/10.1158/0008-5472.CAN-04-4259] [PMID: 16288007]
[21]
Komuro, A.; Masuda, Y.; Kobayashi, K.; Babbitt, R.; Gunel, M.; Flavell, R.A.; Marchesi, V.T. The AHNAKs are a class of giant propeller-like proteins that associate with calcium channel proteins of cardiomyocytes and other cells. Proc. Natl. Acad. Sci. USA, 2004, 101(12), 4053-4058.
[http://dx.doi.org/10.1073/pnas.0308619101] [PMID: 15007166]
[22]
Davis, T.A.; Loos, B.; Engelbrecht, A.M. AHNAK: The giant jack of all trades. Cell. Signal., 2014, 26(12), 2683-2693.
[http://dx.doi.org/10.1016/j.cellsig.2014.08.017] [PMID: 25172424]
[23]
Lu, D.; Wang, J.; Shi, X.; Yue, B.; Hao, J. AHNAK2 is a potential prognostic biomarker in patients with PDAC. Oncotarget, 2017, 8(19), 31775-31784.
[http://dx.doi.org/10.18632/oncotarget.15990] [PMID: 28423668]
[24]
Wang, M.; Li, X.; Zhang, J.; Yang, Q.; Chen, W.; Jin, W.; Huang, Y.R.; Yang, R.; Gao, W.Q. AHNAK2 is a novel prognostic marker and oncogenic protein for clear cell renal cell carcinoma. Theranostics, 2017, 7(5), 1100-1113.
[http://dx.doi.org/10.7150/thno.18198] [PMID: 28435451]
[25]
Li, M.; Liu, Y.; Meng, Y.; Zhu, Y. AHNAK nucleoprotein 2 performs a promoting role in the proliferation and migration of uveal melanoma cells. Cancer Biother. Radiopharm., 2019, 34(10), 626-633.
[http://dx.doi.org/10.1089/cbr.2019.2778] [PMID: 31621397]
[26]
Zhang, S.; Lu, Y.; Qi, L.; Wang, H.; Wang, Z.; Cai, Z. AHNAK2 is associated with poor prognosis and cell migration in lung adenocarcinoma. BioMed Res. Int., 2020, 2020, 1-14.
[http://dx.doi.org/10.1155/2020/8571932] [PMID: 32904605]
[27]
Wang, D.W.; Zheng, H.Z.; Cha, N.; Zhang, X.J.; Zheng, M.; Chen, M.M.; Tian, L.X. Down-regulation of AHNAK2 inhibits cell proliferation, migration and invasion through inactivating the MAPK pathway in lung adenocarcinoma. Technol. Cancer Res. Treat., 2020, 19.
[http://dx.doi.org/10.1177/1533033820957006] [PMID: 33000678]
[28]
Xie, Z.; Lun, Y.; Li, X.; He, Y.; Wu, S.; Wang, S.; Sun, J.; He, Y.; Zhang, J. Bioinformatics analysis of the clinical value and potential mechanisms of AHNAK2 in papillary thyroid carcinoma. Aging, 2020, 12(18), 18163-18180.
[http://dx.doi.org/10.18632/aging.103645] [PMID: 32966238]
[29]
Davies, L.; Welch, H.G. Current thyroid cancer trends in the United States. JAMA Otolaryngol. Head Neck Surg., 2014, 140(4), 317-322.
[http://dx.doi.org/10.1001/jamaoto.2014.1] [PMID: 24557566]
[30]
Garraway, L.A.; Lander, E.S. Lessons from the cancer genome. Cell, 2013, 153(1), 17-37.
[http://dx.doi.org/10.1016/j.cell.2013.03.002] [PMID: 23540688]
[31]
Shtivelman, E.; Cohen, F.E.; Bishop, J.M. A human gene (AHNAK) encoding an unusually large protein with a 1.2-microns polyionic rod structure. Proc. Natl. Acad. Sci. USA, 1992, 89(12), 5472-5476.
[http://dx.doi.org/10.1073/pnas.89.12.5472] [PMID: 1608957]
[32]
Li, B.; Cheung, P.Y.; Wang, X.; Tsao, S.W.; Ling, M.T.; Wong, Y.C.; Cheung, A.L.M. Id-1 activation of PI3K/Akt/NF B signaling pathway and its significance in promoting survival of esophageal cancer cells. Carcinogenesis, 2007, 28(11), 2313-2320.
[http://dx.doi.org/10.1093/carcin/bgm152] [PMID: 17638919]
[33]
Aoki, M.; Fujishita, T. Oncogenic Roles of the PI3K/AKT/mTOR Axis. Curr. Top. Microbiol. Immunol., 2017, 407, 153-189.
[http://dx.doi.org/10.1007/82_2017_6] [PMID: 28550454]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy