Review Article

Lung Pneumonitis and Fibrosis in Cancer Therapy: A Review on Cellular and Molecular Mechanisms

Author(s): Chaofeng Xu*, Zhongtu Shang and Masoud Najafi*

Volume 23, Issue 16, 2022

Published on: 04 October, 2022

Page: [1505 - 1525] Pages: 21

DOI: 10.2174/1389450123666220907144131

Price: $65

Open Access Journals Promotions 2
Abstract

Fibrosis and pneumonitis are the most important side effects of lung tissue following cancer therapy. Radiotherapy and chemotherapy by some drugs, such as bleomycin, can induce pneumonitis and fibrosis. Targeted therapy and immunotherapy also may induce pneumonitis and fibrosis to a lesser extent compared to chemotherapy and radiotherapy. Activation of lymphocytes by immunotherapy or infiltration of inflammatory cells such as macrophages, lymphocytes, neutrophils, and mast cells following chemo/radiation therapy can induce pneumonitis. Furthermore, the polarization of macrophages toward M2 cells and the release of anti-inflammatory cytokines stimulate fibrosis. Lung fibrosis and pneumonitis may also be potentiated by some other changes such as epithelial-mesenchymal transition (EMT), oxidative stress, reduction/oxidation (redox) responses, renin-angiotensin system, and the upregulation of some inflammatory mediators such as a nuclear factor of kappa B (NF-κB), inflammasome, cyclooxygenase-2 (COX-2), and inducible nitric oxide synthase (iNOS). Damages to the lung vascular system and the induction of hypoxia also can induce pulmonary injury following chemo/radiation therapy. This review explains various mechanisms of the induction of pneumonitis and lung fibrosis following cancer therapy. Furthermore, the targets and promising agents to mitigate lung fibrosis and pneumonitis will be discussed.

Keywords: Chemotherapy, radiotherapy, lung, fibrosis, pneumonitis, EMT.

Graphical Abstract
[1]
Aznar MC, Duane FK, Darby SC, Wang Z, Taylor CW. Exposure of the lungs in breast cancer radiotherapy: A systematic review of lung doses published 2010-2015. Radiother Oncol 2018; 126(1): 148-54.
[http://dx.doi.org/10.1016/j.radonc.2017.11.022] [PMID: 29246585]
[2]
Nakao S, Yamaguchi K, Sakamoto S, et al. Chemotherapy-associated acute exacerbation of interstitial lung disease shortens survival especially in small cell lung cancer. Anticancer Res 2019; 39(10): 5725-31.
[http://dx.doi.org/10.21873/anticanres.13773] [PMID: 31570474]
[3]
Li L, Mok H, Jhaveri P, et al. Anticancer therapy and lung injury: Molecular mechanisms. Expert Rev Anticancer Ther 2018; 18(10): 1041-57.
[http://dx.doi.org/10.1080/14737140.2018.1500180] [PMID: 29996062]
[4]
Goodman CD, Nijman SFM, Senan S, et al. A primer on interstitial lung disease and thoracic radiation. J Thorac Oncol 2020; 15(6): 902-13.
[http://dx.doi.org/10.1016/j.jtho.2020.02.005] [PMID: 32105810]
[5]
Cho JY, Kim J, Lee JS, et al. Characteristics, incidence, and risk factors of immune checkpoint inhibitor-related pneumonitis in patients with non-small cell lung cancer. Lung Cancer 2018; 125: 150-6.
[http://dx.doi.org/10.1016/j.lungcan.2018.09.015] [PMID: 30429014]
[6]
Bargagli E, Bonti V, Bindi A, et al. Fibrotic lung toxicity induced by cytotoxic drugs, radiation and immunotherapy in patients treated for lung cancer. Monaldi Arch Chest Dis 2018; 88(2): 917.
[http://dx.doi.org/10.4081/monaldi.2018.917] [PMID: 29927195]
[7]
Mo H, Jazieh KA, Brinzevich D, Abraham J. A review of treatment-induced pulmonary toxicity in breast cancer: Pulmonary toxicity in breast cancer. Clinic Breast Can 2022; 22(1): 1-9.
[8]
Hanania AN, Mainwaring W, Ghebre YT, Hanania NA, Ludwig M. Radiation-induced lung injury: Assessment and management. Chest 2019; 156(1): 150-62.
[http://dx.doi.org/10.1016/j.chest.2019.03.033] [PMID: 30998908]
[9]
Nguyen H, Sangha S, Pan M, et al. Oxidative stress and chemoradiation-induced oral mucositis: A scoping review of in vitro, in vivo and clinical studies. Int J Mol Sci 2022; 23(9): 4863.
[http://dx.doi.org/10.3390/ijms23094863] [PMID: 35563254]
[10]
Farhood B, Goradel NH, Mortezaee K, et al. Intercellular communications-redox interactions in radiation toxicity; potential targets for radiation mitigation. J Cell Commun Signal 2019; 13(1): 3-16.
[http://dx.doi.org/10.1007/s12079-018-0473-3] [PMID: 29911259]
[11]
Kinoshita T, Goto T. Molecular mechanisms of pulmonary fibrogenesis and its progression to lung cancer: A review. Int J Mol Sci 2019; 20(6): 1461.
[http://dx.doi.org/10.3390/ijms20061461] [PMID: 30909462]
[12]
Mitropoulou G, Daccord C, Sauty A, et al. Immunotherapy-induced airway disease: A new pattern of lung toxicity of immune checkpoint inhibitors. Respiration 2020; 99(2): 181-6.
[http://dx.doi.org/10.1159/000504968] [PMID: 31914436]
[13]
Skeoch S, Weatherley N, Swift A, et al. Drug-induced interstitial lung disease: A systematic review. J Clin Med 2018; 7(10): 356.
[http://dx.doi.org/10.3390/jcm7100356] [PMID: 30326612]
[14]
Li Y, Zhou Y, Liu Y, et al. Severe immune‐related hyperthermia followed by immune‐related pneumonitis with PD ‐1 inhibitor (sintilimab) in small cell lung cancer: A case report. Thorac Cancer 2021; 12(11): 1780-3.
[http://dx.doi.org/10.1111/1759-7714.13967] [PMID: 33949137]
[15]
Long K, Suresh K. Pulmonary toxicity of systemic lung cancer therapy. Respirology 2020; 25(S2) (Suppl. 2): 72-9.
[http://dx.doi.org/10.1111/resp.13915] [PMID: 32729207]
[16]
Vasiljevic D, Arnold C, Neuman D, et al. Occurrence of pneumonitis following radiotherapy of breast cancer - A prospective study. Strahlenther Onkol 2018; 194(6): 520-32.
[http://dx.doi.org/10.1007/s00066-017-1257-z] [PMID: 29450591]
[17]
Purkey MT, Levine MS, Prendes B, Norman MF, Mirza N. Predictors of aspiration pneumonia following radiotherapy for head and neck cancer. Ann Otol Rhinol Laryngol 2009; 118(11): 811-6.
[http://dx.doi.org/10.1177/000348940911801111] [PMID: 19999368]
[18]
Ben Abdeljelil N, Ladeb S, Dahmani T, et al. Once-a-day fractionated total-body irradiation: A regimen tailored to local logistics in allogeneic stem cell transplantation for acute lymphoblastic leukemia. Rep Pract Oncol Radiother 2020; 25(3): 436-41.
[http://dx.doi.org/10.1016/j.rpor.2020.03.023] [PMID: 32372884]
[19]
Yoo H, Jeong B-H, Chung MJ, Lee KS, Kwon OJ, Chung MP. Risk factors and clinical characteristics of lung cancer in idiopathic pulmonary fibrosis: A retrospective cohort study. BMC Pulmon Med 2019; 19(1): 1-8.
[http://dx.doi.org/10.1186/s12890-019-0905-8]
[20]
Frerker B, Hildebrandt G. Distinguishing radiation pneumonitis from local tumour recurrence following SBRT for lung cancer. Reports in Medical Imaging 2020; 13: 1-23.
[http://dx.doi.org/10.2147/RMI.S176901]
[21]
Goossens ME, Van den Bulcke M, Gevaert T, et al. Is there any benefit to particles over photon radiotherapy? Ecancermedicalscience 2019; 13: 982.
[22]
Jin H, Yoo Y, Kim Y, Kim Y, Cho J, Lee YS. Radiation-induced lung fibrosis: Preclinical animal models and therapeutic strategies. Cancers (Basel) 2020; 12(6): 1561.
[http://dx.doi.org/10.3390/cancers12061561] [PMID: 32545674]
[23]
Fujiwara M, Doi H, Igeta M, et al. Radiation pneumonitis after volumetric modulated arc therapy for non-small cell lung cancer. Anticancer Res 2021; 41(11): 5793-802.
[http://dx.doi.org/10.21873/anticanres.15396] [PMID: 34732453]
[24]
Griffin RJ, Ahmed MM, Amendola B, et al. Understanding high-dose, ultra-high dose rate, and spatially fractionated radiation therapy. Int J Radiat Oncol Biol Phys 2020; 107(4): 766-78.
[http://dx.doi.org/10.1016/j.ijrobp.2020.03.028] [PMID: 32298811]
[25]
Ghita M, Dunne VL, McMahon SJ, et al. Preclinical evaluation of dose-volume effects and lung toxicity occurring in and out-of-field. Int J Radiat Oncol Biol Phys 2019; 103(5): 1231-40.
[http://dx.doi.org/10.1016/j.ijrobp.2018.12.010] [PMID: 30552964]
[26]
Donovan E, Swaminath A. Stereotactic body radiation therapy (SBRT) in the management of non-small-cell lung cancer: Clinical impact and patient perspectives. Lung Cancer 2018; 9: 13-23.
[http://dx.doi.org/10.2147/LCTT.S129833] [PMID: 29588624]
[27]
Roos WP, Kaina B. DNA damage-induced cell death: From specific DNA lesions to the DNA damage response and apoptosis. Cancer Lett 2013; 332(2): 237-48.
[http://dx.doi.org/10.1016/j.canlet.2012.01.007] [PMID: 22261329]
[28]
Lennicke C, Cochemé HM. Redox metabolism: ROS as specific molecular regulators of cell signaling and function. Mol Cell 2021; 81(18): 3691-707.
[http://dx.doi.org/10.1016/j.molcel.2021.08.018] [PMID: 34547234]
[29]
Fu X, Tang J, Wen P, Huang Z, Najafi M. Redox interactions-induced cardiac toxicity in cancer therapy. Arch Biochem Biophys 2021; 708: 108952.
[http://dx.doi.org/10.1016/j.abb.2021.108952] [PMID: 34097901]
[30]
Fu X, Li M, Tang C, Huang Z, Najafi M. Targeting of cancer cell death mechanisms by resveratrol: A review. Apoptosis 2021; 26(11-12): 561-73.
[http://dx.doi.org/10.1007/s10495-021-01689-7] [PMID: 34561763]
[31]
Green DR, Ferguson T, Zitvogel L, Kroemer G. Immunogenic and tolerogenic cell death. Nat Rev Immunol 2009; 9(5): 353-63.
[http://dx.doi.org/10.1038/nri2545] [PMID: 19365408]
[32]
Eriksson D, Stigbrand T. Radiation-induced cell death mechanisms. Tumour Biol 2010; 31(4): 363-72.
[http://dx.doi.org/10.1007/s13277-010-0042-8] [PMID: 20490962]
[33]
Wu X, Xu WW, Huan X, et al. Mechanisms of cancer cell killing by metformin: A review on different cell death pathways. Mol Cell Biochem 2022.
[http://dx.doi.org/10.1007/s11010-022-04502-4] [PMID: 35771397]
[34]
Merkt W, Zhou Y, Han H, Lagares D. Myofibroblast fate plasticity in tissue repair and fibrosis: De‐activation, apoptosis, senescence and reprogramming. Wound Rep Regenerat 2021; 29(14): 678-91.
[35]
Pandolfi F, Altamura S, Frosali S, Conti P. Key role of DAMP in inflammation, cancer, and tissue repair. Clin Ther 2016; 38(5): 1017-28.
[http://dx.doi.org/10.1016/j.clinthera.2016.02.028] [PMID: 27021609]
[36]
Ashrafizadeh M, Farhood B, Eleojo Musa A, Taeb S, Najafi M. Damage-associated molecular patterns in tumor radiotherapy. Int Immunopharmacol 2020; 86: 106761.
[http://dx.doi.org/10.1016/j.intimp.2020.106761] [PMID: 32629409]
[37]
Citrin DE, Shankavaram U, Horton JA, et al. Role of type II pneumocyte senescence in radiation-induced lung fibrosis. J Natl Cancer Inst 2013; 105(19): 1474-84.
[http://dx.doi.org/10.1093/jnci/djt212] [PMID: 24052614]
[38]
Rodier F. Detection of the Senescence-Associated Secretory Phenotype (SASP). In: Galluzzi L, Vitale I, Kepp O, Kroemer G, Eds. Cell Senescence Methods in Molecular Biology. Springer 2013; pp. 165-73.
[http://dx.doi.org/10.1007/978-1-62703-239-1_10]
[39]
Hosseini SA, Zahedipour F, Sathyapalan T, Jamialahmadi T, Sahebkar A. Pulmonary fibrosis: Therapeutic and mechanistic insights into the role of phytochemicals. Biofactors 2021; 47(3): 250-69.
[http://dx.doi.org/10.1002/biof.1713] [PMID: 33548106]
[40]
Mortezaee K, Goradel NH, Amini P, et al. NADPH oxidase as a target for modulation of radiation response; implications to carcinogenesis and radiotherapy. Curr Mol Pharmacol 2019; 12(1): 50-60.
[http://dx.doi.org/10.2174/1874467211666181010154709] [PMID: 30318012]
[41]
Lee IT, Yang CM. Role of NADPH oxidase/ROS in pro-inflammatory mediators-induced airway and pulmonary diseases. Biochem Pharmacol 2012; 84(5): 581-90.
[http://dx.doi.org/10.1016/j.bcp.2012.05.005] [PMID: 22587816]
[42]
Tonison JJ, Fischer SG, Viehrig M, et al. Radiation pneumonitis after intensity-modulated radiotherapy for esophageal cancer: Institutional data and a systematic review. Sci Rep 2019; 9(1): 2255.
[http://dx.doi.org/10.1038/s41598-018-38414-5] [PMID: 30783157]
[43]
Anathy V, Lahue KG, Chapman DG, et al. Reducing protein oxidation reverses lung fibrosis. Nat Med 2018; 24(8): 1128-35.
[http://dx.doi.org/10.1038/s41591-018-0090-y] [PMID: 29988126]
[44]
Farhood B, khodamoradi E, Hoseini-Ghahfarokhi M, et al. TGF-β in radiotherapy: Mechanisms of tumor resistance and normal tissues injury. Pharmacol Res 2020; 155: 104745.
[http://dx.doi.org/10.1016/j.phrs.2020.104745] [PMID: 32145401]
[45]
Yang H, Villani RM, Wang H, et al. The role of cellular reactive oxygen species in cancer chemotherapy. J Exp Clin Cancer Res 2018; 37(1): 1-10.
[http://dx.doi.org/10.1186/s13046-017-0664-4] [PMID: 29301578]
[46]
Jeong BK, Kim JH, Jung MH, Kang KM, Lee YH. Cytokine profiles of non-small cell lung cancer patients treated with concurrent chemoradiotherapy with regards to radiation pneumonitis severity. J Clin Med 2021; 10(4): 699.
[http://dx.doi.org/10.3390/jcm10040699] [PMID: 33670117]
[47]
Hecker L, Logsdon NJ, Kurundkar D, et al. Reversal of persistent fibrosis in aging by targeting Nox4-Nrf2 redox imbalance. Sci Transl Med 2014; 6(231): 231ra247.
[http://dx.doi.org/10.1126/scitranslmed.3008182]
[48]
Wang L, Wang FS. Clinical immunology and immunotherapy for hepatocellular carcinoma: Current progress and challenges. Hepatol Int 2019; 13(5): 521-33.
[http://dx.doi.org/10.1007/s12072-019-09967-y] [PMID: 31352593]
[49]
Semper H, Muehlberg F, Schulz-Menger J, Allewelt M, Grohé C. Drug-induced myocarditis after nivolumab treatment in a patient with PDL1- negative squamous cell carcinoma of the lung. Lung Cancer 2016; 99: 117-9.
[http://dx.doi.org/10.1016/j.lungcan.2016.06.025] [PMID: 27565924]
[50]
Koelzer VH, Rothschild SI, Zihler D, et al. Systemic inflammation in a melanoma patient treated with immune checkpoint inhibitors-an autopsy study. J Immunother Cancer 2016; 4(1): 13.
[http://dx.doi.org/10.1186/s40425-016-0117-1] [PMID: 26981243]
[51]
Heinzerling L, Ott PA, Hodi FS, et al. Cardiotoxicity associated with CTLA4 and PD1 blocking immunotherapy. J Immunoth Can 2016; 4(1): 1-11.
[52]
Kim MJ, Lee GW, Seo JW, Kim HJ, Lim SN, Suh C. Fatal interstitial pneumonitis in a patient with relapsed diffuse large B cell lymphoma following yttrium-90 ibritumomab tiuxetan. Invest New Drugs 2011; 29(5): 1098-101.
[http://dx.doi.org/10.1007/s10637-010-9460-0] [PMID: 20490611]
[53]
Sudo H, Tsuji AB, Sugyo A, et al. Therapeutic efficacy evaluation of radioimmunotherapy with 90 Y‐labeled anti‐podoplanin antibody NZ ‐12 for mesothelioma. Cancer Sci 2019; 110(5): 1653-64.
[http://dx.doi.org/10.1111/cas.13979] [PMID: 30801908]
[54]
Abdel-Rahman O, ElHalawani H, Fouad M. Risk of elevated transaminases in cancer patients treated with immune checkpoint inhibitors: A meta-analysis. Expert Opin Drug Saf 2015; 14(10): 1507-18.
[http://dx.doi.org/10.1517/14740338.2015.1085969] [PMID: 26394770]
[55]
Nishino M, Sholl LM, Hatabu H, Ramaiya NH, Hodi FS. Anti–PD-1–related pneumonitis during cancer immunotherapy. N Engl J Med 2015; 373(3): 288-90.
[http://dx.doi.org/10.1056/NEJMc1505197] [PMID: 26176400]
[56]
Naidoo J, Page DB, Li BT, et al. Toxicities of the anti-PD-1 and anti-PD-L1 immune checkpoint antibodies. Ann Oncol 2015; 26(12): 2375-91.
[http://dx.doi.org/10.1093/annonc/mdv383] [PMID: 26371282]
[57]
Fehrenbacher L, Spira A, Ballinger M, et al. Atezolizumab versus docetaxel for patients with previously treated non-small-cell lung cancer (POPLAR): A multicentre, open-label, phase 2 randomised controlled trial. Lancet 2016; 387(10030): 1837-46.
[http://dx.doi.org/10.1016/S0140-6736(16)00587-0] [PMID: 26970723]
[58]
Barjaktarevic IZ, Qadir N, Suri A, Santamauro JT, Stover D. Organizing pneumonia as a side effect of ipilimumab treatment of melanoma. Chest 2013; 143(3): 858-61.
[http://dx.doi.org/10.1378/chest.12-1467] [PMID: 23460165]
[59]
Zhu S, Fu Y, Zhu B, Zhang B, Wang J. Pneumonitis induced by immune checkpoint inhibitors: From clinical data to translational investigation. Front Oncol 2020; 10: 1785.
[http://dx.doi.org/10.3389/fonc.2020.01785] [PMID: 33042827]
[60]
He Y, Zhou C. Tyrosine kinase inhibitors interstitial pneumonitis: Diagnosis and management. Translat Lung Can Res 2019; 8 (Suppl. 3): S318-20.
[http://dx.doi.org/10.21037/tlcr.2019.05.02]
[61]
Chiang CL, Chen YW, Wu MH, Huang HC, Tsai CM, Chiu CH. Radiation recall pneumonitis induced by epidermal growth factor receptor-tyrosine kinase inhibitor in patients with advanced nonsmall-cell lung cancer. J Chin Med Assoc 2016; 79(5): 248-55.
[http://dx.doi.org/10.1016/j.jcma.2016.01.008] [PMID: 27036494]
[62]
Shah RR. Tyrosine kinase inhibitor-induced interstitial lung disease: Clinical features, diagnostic challenges, and therapeutic dilemmas. Drug Saf 2016; 39(11): 1073-91.
[http://dx.doi.org/10.1007/s40264-016-0450-9] [PMID: 27534751]
[63]
Chen Z, Yang H, Li Z, Xia Q, Nie Y. Temsirolimus as a dual inhibitor of retinoblastoma and angiogenesis via targeting mTOR signalling. Biochem Biophys Res Communicat 2019; 516(3): 726-32.
[http://dx.doi.org/10.1016/j.bbrc.2019.06.127]
[64]
Washino S, Ando H, Ushijima K, et al. Temsirolimus induces surfactant lipid accumulation and lung inflammation in mice. Am J Physiol Lung Cell Mol Physiol 2014; 306(12): L1117-28.
[http://dx.doi.org/10.1152/ajplung.00251.2013] [PMID: 24793166]
[65]
Kokuho N, Terasaki Y, Kunugi S, et al. Analyses of alveolar epithelial injury via lipid-related stress in mammalian target of rapamycin inhibitor-induced lung disease. Lab Invest 2019; 99(6): 853-65.
[http://dx.doi.org/10.1038/s41374-018-0158-9] [PMID: 30728465]
[66]
Chen Z, Wu Z, Ning W. Advances in molecular mechanisms and treatment of radiation-induced pulmonary fibrosis. Transl Oncol 2019; 12(1): 162-9.
[http://dx.doi.org/10.1016/j.tranon.2018.09.009] [PMID: 30342294]
[67]
Azmoonfar R, Amini P, Saffar H, et al. Metformin protects against radiation-induced pneumonitis and fibrosis and attenuates upregulation of dual oxidase genes expression. Adv Pharm Bull 2018; 8(4): 697-704.
[http://dx.doi.org/10.15171/apb.2018.078] [PMID: 30607342]
[68]
Duru N, Zhang Y, Gernapudi R, et al. Loss of miR-140 is a key risk factor for radiation-induced lung fibrosis through reprogramming fibroblasts and macrophages. Sci Rep 2016; 6(1): 39572.
[http://dx.doi.org/10.1038/srep39572] [PMID: 27996039]
[69]
Groves AM, Johnston CJ, Williams JP, Finkelstein JN. Role of infiltrating monocytes in the development of radiation-induced pulmonary fibrosis. Radiat Res 2018; 189(3): 300-11.
[http://dx.doi.org/10.1667/RR14874.1] [PMID: 29332538]
[70]
Zhou X, Moore BB. Location on origin? What is critical for macrophage propagation of lung fibrosis? Eur Respiratory Soc 2018; 51(3): 1800103.
[71]
Gupta D, Kumar A, Mandloi A, Shenoy V. Renin angiotensin aldosterone system in pulmonary fibrosis: Pathogenesis to therapeutic possibilities. Pharmacol Res 2021; 174: 105924.
[http://dx.doi.org/10.1016/j.phrs.2021.105924] [PMID: 34607005]
[72]
Yu C, Yang B, Najafi M. Targeting of cancer cell death mechanisms by curcumin: Implications to cancer therapy. Basic Clin Pharmacol Toxicol 2021; 129(6): 397-415.
[http://dx.doi.org/10.1111/bcpt.13648] [PMID: 34473898]
[73]
Furuse M, Nonoguchi N, Yamada K, et al. Radiological diagnosis of brain radiation necrosis after cranial irradiation for brain tumor: A systematic review. Radiat Oncol 2019; 14(1): 28.
[http://dx.doi.org/10.1186/s13014-019-1228-x] [PMID: 30728041]
[74]
Farhood B, Najafi M, Salehi E, et al. Disruption of the redox balance with either oxidative or anti‐oxidative overloading as a promising target for cancer therapy. J Cell Biochem 2019; 120(1): 71-6.
[http://dx.doi.org/10.1002/jcb.27594] [PMID: 30203529]
[75]
Fu X, He Y, Li M, Huang Z, Najafi M. Targeting of the tumor microenvironment by curcumin. Biofactors 2021; 47(6): 914-32.
[http://dx.doi.org/10.1002/biof.1776] [PMID: 34375483]
[76]
Yang R, Tan C, Najafi M. Cardiac inflammation and fibrosis following chemo/radiation therapy: Mechanisms and therapeutic agents. Inflammopharmacol 2022; 30(1): 73-89.
[77]
Wu X, Ji H, Wang Y, et al. Melatonin alleviates radiation-induced lung injury via regulation of miR-30e/NLRP3 axis. Oxid Med Cell Longev 2019; 2019: 4087298.
[78]
Farhood B, Aliasgharzadeh A, Amini P, et al. Mitigation of radiation-induced lung pneumonitis and fibrosis using metformin and melatonin: A histopathological study. Medicina (Kaunas) 2019; 55(8): 417.
[http://dx.doi.org/10.3390/medicina55080417] [PMID: 31366142]
[79]
Azmoonfar R, Amini P, Yahyapour R, et al. Mitigation of radiation-induced pneumonitis and lung fibrosis using alpha-lipoic acid and resveratrol. Antiinflamm Antiallergy Agents Med Chem 2020; 19(2): 149-57.
[http://dx.doi.org/10.2174/1871523018666190319144020] [PMID: 30892165]
[80]
Yahyapour R, Amini P, Saffar H, et al. Protective effect of metformin, resveratrol and alpha-lipoic acid on radiation-induced pneumonitis and fibrosis: A histopathological study. Curr Drug Res Rev 2019; 11(2): 111-7.
[http://dx.doi.org/10.2174/2589977511666191018180758] [PMID: 31875783]
[81]
Griffin F, Marignol L. Therapeutic potential of melatonin for breast cancer radiation therapy patients. Int J Radiat Biol 2018; 94(5): 472-7.
[http://dx.doi.org/10.1080/09553002.2018.1446227] [PMID: 29521142]
[82]
Kahkesh MH, Salehi Z, Najafi M, Ghobadi A, Izad M, Shirazi A. The inhibitory effect of melatonin on the proliferation of irradiated A549 cell line. J Cancer Res Ther 2020; 16(6): 1500-5.
[PMID: 33342820]
[83]
Alonso‐González C, González A, Martínez‐Campa C, Gómez‐Arozamena J, Cos S. Melatonin sensitizes human breast cancer cells to ionizing radiation by downregulating proteins involved in double‐strand DNA break repair. J Pin Res 2015; 58(2): 189-97.
[84]
Alonso-González C, Menéndez-Menéndez J, González-González A, González A, Cos S, Martínez-Campa C. Melatonin enhances the apoptotic effects and modulates the changes in gene expression induced by docetaxel in MCF 7 human breast cancer cells. Int J Oncol 2018; 52(2): 560-70.
[PMID: 29207126]
[85]
Seely D, Legacy M, Auer RC, et al. Adjuvant melatonin for the prevention of recurrence and mortality following lung cancer resection (AMPLCaRe): A randomized placebo controlled clinical trial. EClinicalMedicine 2021; 33: 100763.
[http://dx.doi.org/10.1016/j.eclinm.2021.100763] [PMID: 33681747]
[86]
Wang Y, Wang P, Zheng X, Du X. Therapeutic strategies of melatonin in cancer patients: A systematic review and meta-analysis. OncoTargets Ther 2018; 11: 7895-908.
[http://dx.doi.org/10.2147/OTT.S174100] [PMID: 30510430]
[87]
Amini P, Kolivand S, Saffar H, et al. Protective effect of Selenium-L-methionine on radiation-induced acute pneumonitis and lung fibrosis in rat. Curr Clin Pharmacol 2019; 14(2): 157-64.
[PMID: 30556505]
[88]
Lobb R, Jacobson G, Cursons R, Jameson M. The interaction of selenium with chemotherapy and radiation on normal and malignant human mononuclear blood cells. Int J Mol Sci 2018; 19(10): 3167.
[http://dx.doi.org/10.3390/ijms19103167] [PMID: 30326581]
[89]
Gandin V, Khalkar P, Braude J, Fernandes AP. Organic selenium compounds as potential chemotherapeutic agents for improved cancer treatment. Free Radic Biol Med 2018; 127: 80-97.
[http://dx.doi.org/10.1016/j.freeradbiomed.2018.05.001] [PMID: 29746900]
[90]
Gao S, Li T, Guo Y, Sun C, Xianyu B, Xu H. Selenium‐containing nanoparticles combine the NK cells mediated immunotherapy with radiotherapy and chemotherapy. Adv Mater 2020; 32(12): 1907568.
[http://dx.doi.org/10.1002/adma.201907568] [PMID: 32053267]
[91]
Tian J, Wei X, Zhang W, Xu A. Effects of selenium nanoparticles combined with radiotherapy on lung cancer cells. Front Bioeng Biotechnol 2020; 8: 598997.
[http://dx.doi.org/10.3389/fbioe.2020.598997] [PMID: 33304892]
[92]
Farhood B, Mortezaee K, Motevaseli E, et al. Selenium as an adjuvant for modification of radiation response. J Cell Biochem 2019; 120(11): 18559-71.
[http://dx.doi.org/10.1002/jcb.29171] [PMID: 31190419]
[93]
Schilling D, Herold B, Combs SE, Schmid TE. Selenium does not affect radiosensitivity of breast cancer cell lines. Radiat Environ Biophys 2019; 58(3): 433-8.
[http://dx.doi.org/10.1007/s00411-019-00801-5] [PMID: 31201502]
[94]
Deng Z, Fear MW, Suk Choi Y, et al. The extracellular matrix and mechanotransduction in pulmonary fibrosis. Int J Biochem Cell Biol 2020; 126: 105802.
[http://dx.doi.org/10.1016/j.biocel.2020.105802] [PMID: 32668329]
[95]
Giuranno L, Ient J, De Ruysscher D, Vooijs MA. Radiation-induced lung injury (RILI). Front Oncol 2019; 9: 877.
[http://dx.doi.org/10.3389/fonc.2019.00877] [PMID: 31555602]
[96]
Moustafa EM, Ismail Ibrahim S, Salem FAF. Methylsulfonylmethane inhibits lung fibrosis progression, inflammatory response, and epithelial-mesenchymal transition via the transforming growth factor-Β1/SMAD2/3 pathway in rats exposed to both γ -radiation and Bisphenol-A. Toxin Rev 2021; 40(4): 1431-40.
[http://dx.doi.org/10.1080/15569543.2020.1728337]
[97]
Wang S, Yan S, Zhu S, et al. FOXF1 induces epithelial-mesenchymal transition in colorectal cancer metastasis by transcriptionally activating SNAI1. Neoplasia 2018; 20(10): 996-1007.
[http://dx.doi.org/10.1016/j.neo.2018.08.004] [PMID: 30189360]
[98]
Balli D, Ustiyan V, Zhang Y, et al. Foxm1 transcription factor is required for lung fibrosis and epithelial-to-mesenchymal transition. EMBO J 2013; 32(2): 231-44.
[http://dx.doi.org/10.1038/emboj.2012.336] [PMID: 23288041]
[99]
Xue J, Lin X, Chiu WT, et al. Sustained activation of SMAD3/SMAD4 by FOXM1 promotes TGF-β-dependent cancer metastasis. J Clin Invest 2014; 124(2): 564-79.
[http://dx.doi.org/10.1172/JCI71104] [PMID: 24382352]
[100]
Chen W, Ren X, Wu J, et al. HSP 27 associates with epithelial–mesenchymal transition, stemness and radioresistance of salivary adenoid cystic carcinoma. J Cell Mol Med 2018; 22(4): 2283-98.
[http://dx.doi.org/10.1111/jcmm.13510] [PMID: 29424489]
[101]
Wang G, Jiao H, Zheng JN, Sun X. HSP27 regulates TGF-β mediated lung fibroblast differentiation through the Smad3 and ERK pathways. Int J Mol Med 2017; 39(1): 183-90.
[http://dx.doi.org/10.3892/ijmm.2016.2813] [PMID: 27909724]
[102]
Park AM, Kanai K, Itoh T, et al. Heat shock protein 27 plays a pivotal role in myofibroblast differentiation and in the development of bleomycin-induced pulmonary fibrosis. PLoS One 2016; 11(2): e0148998.
[http://dx.doi.org/10.1371/journal.pone.0148998] [PMID: 26859835]
[103]
Nagarajan D, Melo T, Deng Z, Almeida C, Zhao W. ERK/GSK3β/Snail signaling mediates radiation-induced alveolar epithelial-to-mesenchymal transition. Free Radic Biol Med 2012; 52(6): 983-92.
[http://dx.doi.org/10.1016/j.freeradbiomed.2011.11.024] [PMID: 22198183]
[104]
Kim JY, Jeon S, Yoo YJ, et al. The Hsp27-mediated IkBα-NFκB signaling axis promotes radiation-induced lung fibrosis. Clin Cancer Res 2019; 25(17): 5364-75.
[http://dx.doi.org/10.1158/1078-0432.CCR-18-3900] [PMID: 31126962]
[105]
Guo L, Xu J, Liu L, Liu S, Zhu R. Hypoxia-induced epithelial-mesenchymal transition is involved in bleomycin-induced lung fibrosis. BioMed Res Int 2015; 2015: 1-10.
[http://dx.doi.org/10.1155/2015/232791] [PMID: 26819949]
[106]
Lei X, Ma N, Liang Y, et al. Glucosamine protects against radiation‐induced lung injury via inhibition of epithelial‐mesenchymal transition. J Cell Mol Med 2020; 24(18): 11018-23.
[http://dx.doi.org/10.1111/jcmm.15662] [PMID: 32700471]
[107]
Cao K, Lei X, Liu H, et al. Polydatin alleviated radiation-induced lung injury through activation of Sirt3 and inhibition of epithelial-mesenchymal transition. J Cell Mol Med 2017; 21(12): 3264-76.
[http://dx.doi.org/10.1111/jcmm.13230] [PMID: 28609013]
[108]
Gong L, Wu X, Li X, et al. S1PR3 deficiency alleviates radiation‐induced pulmonary fibrosis through the regulation of epithelial–mesenchymal transition by targeting miR‐495‐3p. J Cell Physiol 2020; 235(3): 2310-24.
[http://dx.doi.org/10.1002/jcp.29138] [PMID: 31489649]
[109]
Zhou J, Wu P, Sun H, Zhou H, Zhang Y, Xiao Z. Lung tissue extracellular matrix‐derived hydrogels protect against radiation‐induced lung injury by suppressing epithelial-mesenchymal transition. J Cell Physiol 2020; 235(3): 2377-88.
[http://dx.doi.org/10.1002/jcp.29143] [PMID: 31490023]
[110]
Zhang Y, Jiang X, Ren L. Optimization of the adipose-derived mesenchymal stem cell delivery time for radiation-induced lung fibrosis treatment in rats. Sci Rep 2019; 9(1): 5589.
[http://dx.doi.org/10.1038/s41598-019-41576-5] [PMID: 30944348]
[111]
Qu H, Liu L, Liu Z, et al. Blocking TBK1 alleviated radiation-induced pulmonary fibrosis and epithelial-mesenchymal transition through Akt-Erk inactivation. Exp Mol Med 2019; 51(4): 1-17.
[http://dx.doi.org/10.1038/s12276-019-0240-4] [PMID: 30988282]
[112]
Farhood B, Ashrafizadeh M, khodamoradi E, et al. Targeting of cellular redox metabolism for mitigation of radiation injury. Life Sci 2020; 250: 117570.
[http://dx.doi.org/10.1016/j.lfs.2020.117570] [PMID: 32205088]
[113]
Li B, Alli R, Vogel P, Geiger TL. IL-10 modulates DSS-induced colitis through a macrophage–ROS–NO axis. Muc immunol 2014; 7(4): 869-78.
[114]
Wang N, Liang H, Zen K. Molecular mechanisms that influence the macrophage m1-m2 polarization balance. Front Immunol 2014; 5: 614.
[http://dx.doi.org/10.3389/fimmu.2014.00614] [PMID: 25506346]
[115]
Wang L, Zhang Y, Zhang N, Xia J, Zhan Q, Wang C. Potential role of M2 macrophage polarization in ventilator-induced lung fibrosis. Int Immunopharmacol 2019; 75: 105795.
[http://dx.doi.org/10.1016/j.intimp.2019.105795] [PMID: 31421547]
[116]
Park HR, Jo SK, Jung U. Ionizing radiation promotes epithelial-to-Mesenchymal transition in lung epithelial cells by TGF-β-producing M2 macrophages. In Vivo 2019; 33(6): 1773-84.
[http://dx.doi.org/10.21873/invivo.11668] [PMID: 31662502]
[117]
Schafer MJ, White TA, Iijima K, et al. Cellular senescence mediates fibrotic pulmonary disease. Nature communicat 2017; 8(1): 1-11.
[http://dx.doi.org/10.1038/ncomms14532]
[118]
Su L, Dong Y, Wang Y, et al. Potential role of senescent macrophages in radiation-induced pulmonary fibrosis. Cell Death Dis 2021; 12(6): 527.
[http://dx.doi.org/10.1038/s41419-021-03811-8] [PMID: 34023858]
[119]
Groves AM, Johnston CJ, Misra RS, Williams JP, Finkelstein JN. Effects of IL-4 on pulmonary fibrosis and the accumulation and phenotype of macrophage subpopulations following thoracic irradiation. Int J Radiat Biol 2016; 92(12): 754-65.
[http://dx.doi.org/10.1080/09553002.2016.1222094] [PMID: 27539247]
[120]
Mortezaee K, Najafi M. Immune system in cancer radiotherapy: Resistance mechanisms and therapy perspectives. Crit Rev Oncol Hematol 2021; 157: 103180.
[http://dx.doi.org/10.1016/j.critrevonc.2020.103180] [PMID: 33264717]
[121]
Jones KI, Tiersma J, Yuzhalin AE, et al. Radiation combined with macrophage depletion promotes adaptive immunity and potentiates checkpoint blockade. EMBO Mol Med 2018; 10(12): e9342.
[http://dx.doi.org/10.15252/emmm.201809342] [PMID: 30442705]
[122]
Cheng P, Li S, Chen H. Macrophages in lung injury, repair, and fibrosis. Cells 2021; 10(2): 436.
[http://dx.doi.org/10.3390/cells10020436] [PMID: 33670759]
[123]
Meziani L, Mondini M, Petit B, et al. CSF1R inhibition prevents radiation pulmonary fibrosis by depletion of interstitial macrophages. Eur Respirat J 2018; 51(3): 1702120.
[124]
Yang S, Zhang M, Chen C, et al. Triptolide mitigates radiation-induced pulmonary fibrosis. Radiat Res 2015; 184(5): 509-17.
[http://dx.doi.org/10.1667/RR13831.1] [PMID: 26488756]
[125]
Chen C, Yang S, Zhang M, et al. Triptolide mitigates radiation-induced pneumonitis via inhibition of alveolar macrophages and related inflammatory molecules. Oncotarget 2017; 8(28): 45133-42.
[http://dx.doi.org/10.18632/oncotarget.16456] [PMID: 28415830]
[126]
Chen C, Yang S, Zhang M, et al. Triptolide mitigates radiation-induced pulmonary fibrosis via inhibition of axis of alveolar macrophages-NOXes-ROS-myofibroblasts. Cancer Biol Ther 2016; 17(4): 381-9.
[http://dx.doi.org/10.1080/15384047.2016.1139229] [PMID: 27003327]
[127]
Wan S, Yi Q, Fan S, et al. Relationships among lymphocyte subsets, cytokines, and the pulmonary inflammation index in coronavirus (COVID‐19) infected patients. Br J Haematol 2020; 189(3): 428-37.
[http://dx.doi.org/10.1111/bjh.16659] [PMID: 32297671]
[128]
Teng F, Li M, Yu J. Radiation recall pneumonitis induced by PD-1/PD-L1 blockades: Mechanisms and therapeutic implications. BMC Med 2020; 18(1): 275.
[http://dx.doi.org/10.1186/s12916-020-01718-3] [PMID: 32943072]
[129]
Wirsdörfer F, Jendrossek V. The role of lymphocytes in radiotherapy-induced adverse late effects in the lung. Front Immunol 2016; 7: 591-1.
[http://dx.doi.org/10.3389/fimmu.2016.00591] [PMID: 28018357]
[130]
Chen J, Li X, Huang C, Lin Y, Dai Q. Change of serum inflammatory cytokines levels in patients with chronic obstructive pulmonary disease, pneumonia and lung cancer. Technol Cancer Res Treat 2020; 19.
[http://dx.doi.org/10.1177/1533033820951807] [PMID: 33111646]
[131]
Yunna C, Mengru H, Lei W, Weidong C. Macrophage M1/M2 polarization. Eur J Pharmacol 2020; 877: 173090.
[http://dx.doi.org/10.1016/j.ejphar.2020.173090] [PMID: 32234529]
[132]
Hu ZJ, Xu J, Yin JM, et al. Lower circulating interferon-gamma is a risk factor for lung fibrosis in COVID-19 patients. Front Immunol 2020; 11: 585647.
[http://dx.doi.org/10.3389/fimmu.2020.585647] [PMID: 33133104]
[133]
Lee JW, Oh JE, Rhee KJ, et al. Co-treatment with interferon-γ and 1-methyl tryptophan ameliorates cardiac fibrosis through cardiac myofibroblasts apoptosis. Mol Cell Biochem 2019; 458(1-2): 197-205.
[http://dx.doi.org/10.1007/s11010-019-03542-7] [PMID: 31006829]
[134]
Theoharides TC, Alysandratos KD, Angelidou A, et al. Mast cells and inflammation. Biochim Biophys Acta Mol Basis Dis 2012; 1822(1): 21-33.
[http://dx.doi.org/10.1016/j.bbadis.2010.12.014] [PMID: 21185371]
[135]
Overed-Sayer C, Rapley L, Mustelin T, Clarke DL. Are mast cells instrumental for fibrotic diseases? Front Pharmacol 2014; 4: 174.
[http://dx.doi.org/10.3389/fphar.2013.00174] [PMID: 24478701]
[136]
Blirando K, Milliat F, Martelly I, Sabourin JC, Benderitter M, François A. Mast cells are an essential component of human radiation proctitis and contribute to experimental colorectal damage in mice. Am J Pathol 2011; 178(2): 640-51.
[http://dx.doi.org/10.1016/j.ajpath.2010.10.003] [PMID: 21281796]
[137]
Akbar Aliasgharzadeh BF, Amini P, Saffar H, et al. Melatonin attenuates upregulation of Duox1 and Duox2 and protects against lung injury following rat’s chest irradiation. Cell J 2019; 21(3): 236-42.
[138]
Farhood B, Aliasgharzadeh A, Amini P, et al. Radiation-induced dual oxidase upregulation in rat heart tissues: Protective effect of melatonin. Medicina 2019; 55(7): 317.
[139]
Soodaeva S, Kubysheva N, Klimanov I, Nikitina L, Batyrshin I. Features of oxidative and nitrosative metabolism in lung diseases. Oxid Med Cell Longev 2019; 2019: 1-12.
[http://dx.doi.org/10.1155/2019/1689861] [PMID: 31249640]
[140]
Naidoo J, Nishino M, Patel SP, et al. Immune-related pneumonitis after chemoradiotherapy and subsequent immune checkpoint blockade in unresectable stage III non-small-cell lung cancer. Clin Lung Cancer 2020; 21(5): e435-44.
[http://dx.doi.org/10.1016/j.cllc.2020.02.025] [PMID: 32576443]
[141]
Nguyen JK, Austin E, Huang A, Mamalis A, Jagdeo J. The IL-4/IL-13 axis in skin fibrosis and scarring: Mechanistic concepts and therapeutic targets. Arch Dermatol Res 2020; 312(2): 81-92.
[http://dx.doi.org/10.1007/s00403-019-01972-3] [PMID: 31493000]
[142]
Malaviya R, Gow AJ, Francis M, Abramova EV, Laskin JD, Laskin DL. Radiation-induced lung injury and inflammation in mice: Role of inducible nitric oxide synthase and surfactant protein D. Toxicol Sci 2015; 144(1): 27-38.
[http://dx.doi.org/10.1093/toxsci/kfu255] [PMID: 25552309]
[143]
Li X, Guo L, Liu Y, et al. MicroRNA-21 promotes wound healing via the Smad7-Smad2/3-Elastin pathway. Exp Cell Res 2018; 362(2): 245-51.
[http://dx.doi.org/10.1016/j.yexcr.2017.11.019] [PMID: 29154818]
[144]
Bei Y, Hua-Huy T, Duong-Quy S, et al. Long-term treatment with fasudil improves bleomycin-induced pulmonary fibrosis and pulmonary hypertension via inhibition of Smad2/3 phosphorylation. Pulm Pharmacol Ther 2013; 26(6): 635-43.
[http://dx.doi.org/10.1016/j.pupt.2013.07.008] [PMID: 23928001]
[145]
Seccia TM, Rigato M, Ravarotto V, Calò LA. ROCK (RhoA/Rho Kinase) in cardiovascular–renal pathophysiology: A review of new advancements. J Clin Med 2020; 9(5): 1328.
[http://dx.doi.org/10.3390/jcm9051328] [PMID: 32370294]
[146]
Xie L, Zeng Y. Therapeutic potential of exosomes in pulmonary fibrosis. Front Pharmacol 2020; 11: 590972.
[http://dx.doi.org/10.3389/fphar.2020.590972] [PMID: 33343360]
[147]
Monceau V, Pasinetti N, Schupp C, Pouzoulet F, Opolon P, Vozenin MC. Modulation of the Rho/ROCK pathway in heart and lung after thorax irradiation reveals targets to improve normal tissue toxicity. Curr Drug Targets 2010; 11(11): 1395-404.
[http://dx.doi.org/10.2174/1389450111009011395] [PMID: 20583978]
[148]
Jiang C, Huang H, Liu J, Wang Y, Lu Z, Xu Z. Fasudil, a Rho-kinase inhibitor, attenuates bleomycin-induced pulmonary fibrosis in mice. Int J Mol Sci 2012; 13(7): 8293-307.
[http://dx.doi.org/10.3390/ijms13078293] [PMID: 22942703]
[149]
Buechler MB, Fu W, Turley SJ. Fibroblast-macrophage reciprocal interactions in health, fibrosis, and cancer. Immunity 2021; 54(5): 903-15.
[http://dx.doi.org/10.1016/j.immuni.2021.04.021] [PMID: 33979587]
[150]
Mackinnon A, Forbes S. Bone marrow contributions to fibrosis. Biochim Biophys Acta Mol Basis Dis 2013; 1832(7): 955-61.
[http://dx.doi.org/10.1016/j.bbadis.2013.01.022]
[151]
Epperly MW, Guo H, Gretton JE, Greenberger JS. Bone marrow origin of myofibroblasts in irradiation pulmonary fibrosis. Am J Respir Cell Mol Biol 2003; 29(2): 213-24.
[http://dx.doi.org/10.1165/rcmb.2002-0069OC] [PMID: 12649121]
[152]
Liu Z, Lei X, Li X, Cai JM, Gao F, Yang YY. Toll-like receptors and radiation protection. Eur Rev Med Pharmacol Sci 2018; 22(1): 31-9.
[PMID: 29364499]
[153]
Xia L, Tan S, Zhou Y, et al. Role of the NFκB-signaling pathway in cancer. OncoTarget Ther 2018; 11: 2063-73.
[154]
Mortezaee K, Najafi M, Farhood B, Ahmadi A, Shabeeb D, Musa AE. NF‐κB targeting for overcoming tumor resistance and normal tissues toxicity. J Cell Physiol 2019; 234(10): 17187-204.
[http://dx.doi.org/10.1002/jcp.28504] [PMID: 30912132]
[155]
Mortezaee K, Najafi M, Farhood B, Ahmadi A, Shabeeb D, Musa AE. Resveratrol as an adjuvant for normal tissues protection and tumor sensitization. Curr Cancer Drug Targets 2020; 20(2): 130-45.
[http://dx.doi.org/10.2174/1568009619666191019143539] [PMID: 31738153]
[156]
Sheikholeslami S, Aryafar T, Abedi-Firouzjah R, et al. The role of melatonin on radiation-induced pneumonitis and lung fibrosis: A systematic review. Life Sci 2021; 281: 119721.
[http://dx.doi.org/10.1016/j.lfs.2021.119721] [PMID: 34146555]
[157]
Peng L, Wen L, Shi QF, et al. Scutellarin ameliorates pulmonary fibrosis through inhibiting NF-κB/NLRP3-mediated epithelial–mesenchymal transition and inflammation. Cell Death Dis 2020; 11(11): 978.
[http://dx.doi.org/10.1038/s41419-020-03178-2] [PMID: 33188176]
[158]
Wang R, Peng S, Zhang X, et al. Inhibition of NF-κB improves sensitivity to irradiation and EGFR-TKIs and decreases irradiation-induced lung toxicity. Int J Cancer 2019; 144(1): 200-9.
[http://dx.doi.org/10.1002/ijc.31907] [PMID: 30289964]
[159]
Mansour HH, Omran MM, Hasan HF. El kiki SM. Modulation of bleomycin‐induced oxidative stress and pulmonary fibrosis by N‐acetylcysteine in rats via AMPK/SIRT1/NF‐κβ. Clin Exp Pharmacol Physiol 2020; 47(12): 1943-52.
[http://dx.doi.org/10.1111/1440-1681.13378] [PMID: 32658336]
[160]
Zheng L, Zhu Q, Xu C, et al. Glycyrrhizin mitigates radiation‐induced acute lung injury by inhibiting the HMGB1/TLR4 signalling pathway. J Cell Mol Med 2020; 24(1): 214-26.
[http://dx.doi.org/10.1111/jcmm.14703] [PMID: 31657123]
[161]
Seo K, Yang JH, Kim SC, Ku SK, Ki SH, Shin SM. The antioxidant effects of isorhamnetin contribute to inhibit COX-2 expression in response to inflammation: A potential role of HO-1. Inflammation 2014; 37(3): 712-22.
[http://dx.doi.org/10.1007/s10753-013-9789-6] [PMID: 24337631]
[162]
Yang HM, Song WJ, Li Q, et al. Canine mesenchymal stem cells treated with TNF-α and IFN-γ enhance anti-inflammatory effects through the COX-2/PGE2 pathway. Res Vet Sci 2018; 119: 19-26.
[http://dx.doi.org/10.1016/j.rvsc.2018.05.011] [PMID: 29783120]
[163]
Luo C, Urgard E, Vooder T, Metspalu A. The role of COX-2 and Nrf2/ARE in anti-inflammation and antioxidative stress: Aging and anti-aging. Med Hypotheses 2011; 77(2): 174-8.
[http://dx.doi.org/10.1016/j.mehy.2011.04.002] [PMID: 21530094]
[164]
Cheki M, Yahyapour R, Farhood B, et al. COX-2 in radiotherapy: A potential target for radioprotection and radiosensitization. Curr Mol Pharmacol 2018; 11(3): 173-83.
[http://dx.doi.org/10.2174/1874467211666180219102520] [PMID: 29468988]
[165]
Azmoonfar R, Amini P, Saffar H, et al. Celecoxib a selective Cox-2 inhibitor mitigates fibrosis but not pneumonitis following lung irradiation: A histopathological study. Curr Drug Ther 2020; 15(4): 351-7.
[http://dx.doi.org/10.2174/1574885514666191119124739]
[166]
Hegazy RR, El-Shaer MA, El-Batran SA, Sharaf OA, Knawy S. The potential effect of capitopril celecoxib and their combination on experimentally rat model of lung fibrosis. IJIB 2010; 9: 67.
[167]
Hunter NR, Valdecanas D, Liao Z, Milas L, Thames HD, Mason KA. Mitigation and treatment of radiation-induced thoracic injury with a cyclooxygenase-2 inhibitor, celecoxib. Int J Radiat Oncol Biol Phys 2013; 85(2): 472-6.
[http://dx.doi.org/10.1016/j.ijrobp.2012.04.025] [PMID: 22672748]
[168]
Giatromanolaki A, Tsolou A, Daridou E, Kouroupi M, Chlichlia K, Koukourakis MI. iNOS Expression by tumor-infiltrating lymphocytes, PD-L1 and prognosis in non-small-cell lung cancer. Cancers (Basel) 2020; 12(11): 3276.
[http://dx.doi.org/10.3390/cancers12113276] [PMID: 33167430]
[169]
Ibiza S, Serrador JM. The role of nitric oxide in the regulation of adaptive immune responses. Inmunologia 2008; 27(3): 103-17.
[http://dx.doi.org/10.1016/S0213-9626(08)70058-1]
[170]
Lv Y, Li Y, Wang J, et al. MiR‐382‐5p suppresses M1 macrophage polarization and inflammatory response in response to bronchopulmonary dysplasia through targeting CDK8: Involving inhibition of STAT1 pathway. Genes Cells 2021; 26(10): 772-81.
[http://dx.doi.org/10.1111/gtc.12883] [PMID: 34228857]
[171]
Singh S, Gupta AK. Nitric oxide: Role in tumour biology and iNOS/NO-based anticancer therapies. Can Chem Pharmacol 2011; 67(6): 1211-24.
[172]
Mutamba JT, Svilar D, Prasongtanakij S, et al. XRCC1 and base excision repair balance in response to nitric oxide. DNA Repair (Amst) 2011; 10(12): 1282-93.
[http://dx.doi.org/10.1016/j.dnarep.2011.10.008] [PMID: 22041025]
[173]
Malik M, Yuspa S. iNOS-induced CLIC4 nuclear translocation regulates macrophage deactivation and TGF-β signaling. Nitric Oxide 2012; 27: S43.
[http://dx.doi.org/10.1016/j.niox.2012.04.155]
[174]
Chen C, Yun XJ, Liu L, Guo H, Liu LF, Chen XL. Exogenous nitric oxide enhances the prophylactic effect of aminoguanidine, a preferred iNOS inhibitor, on bleomycin-induced fibrosis in the lung: Implications for the direct roles of the NO molecule in vivo. Nitric Oxide 2017; 70: 31-41.
[http://dx.doi.org/10.1016/j.niox.2017.07.005] [PMID: 28757441]
[175]
Saghir SAM, Al-Gabri NA, Khafaga AF, et al. Thymoquinone-PLGA-PVA nanoparticles ameliorate bleomycin-induced pulmonary fibrosis in rats via regulation of inflammatory cytokines and iNOS signaling. Animals (Basel) 2019; 9(11): 951.
[http://dx.doi.org/10.3390/ani9110951] [PMID: 31717986]
[176]
Kalayarasan S, Sriram N, Sudhandiran G. Diallyl sulfide attenuates bleomycin-induced pulmonary fibrosis: Critical role of iNOS, NF-κB, TNF-α and IL-1β. Life Sci 2008; 82(23-24): 1142-53.
[http://dx.doi.org/10.1016/j.lfs.2008.03.018] [PMID: 18462759]
[177]
Zhu B, Ma AQ, Yang L, Dang XM. Atorvastatin attenuates bleomycin-induced pulmonary fibrosis via suppressing iNOS expression and the CTGF (CCN2)/ERK signaling pathway. Int J Mol Sci 2013; 14(12): 24476-91.
[http://dx.doi.org/10.3390/ijms141224476] [PMID: 24351828]
[178]
Zaafan MA, Zaki HF, El-Brairy AI, Kenawy SA. Pyrrolidinedithiocarbamate attenuates bleomycin-induced pulmonary fibrosis in rats: Modulation of oxidative stress, fibrosis, and inflammatory parameters. Exp Lung Res 2016; 42(8-10): 408-16.
[http://dx.doi.org/10.1080/01902148.2016.1244578] [PMID: 27797599]
[179]
Verma S, Kalita B, Bajaj S, Prakash H, Singh AK, Gupta ML. A combination of podophyllotoxin and rutin alleviates radiation-induced pneumonitis and fibrosis through modulation of lung inflammation in mice. Front Immunol 2017; 8(658): 658.
[http://dx.doi.org/10.3389/fimmu.2017.00658] [PMID: 28649248]
[180]
Abernathy LM, Fountain MD, Joiner MC, Hillman GG. Innate immune pathways associated with lung radioprotection by soy isoflavones. Front Oncol 2017; 7(7): 7.
[http://dx.doi.org/10.3389/fonc.2017.00007] [PMID: 28168165]
[181]
khodamoradi E, Hoseini-Ghahfarokhi M, Amini P, et al. Targets for protection and mitigation of radiation injury. Cell Mol Life Sci 2020; 77(16): 3129-59.
[http://dx.doi.org/10.1007/s00018-020-03479-x] [PMID: 32072238]
[182]
Luan H, Zhang Q, Wang L, et al. OM85-BV induced the productions of IL-1β IL-6, and TNF-α via TLR4- and TLR2-mediated ERK1/2/NF-κB pathway in RAW264.7 cells. J Interferon Cytokine Res 2014; 34(7): 526-36.
[http://dx.doi.org/10.1089/jir.2013.0077] [PMID: 24605772]
[183]
Go H, Koh J, Kim HS, Jeon YK, Chung DH. Expression of toll-like receptor 2 and 4 is increased in the respiratory epithelial cells of chronic idiopathic interstitial pneumonia patients. Respir Med 2014; 108(5): 783-92.
[http://dx.doi.org/10.1016/j.rmed.2013.12.007] [PMID: 24613046]
[184]
Liu H, Yang H, Mi S, Cui B, Hua F, Hu Z. Toll like receptor 2 mediates bleomycin-induced acute lung injury, inflammation and fibrosis in mice. Yao Xue Bao 2010; 45(8): 976-86.
[185]
Bolourani S, Brenner M, Wang P. The interplay of DAMPs, TLR4, and proinflammatory cytokines in pulmonary fibrosis. J Mol Med (Berl) 2021; 99(10): 1373-84.
[http://dx.doi.org/10.1007/s00109-021-02113-y] [PMID: 34258628]
[186]
Ballinger MN, Newstead MW, Zeng X, et al. IRAK-M promotes alternative macrophage activation and fibroproliferation in bleomycin-induced lung injury. J Immunol 2015; 194(4): 1894-904.
[http://dx.doi.org/10.4049/jimmunol.1402377] [PMID: 25595781]
[187]
Xu JF, Washko GR, Nakahira K, et al. Statins and pulmonary fibrosis: The potential role of NLRP3 inflammasome activation. Am J Respir Crit Care Med 2012; 185(5): 547-56.
[http://dx.doi.org/10.1164/rccm.201108-1574OC] [PMID: 22246178]
[188]
Hosseinian N, Cho Y, Lockey RF, Kolliputi N. The role of the NLRP3 inflammasome in pulmonary diseases. Ther Adv Respir Dis 2015; 9(4): 188-97.
[http://dx.doi.org/10.1177/1753465815586335] [PMID: 26012351]
[189]
Kepp O, Galluzzi L, Kroemer G. Mitochondrial control of the NLRP3 inflammasome. Nat Immunol 2011; 12(3): 199-200.
[http://dx.doi.org/10.1038/ni0311-199] [PMID: 21321591]
[190]
Swanson KV, Deng M, Ting JPY. The NLRP3 inflammasome: Molecular activation and regulation to therapeutics. Nat Rev Immunol 2019; 19(8): 477-89.
[http://dx.doi.org/10.1038/s41577-019-0165-0] [PMID: 31036962]
[191]
Huang S, Che J, Chu Q, Zhang P. The role of NLRP3 inflammasome in radiation-induced cardiovascular injury. Front Cell Dev Biol 2020; 8: 140.
[http://dx.doi.org/10.3389/fcell.2020.00140] [PMID: 32226786]
[192]
Shang S, Wang L, Zhang Y, Lu H, Lu X. The beta-hydroxybutyrate suppresses the migration of glioma cells by inhibition of NLRP3 inflammasome. Cell Mol Neurobiol 2018; 38(8): 1479-89.
[http://dx.doi.org/10.1007/s10571-018-0617-2] [PMID: 30218403]
[193]
Li X, Gong Y, Li D, et al. Low-dose radiation therapy promotes radiation pneumonitis by activating NLRP3 inflammasome. Int J Radiat Oncol Biol Phys 2020; 107(4): 804-14.
[http://dx.doi.org/10.1016/j.ijrobp.2020.02.643] [PMID: 32334032]
[194]
Tian R, Zhu Y, Yao J, et al. NLRP3 participates in the regulation of EMT in bleomycin-induced pulmonary fibrosis. Exp Cell Res 2017; 357(2): 328-34.
[http://dx.doi.org/10.1016/j.yexcr.2017.05.028] [PMID: 28591554]
[195]
Dos Santos G, Rogel MR, Baker MA, et al. Vimentin regulates activation of the NLRP3 inflammasome. Nat Communicat 2015; 6(1): 1-13.
[http://dx.doi.org/10.1038/ncomms7574]
[196]
Noguchi T, Sekiguchi Y, Kudoh Y, et al. Gefitinib initiates sterile inflammation by promoting IL-1β and HMGB1 release via two distinct mechanisms. Cell Death Dis 2021; 12(1): 49.
[http://dx.doi.org/10.1038/s41419-020-03335-7] [PMID: 33414419]
[197]
Magnani F, Mattevi A. Structure and mechanisms of ROS generation by NADPH oxidases. Curr Opin Struct Biol 2019; 59: 91-7.
[http://dx.doi.org/10.1016/j.sbi.2019.03.001] [PMID: 31051297]
[198]
Cachat J, Deffert C, Hugues S, Krause KH. Phagocyte NADPH oxidase and specific immunity. Clin Sci (Lond) 2015; 128(10): 635-48.
[http://dx.doi.org/10.1042/CS20140635] [PMID: 25760962]
[199]
Zhao Y, McLaughlin D, Robinson E, et al. Nox2 NADPH oxidase promotes pathologic cardiac remodeling associated with Doxorubicin chemotherapy. Cancer Res 2010; 70(22): 9287-97.
[http://dx.doi.org/10.1158/0008-5472.CAN-10-2664] [PMID: 20884632]
[200]
Yasuda M, Kato S, Yamanaka N, et al. Potential role of the NADPH oxidase NOX1 in the pathogenesis of 5-fluorouracil-induced intestinal mucositis in mice. Am J Physiol Gastrointest Liver Physiol 2012; 302(10): G1133-42.
[http://dx.doi.org/10.1152/ajpgi.00535.2011] [PMID: 22403796]
[201]
Ma W, Hu J, Cheng Y, Wang J, Zhang X, Xu M. Ginkgolide B protects against cisplatin-induced ototoxicity: Enhancement of Akt–Nrf2–HO-1 signaling and reduction of NADPH oxidase. Can Chem Pharmacol 2015; 75(5): 949-59.
[202]
Weyemi U, Redon CE, Aziz T, et al. Inactivation of NADPH oxidases NOX4 and NOX5 protects human primary fibroblasts from ionizing radiation-induced DNA damage. Radiat Res 2015; 183(3): 262-70.
[http://dx.doi.org/10.1667/RR13799.1] [PMID: 25706776]
[203]
Park S, Ahn JY, Lim MJ, et al. Sustained expression of NADPH oxidase 4 by p38 MAPK-Akt signaling potentiates radiation-induced differentiation of lung fibroblasts. J Mol Med (Berl) 2010; 88(8): 807-16.
[http://dx.doi.org/10.1007/s00109-010-0622-5] [PMID: 20396861]
[204]
Yang Q, Zhang P, Liu T, et al. Magnesium isoglycyrrhizinate ameliorates radiation-induced pulmonary fibrosis by inhibiting fibroblast differentiation via the p38MAPK/Akt/Nox4 pathway. Biomed Pharmacother 2019; 115: 108955.
[http://dx.doi.org/10.1016/j.biopha.2019.108955] [PMID: 31075733]
[205]
Aliasgharzadeh A, Farhood B, Amini P, et al. Melatonin Attenuates Upregulation of Duox1 and Duox2 and Protects against Lung Injury following Chest Irradiation in Rats. Cell J 2019; 21(3): 236-42.
[PMID: 31210428]
[206]
Zhang D, Liu B, Cao B, et al. Synergistic protection of Schizandrin B and Glycyrrhizic acid against bleomycin-induced pulmonary fibrosis by inhibiting TGF-β1/Smad2 pathways and overexpression of NOX4. Int Immunopharmacol 2017; 48: 67-75.
[http://dx.doi.org/10.1016/j.intimp.2017.04.024] [PMID: 28476015]
[207]
Zorov DB, Juhaszova M, Sollott SJ. Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. Physiol Rev 2014; 94(3): 909-50.
[http://dx.doi.org/10.1152/physrev.00026.2013] [PMID: 24987008]
[208]
Kagi T, Noguchi T, Matsuzawa A. Mechanisms of gefitinib-induced interstitial pneumonitis: Why and how the TKI perturbs innate immune systems? Oncotarget 2021; 12(13): 1321-2.
[http://dx.doi.org/10.18632/oncotarget.27958] [PMID: 34194630]
[209]
Rossi F, Di Paola A, Pota E, et al. Biological aspects of Inflamm-aging in childhood cancer survivors. Cancers (Basel) 2021; 13(19): 4933.
[http://dx.doi.org/10.3390/cancers13194933] [PMID: 34638416]
[210]
Allawzi A, Elajaili H, Redente EF, Nozik-Grayck E. Oxidative toxicology of bleomycin: Role of the extracellular redox environment. Curr Opin Toxicol 2019; 13: 68-73.
[http://dx.doi.org/10.1016/j.cotox.2018.08.001] [PMID: 31289762]
[211]
Ren CX, Jin X, Xie DP, et al. Hispidin attenuates bleomycin-induced idiopathic pulmonary fibrosis via an anti-oxidative effect in A549 cells. Appl Bio Chem 2021; 64(1): 74.
[http://dx.doi.org/10.1186/s13765-021-00646-x]
[212]
Raras TYM, Hidayati N, Wardhani SO. High doses of kefir accelerate lung-injury progression in bleomycin-induced pneumonitis in rats. Jundishapur J Nat Pharm Prod 2021; 16(3): e111882.
[http://dx.doi.org/10.5812/jjnpp.111882]
[213]
Yang X, Liu T, Chen B, Wang F, Yang Q, Chen X. Grape seed proanthocyanidins prevent irradiation-induced differentiation of human lung fibroblasts by ameliorating mitochondrial dysfunction. Sci Rep 2017; 7(1): 62.
[http://dx.doi.org/10.1038/s41598-017-00108-9] [PMID: 28246402]
[214]
Zhang Q, Hu Q, Chu Y, Xu B, Song Q. The influence of radiotherapy on AIM2 inflammasome in radiation pneumonitis. Inflammation 2016; 39(5): 1827-34.
[http://dx.doi.org/10.1007/s10753-016-0419-y] [PMID: 27525422]
[215]
Amini P, Saffar H, Nourani MR, et al. Curcumin Mitigates Radiation-induced Lung Pneumonitis and Fibrosis in Rats. Int J Mol Cell Med 2018; 7(4): 212-9.
[PMID: 31516880]
[216]
Pinter M, Kwanten WJ, Jain RK. Renin–angiotensin system inhibitors to mitigate cancer treatment–related adverse events. Clin Cancer Res 2018; 24(16): 3803-12.
[http://dx.doi.org/10.1158/1078-0432.CCR-18-0236] [PMID: 29610292]
[217]
Araújo WF, Naves MA, Ravanini JN, Schor N, Teixeira VP. Urologic oncology: seminars and original investigations.Elsevier. 2015; 33: pp. e387-9.
[218]
Yang J, Yang X, Gao L, Zhang J, Yi C, Huang Y. The role of the renin-angiotensin system inhibitors in malignancy: A review. Am J Cancer Res 2021; 11(3): 884-97.
[PMID: 33791161]
[219]
Kim ST, Park KH, Oh SC, et al. How does inhibition of the renin-angiotensin system affect the prognosis of advanced gastric cancer patients receiving platinum-based chemotherapy? Oncology 2012; 83(6): 354-60.
[http://dx.doi.org/10.1159/000337979] [PMID: 23052034]
[220]
Ghosh SN, Zhang R, Fish BL, et al. Renin-Angiotensin system suppression mitigates experimental radiation pneumonitis. Int J Radiat Oncol Biol Phys 2009; 75(5): 1528-36.
[http://dx.doi.org/10.1016/j.ijrobp.2009.07.1743] [PMID: 19931735]
[221]
Bracci S, Valeriani M, Agolli L, De Sanctis V, Maurizi Enrici R, Osti MF. Renin-angiotensin system inhibitors might help to reduce the development of symptomatic radiation pneumonitis after stereotactic body radiotherapy for lung cancer. Clin Lung Cancer 2016; 17(3): 189-97.
[http://dx.doi.org/10.1016/j.cllc.2015.08.007] [PMID: 26427647]
[222]
Kharofa J, Cohen EP, Tomic R, Xiang Q, Gore E. Decreased risk of radiation pneumonitis with incidental concurrent use of angiotensin-converting enzyme inhibitors and thoracic radiation therapy. Int J Radiat Oncol Biol Phys 2012; 84(1): 238-43.
[http://dx.doi.org/10.1016/j.ijrobp.2011.11.013] [PMID: 22300564]
[223]
Mahmood J, Jelveh S, Zaidi A, Doctrow SR, Medhora M, Hill RP. Targeting the Renin-angiotensin system combined with an antioxidant is highly effective in mitigating radiation-induced lung damage. Int J Radiat Oncol Biol Phys 2014; 89(4): 722-8.
[http://dx.doi.org/10.1016/j.ijrobp.2014.03.048] [PMID: 24867538]
[224]
Li P, Xiao HD, Xu J, et al. Angiotensin-converting enzyme N-terminal inactivation alleviates bleomycin-induced lung injury. Am J Pathol 2010; 177(3): 1113-21.
[http://dx.doi.org/10.2353/ajpath.2010.081127] [PMID: 20651228]
[225]
Chang J, Nie H, Ge X, et al. Vitamin D suppresses bleomycin-induced pulmonary fibrosis by targeting the local renin–angiotensin system in the lung. Sci Rep 2021; 11(1): 16525.
[http://dx.doi.org/10.1038/s41598-021-96152-7] [PMID: 34400742]
[226]
Liu X, Khadtare N, Patel H, Stephani R, Cantor J. transient blockade of endothelin-1 mitigates amiodarone-induced pulmonary fibrosis. Lung 2018; 196(3): 321-7.
[http://dx.doi.org/10.1007/s00408-018-0103-0] [PMID: 29516177]
[227]
Manitsopoulos N, Nikitopoulou I, Maniatis NA, Magkou C, Kotanidou A, Orfanos SE. Highly selective endothelin-1 receptor A inhibition prevents bleomycin-induced pulmonary inflammation and fibrosis in mice. Respiration 2018; 95(2): 122-36.
[http://dx.doi.org/10.1159/000481201] [PMID: 29131071]
[228]
Hartopo AB, Arfian N, Nakayama K, Suzuki Y, Yagi K, Emoto N. Endothelial-derived endothelin-1 promotes pulmonary vascular remodeling in bleomycin-induced pulmonary fibrosis. Physiol Res 2018; 67 (Suppl. 1): S185-97.
[http://dx.doi.org/10.33549/physiolres.933812] [PMID: 29947539]
[229]
You DG, Deepagan VG, Um W, et al. ROS-generating TiO2 nanoparticles for non-invasive sonodynamic therapy of cancer. Sci Rep 2016; 6(1): 23200.
[http://dx.doi.org/10.1038/srep23200] [PMID: 28442746]
[230]
Perillo B, Di Donato M, Pezone A, et al. ROS in cancer therapy: The bright side of the moon. Exp Mol Med 2020; 52(2): 192-203.
[http://dx.doi.org/10.1038/s12276-020-0384-2] [PMID: 32060354]
[231]
Guo H, Zhang J, Boudreau M, et al. Intravenous administration of silver nanoparticles causes organ toxicity through intracellular ROS-related loss of inter-endothelial junction. Part Fibre Toxicol 2015; 13(1): 21.
[http://dx.doi.org/10.1186/s12989-016-0133-9] [PMID: 27129495]
[232]
Paola Rosanna D, Salvatore C. Reactive oxygen species, inflammation, and lung diseases. Curr Pharm Des 2012; 18(26): 3889-900.
[http://dx.doi.org/10.2174/138161212802083716] [PMID: 22632750]
[233]
Kellner M, Noonepalle S, Lu Q, Srivastava A, Zemskov E, Black SM. Pulmonary vasculature redox signaling in health and disease. Springer 2017; pp. 105-37.
[http://dx.doi.org/10.1007/978-3-319-63245-2_8]
[234]
Venkatesulu BP, Mahadevan LS, Aliru ML, et al. Radiation-induced endothelial vascular injury. JACC Basic Transl Sci 2018; 3(4): 563-72.
[http://dx.doi.org/10.1016/j.jacbts.2018.01.014] [PMID: 30175280]
[235]
Khan SY, Awad EM, Oszwald A, et al. Premature senescence of endothelial cells upon chronic exposure to TNFα can be prevented by N-acetyl cysteine and plumericin. Sci Rep 2017; 7(1): 39501.
[http://dx.doi.org/10.1038/srep39501] [PMID: 28045034]
[236]
Wijerathne H, Langston JC, Yang Q, et al. Mechanisms of radiation-induced endothelium damage: Emerging models and technologies. Radiother Oncol 2021; 158: 21-32.
[http://dx.doi.org/10.1016/j.radonc.2021.02.007] [PMID: 33581220]
[237]
Wu G, Xu G, Chen DW, et al. Hypoxia exacerbates inflammatory acute lung injury via the toll-like receptor 4 signaling pathway. Front Immunol 2018; 9: 1667.
[http://dx.doi.org/10.3389/fimmu.2018.01667] [PMID: 30083155]
[238]
Choi SH, Hong ZY, Nam JK, et al. A hypoxia-induced vascular endothelial-to-mesenchymal transition in development of radiation-induced pulmonary fibrosis. Clin Cancer Res 2015; 21(16): 3716-26.
[http://dx.doi.org/10.1158/1078-0432.CCR-14-3193] [PMID: 25910951]
[239]
Rabbani ZN, Mi J, Zhang Y, et al. Hypoxia inducible factor 1alpha signaling in fractionated radiation-induced lung injury: Role of oxidative stress and tissue hypoxia. Radiat Res 2010; 173(2): 165-74.
[http://dx.doi.org/10.1667/RR1816.1] [PMID: 20095848]
[240]
Jackson IL, Zhang X, Hadley C, et al. Temporal expression of hypoxia-regulated genes is associated with early changes in redox status in irradiated lung. Free Radic Biol Med 2012; 53(2): 337-46.
[http://dx.doi.org/10.1016/j.freeradbiomed.2012.04.014] [PMID: 22588005]
[241]
Jackson IL, Chen L, Batinic-Haberle I, Vujaskovic Z. Superoxide dismutase mimetic reduces hypoxia-induced, TGF-β and VEGF production by macrophages. Free Rad Res 2007; 41(1): 8-14.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy