Generic placeholder image

Current Chinese Science

Editor-in-Chief

ISSN (Print): 2210-2981
ISSN (Online): 2210-2914

Mini-Review Article Section: Environmental Engineering

Application of Membrane Processes for Nitrate (NO3-) Removal

Author(s): Cesur Mehenktaş and Özgür Arar*

Volume 3, Issue 1, 2023

Published on: 06 October, 2022

Page: [42 - 56] Pages: 15

DOI: 10.2174/1573399819666220907140754

Price: $65

Open Access Journals Promotions 2
Abstract

Background: The primary sources of nitrate contamination in groundwater resources are excessive fertilizer use and unregulated land discharges of treated wastewater. Due to its harmful nature to human health and its contribution to eutrophication, the removal of nitrate from water has been of great interest in the last decades. Various techniques, such as adsorption, ion exchange, catalytic and biological denitrification, and membrane processes, have been applied for NO3 - removal.

Objective: In this review study, the removal of NO3 - by membrane processes, including electrodialysis (ED), electrodeionization (EDI), reverse osmosis (RO), and ultrafiltration, has been reviewed.

Methods: The pressure-driven membrane and electro-membrane processes applications to NO3 - removal have been reviewed.

Results: The effects of process parameters, interferences, and limitations of membrane processes have been summarized.

Conclusion: Membrane processes could be a promising alternative for NO3 - removal. After suitable membrane preparation/modification, the nitrate removal rate could reach >99%.

Keywords: Composite membranes, electro-membrane process, ion-exchange membranes, pressure-driven membrane processes, nitrate removal, water treatment.

Graphical Abstract
[1]
Haynes, R.J. Uptake and Assimilation of Mineral Nitrogen by Plants. In: Haynes, R.J., Ed.;Mineral Nitrogen in the Plant–Soil System. Academic Press: Florida,; , 1986, pp. 303-378.
[http://dx.doi.org/10.1016/B978-0-12-334910-1.50010-8]
[2]
Van Der Hoek, K.W. Nitrogen efficiency in global animal production. In: Proceedings of the First International Nitrogen Conference (Nitrogen, the Confer-N-s), Germany, 1998, pp. 127-132.
[http://dx.doi.org/10.1016/B978-0-08-043201-4.50023-X]
[3]
Lazaratou, C.V.; Vayenas, D.V.; Papoulis, D. The role of clays, clay minerals and clay-based materials for nitrate removal from water systems: A review. Appl. Clay Sci., 2020, 185, 105377.
[http://dx.doi.org/10.1016/j.clay.2019.105377]
[4]
WHO Nitrate and nitrite in drinking water: Background document for development of WHO guidelines for drinking water quality. WHO; , 2016. Available from https://cdn.who.int/media/docs/default-source/wash-documents/wash-chemicals/nitrate-nitrite-background-jan17.pdf?sfvrsn=1c1e1502_4
[5]
Baghodrat, M.; Mehri, F.; Rowshanzamir, S. Electrochemical performance and enhanced nitrate removal of homogeneous polysulfone-based anion exchange membrane applied in membrane capacitive deionization cell. Desalination, 2020, 496, 114696.
[http://dx.doi.org/10.1016/j.desal.2020.114696]
[6]
Wu, Z.; Xu, F.; Yang, C.; Su, X.; Guo, F.; Xu, Q.; Peng, G.; He, Q.; Chen, Y. Highly efficient nitrate removal in a heterotrophic denitrification system amended with redox-active biochar: A molecular and electrochemical mechanism. Bioresour. Technol., 2019, 275, 297-306.
[http://dx.doi.org/10.1016/j.biortech.2018.12.058] [PMID: 30594840]
[7]
Liu, X.; Huang, M.; Bao, S.; Tang, W.; Fang, T. Nitrate removal from low carbon-to-nitrogen ratio wastewater by combining iron-based chemical reduction and autotrophic denitrification. Bioresour. Technol., 2020, 301, 122731.
[http://dx.doi.org/10.1016/j.biortech.2019.122731] [PMID: 31927457]
[8]
Taziki, M.; Ahmadzadeh, H.; Murry, A.M.R.; Lyon, S. Nitrate and nitrite removal from wastewater using algae. Curr. Biotechnol., 2016, 4, 426-440.
[http://dx.doi.org/10.2174/2211550104666150828193607]
[9]
Patel, R.K.; Kumar, S.; Chawla, A.K.; Mondal, P. Neelam; Teychene, B.; Pandey, J.K. Elimination of fluoride, arsenic, and nitrate from water through adsorption onto nano-adsorbent: A review. Curr. Nanosci., 2019, 15(6), 557-575.
[http://dx.doi.org/10.2174/1573413715666190101113651]
[10]
Tyagi, S.; Rawtani, D.; Khatri, N.; Tharmavaram, M. Strategies for nitrate removal from aqueous environment using nanotechnology: A review. J. Water Process Eng., 2018, 21, 84-95.
[http://dx.doi.org/10.1016/j.jwpe.2017.12.005]
[11]
Rezvani, F.; Sarrafzadeh, M.H.; Ebrahimi, S.; Oh, H.M. Nitrate removal from drinking water with a focus on biological methods: A review. Environ. Sci. Pollut. Res. Int., 2019, 26(2), 1124-1141.
[http://dx.doi.org/10.1007/s11356-017-9185-0] [PMID: 28567682]
[12]
Huno, S.K.M.; Rene, E.R.; van Hullebusch, E.D.; Annachhatre, A.P. Nitrate removal from groundwater: a review of natural and engineered processes. J. Water Supply, 2018, 67(8), 885-902.
[http://dx.doi.org/10.2166/aqua.2018.194]
[13]
Xu, D.; Li, Y.; Yin, L.; Ji, Y.; Niu, J.; Yu, Y. Electrochemical removal of nitrate in industrial wastewater. Front. Environ. Sci. Eng., 2018, 12(1), 9.
[http://dx.doi.org/10.1007/s11783-018-1033-z]
[14]
Sastre, A.M.; Pabby, A.K.; Rizvi, S.S.H. Membrane Applications in Chemical and Pharmaceutical Industries and in Conservation of Natural Resources: Introduction. In: Handbook of Membrane Separations: Chemical, Pharmaceutical, Food, and Biotechnological Applications; Pabby, A.K.; Rizvi, S.S.H.; Sastre, A.M., Eds.; CRC Presss: New York, 2015; pp. 3-5.
[15]
Sanchez, M.J.G.; Tsotsis, T.T. Catalytic Membranes and Membrane Reactors, 1st ed; WileyVCH: Weinheim, 2002.
[http://dx.doi.org/10.1002/3527601988]
[16]
Ho, W.S.W.; Sirkar, K.K. Overview. In: Membrane Handbook; Ho, W.S.W.; Sirkar, K.K., Eds.; Springer US: Boston, MA, 1992; pp. 3-15.
[http://dx.doi.org/10.1007/978-1-4615-3548-5_1]
[17]
Van Der Bruggen, B.; Vandecasteele, C.; Van Gestel, T.; Doyen, W.; Leysen, R. A review of pressure-driven membrane processes in wastewater treatment and drinking water production. Environ. Prog., 2003, 22(1), 46-56.
[http://dx.doi.org/10.1002/ep.670220116]
[18]
Othman, N.H.; Alias, N.H.; Fuzil, N.S.; Marpani, F.; Shahruddin, M.Z.; Chew, C.M.; Ng, K.M.; Lau, W.J. David. & Ismail, A. F. A Review on the Use of Membrane Technology Systems in Developing Countries. Membranes, 2021, 12(1), 30.
[19]
Malaeb, L.; Ayoub, G.M. Reverse osmosis technology for water treatment: State of the art review. Desalination, 2011, 267(1), 1-8.
[http://dx.doi.org/10.1016/j.desal.2010.09.001]
[20]
Schoeman, J.J.; Steyn, A. Nitrate removal with reverse osmosis in a rural area in South Africa. Desalination, 2003, 155(1), 15-26.
[http://dx.doi.org/10.1016/S0011-9164(03)00235-2]
[21]
Madaeni, S.S.; Koocheki, S. Influence of di-hydrogen phosphate ion on performance of polyamide reverse osmosis membrane for nitrate and nitrite removal. J. Porous Mater., 2010, 17(2), 163-168.
[http://dx.doi.org/10.1007/s10934-009-9276-5]
[22]
Ahn, J.H.; Choo, K.H.; Park, H.S. Reverse osmosis membrane treatment of acidic etchant wastewater: Effect of neutralization and polyelectrolyte coating on nitrate removal. J. Membr. Sci., 2008, 310(1-2), 296-302.
[http://dx.doi.org/10.1016/j.memsci.2007.11.010]
[23]
Tepuš, B. Simonič, M.; Petrinič, I. Comparison between nitrate and pesticide removal from ground water using adsorbents and NF and RO membranes. J. Hazard. Mater., 2009, 170(2-3), 1210-1217.
[http://dx.doi.org/10.1016/j.jhazmat.2009.05.105] [PMID: 19541416]
[24]
Häyrynen, K.; Pongrácz, E.; Väisänen, V.; Pap, N.; Mänttäri, M.; Langwaldt, J.; Keiski, R.L. Concentration of ammonium and nitrate from mine water by reverse osmosis and nanofiltration. Desalination, 2009, 240(1-3), 280-289.
[http://dx.doi.org/10.1016/j.desal.2008.02.027]
[25]
Ghaee, A.; Zerafat, M.M.; Askari, P.; Sabbaghi, S.; Sadatnia, B. Fabrication of polyamide thin-film nanocomposite membranes with enhanced surface charge for nitrate ion removal from water resources. Environ. Technol., 2017, 38(6), 772-781.
[http://dx.doi.org/10.1080/09593330.2016.1231223] [PMID: 28191867]
[26]
Bohdziewicz, J.; Bodzek, M. Wąsik, E. The application of reverse osmosis and nanofiltration to the removal of nitrates from groundwater. Desalination, 1999, 121(2), 139-147.
[http://dx.doi.org/10.1016/S0011-9164(99)00015-6]
[27]
Al Aani, S.; Mustafa, T.N.; Hilal, N. Ultrafiltration membranes for wastewater and water process engineering: A comprehensive statistical review over the past decade. J. Water Process Eng., 2020, 35, 101241.
[http://dx.doi.org/10.1016/j.jwpe.2020.101241]
[28]
Gao, W.; Liang, H.; Ma, J.; Han, M.; Chen, Z.; Han, Z.; Li, G. Membrane fouling control in ultrafiltration technology for drinking water production: A review. Desalination, 2011, 272(1-3), 1-8.
[http://dx.doi.org/10.1016/j.desal.2011.01.051]
[29]
Breida, M.; Alami, Y.S.; Bouazizi, A.; Achiou, B.; Ouammou, M.; El Rhazi, M. Nitrate removal from aqueous solutions by γ-Al 2 O 3 ultrafiltration membranes. Heliyon, 2018, 4(1), e00498.
[http://dx.doi.org/10.1016/j.heliyon.2017.e00498] [PMID: 29560419]
[30]
Alami, Y.S.; Larbot, A.; Persin, M.; Sarrazin, J.; Cot, L. Rejection of mineral salts on a gamma alumina nanofiltration membrane Application to environmental process. J. Membr. Sci., 1995, 102, 123-129.
[http://dx.doi.org/10.1016/0376-7388(94)00302-F]
[31]
Gao, Q.; Wang, C.Z.; Liu, S.; Hanigan, D.; Liu, S.T.; Zhao, H.Z. Ultrafiltration Membrane Microreactor (MMR) for simultaneous removal of nitrate and phosphate from water. Chem. Eng. J., 2019, 355, 238-246.
[http://dx.doi.org/10.1016/j.cej.2018.08.137]
[32]
Oatley, R.D.L.; Walters, M.; Ainscough, T.J.; Williams, P.M.; Mohammad, A.W.; Hilal, N. Nanofiltration membranes and processes: A review of research trends over the past decade. J. Water Process Eng., 2017, 19, 164-171.
[http://dx.doi.org/10.1016/j.jwpe.2017.07.026]
[33]
Suhalim, N.S.; Kasim, N.; Mahmoudi, E.; Shamsudin, I.J.; Mohammad, A.W.; Mohamed Zuki, F.; Jamari, N.L.A. Rejection mechanism of ionic solute removal by nanofiltration membranes: An overview. Nanomaterials , 2022, 12(3), 437.
[http://dx.doi.org/10.3390/nano12030437] [PMID: 35159781]
[34]
Mahvi, A.H.; Malakootian, M.; Fatehizadeh, A.; Ehrampoush, M.H. Nitrate removal from aqueous solutions by nanofiltration. Desalination Water Treat., 2011, 29(1-3), 326-330.
[http://dx.doi.org/10.5004/dwt.2011.1743]
[35]
Zou, L.; Zhang, S.; Liu, J.; Cao, Y.; Qian, G.; Li, Y.Y.; Xu, Z.P. Nitrate removal from groundwater using negatively charged nanofiltration membrane. Environ. Sci. Pollut. Res. Int., 2019, 26(33), 34197-34204.
[http://dx.doi.org/10.1007/s11356-018-3829-6] [PMID: 30515691]
[36]
Epsztein, R.; Nir, O.; Lahav, O.; Green, M. Selective nitrate removal from groundwater using a hybrid nanofiltration–reverse osmosis filtration scheme. Chem. Eng. J., 2015, 279, 372-378.
[http://dx.doi.org/10.1016/j.cej.2015.05.010]
[37]
Choi, S.; Yun, Z.; Hong, S.; Ahn, K. The effect of co-existing ions and surface characteristics of nanomembranes on the removal of nitrate and fluoride. Desalination, 2001, 133(1), 53-64.
[http://dx.doi.org/10.1016/S0011-9164(01)00082-0]
[38]
Hoinkis, J.; Valero, F.S.; Caporgno, M.P.; Pätzold, C. Removal of nitrate and fluoride by nanofiltration – A comparative study. Desalination Water Treat., 2011, 30(1-3), 278-288.
[http://dx.doi.org/10.5004/dwt.2011.2103]
[39]
Ghaemi, N.; Daraei, P.; Akhlaghi, F.S. Polyethersulfone nanofiltration membrane embedded by chitosan nanoparticles: Fabrication, characterization and performance in nitrate removal from water. Carbohydr. Polym., 2018, 191, 142-151.
[http://dx.doi.org/10.1016/j.carbpol.2018.03.024] [PMID: 29661302]
[40]
Huang, Y.; Feng, X. Polymer-enhanced ultrafiltration: Fundamentals, applications and recent developments. J. Membr. Sci., 2019, 586, 53-83.
[http://dx.doi.org/10.1016/j.memsci.2019.05.037]
[41]
Dündar, O.A.; Arar, Ö. Removal of Zirconium (Zr) from aqueous solution by polymer enhanced ultrafiltration. J. Appl. Membrane Sci. Technol., 2021, 25(2), 15-21.
[http://dx.doi.org/10.11113/amst.v25n2.211]
[42]
Garba, M.D.; Usman, M.; Mazumder, M.A.J.; Al-Ahmed, A. Inamuddin. Complexing agents for metal removal using ultrafiltration membranes: A review. Environ. Chem. Lett., 2019, 17(3), 1195-1208.
[http://dx.doi.org/10.1007/s10311-019-00861-5]
[43]
Bahmani, P.; Maleki, A.; Rezaee, R.; Khamforoush, M.; Yetilmezsoy, K.; Dehestan, A.S.; Gharibi, F. Simultaneous removal of arsenate and nitrate from aqueous solutions using micellar-enhanced ultrafiltration process. J. Water Process Eng., 2019, 27, 24-31.
[http://dx.doi.org/10.1016/j.jwpe.2018.11.010]
[44]
Zhu, X.; Choo, K.H.; Park, J.M. Nitrate removal from contaminated water using polyelectrolyte-enhanced ultrafiltration. Desalination, 2006, 193(1-3), 350-360.
[http://dx.doi.org/10.1016/j.desal.2005.06.067]
[45]
Baek, K.; Lee, H.H.; Yang, J.W. Micellar-enhanced ultrafiltration for simultaneous removal of ferricyanide and nitrate. Desalination, 2003, 158(1-3), 157-166.
[http://dx.doi.org/10.1016/S0011-9164(03)00446-6]
[46]
Baek, K.; Yang, J.W. Cross-flow micellar-enhanced ultrafiltration for removal of nitrate and chromate: competitive binding. J. Hazard. Mater., 2004, 108(1-2), 119-123.
[http://dx.doi.org/10.1016/j.jhazmat.2004.02.001] [PMID: 15081170]
[47]
Strathmann, H. Electrodialysis and related processes. In: Membrane Separations Technology Principles and Applications; Noble, R.D.; Stern, S.A., Eds.; Elsevier: Amsterdam, 1995; pp. 213-281.
[http://dx.doi.org/10.1016/S0927-5193(06)80008-2]
[48]
Strathmann, H. Electrodialysis, a mature technology with a multitude of new applications. Desalination, 2010, 264(3), 268-288.
[http://dx.doi.org/10.1016/j.desal.2010.04.069]
[49]
Kabay, N.; Yüksel, M.; Samatya, S.; Arar, Ö.; Yüksel, Ü. Effect of process parameters on separation performance of nitrate by electrodialysis. Sep. Sci. Technol., 2006, 41(14), 3201-3211.
[http://dx.doi.org/10.1080/01496390600851681]
[50]
Kabay, N.; Yüksel, M.; Samatya, S.; Arar, Ö.; Yüksel, Ü. Removal of nitrate from ground water by a hybrid process combining electrodialysis and ion exchange processes. Sep. Sci. Technol., 2007, 42(12), 2615-2627.
[http://dx.doi.org/10.1080/01496390701511374]
[51]
El Midaoui, A.; Elhannouni, F.; Taky, M.; Chay, L.; Menkouchi Sahli, M.A.; Echihabi, L.; Hafsi, M. Optimization of nitrate removal operation from ground water by electrodialysis. Separ. Purif. Tech., 2002, 29(3), 235-244.
[http://dx.doi.org/10.1016/S1383-5866(02)00092-8]
[52]
Banasiak, L.J.; Schäfer, A.I. Removal of boron, fluoride and nitrate by electrodialysis in the presence of organic matter. J. Membr. Sci., 2009, 334(1-2), 101-109.
[http://dx.doi.org/10.1016/j.memsci.2009.02.020]
[53]
Elmidaoui, A.; Elhannouni, F.; Menkouchi Sahli, M.A.; Chay, L.; Elabbassi, H.; Hafsi, M.; Largeteau, D. Pollution of nitrate in Moroccan ground water: removal by electrodialysis. Desalination, 2001, 136(1-3), 325-332.
[http://dx.doi.org/10.1016/S0011-9164(01)00195-3]
[54]
Aliaskari, M.; Schäfer, A.I. Nitrate, arsenic and fluoride removal by electrodialysis from brackish groundwater. Water Res., 2021, 190, 116683.
[http://dx.doi.org/10.1016/j.watres.2020.116683] [PMID: 33373946]
[55]
Menkouchi, S.M.A.; Annouar, S.; Mountadar, M.; Soufiane, A.; Elmidaoui, A. Nitrate removal of brackish underground water by chemical adsorption and by electrodialysis. Desalination, 2008, 227(1-3), 327-333.
[http://dx.doi.org/10.1016/j.desal.2007.07.021]
[56]
Djouadi, B.F.; Kitous, O.; Drouiche, N.; Aoudj, S.; Bouchelaghem, O.; Abdi, N.; Grib, H.; Mameri, N. Electrodialysis for fluoride and nitrate removal from synthesized photovoltaic industry wastewater. Separ. Purif. Tech., 2018, 204, 108-115.
[http://dx.doi.org/10.1016/j.seppur.2018.04.068]
[57]
Rathi, B.S.; Kumar, P.S. Electrodeionization theory, mechanism and environmental applications. A review. Environ. Chem. Lett., 2020, 18(4), 1209-1227.
[http://dx.doi.org/10.1007/s10311-020-01006-9]
[58]
Alvarado, L.; Chen, A. Electrodeionization: Principles, strategies and applications. Electrochim. Acta, 2014, 132, 583-597.
[http://dx.doi.org/10.1016/j.electacta.2014.03.165]
[59]
Arar, Ö.; Yüksel, Ü.; Kabay, N.; Yüksel, M. Various applications of Electrodeionization (EDI) method for water treatment-A short review. Desalination, 2014, 342, 16-22.
[http://dx.doi.org/10.1016/j.desal.2014.01.028]
[60]
Wood, J.; Gifford, J.; Arba, J.; Shaw, M. Production of ultrapure water by continuous electrodeionization. Desalination, 2010, 250(3), 973-976.
[http://dx.doi.org/10.1016/j.desal.2009.09.084]
[61]
Meyer, N.; Parker, W.J.; Van Geel, P.J.; Adiga, M. Development of an electrodeionization process for removal of nitrate from drinking water Part 1: Single-species testing. Desalination, 2005, 175(2), 153-165.
[http://dx.doi.org/10.1016/j.desal.2004.07.051]
[62]
Meyer, N.; Parker, W.J.; Van Geel, P.J.; Adiga, M. Development of an electrodeionization process for removal of nitrate from drinking water part 2: Multi-species testing. Desalination, 2005, 175(2), 167-177.
[http://dx.doi.org/10.1016/j.desal.2004.07.052]
[63]
Bi, J.; Peng, C.; Xu, H.; Ahmed, A.S. Removal of nitrate from groundwater using the technology of electrodialysis and electrodeionization. Desalination Water Treat., 2011, 34(1-3), 394-401.
[http://dx.doi.org/10.5004/dwt.2011.2891]
[64]
Zhang, Z.; Chen, A. Simultaneous removal of nitrate and hardness ions from groundwater using electrodeionization. Separ. Purif. Tech., 2016, 164, 107-113.
[http://dx.doi.org/10.1016/j.seppur.2016.03.033]
[65]
Sarıçiçek, E.N.; Tuğaç, M.M.; Özdemir, V.T.; İpek, İ.Y.; Arar, Ö. Removal of boron by boron selective resin-filled electrodeionization. Environmen. Technol. Innov., 2021, 23, 101742.
[http://dx.doi.org/10.1016/j.eti.2021.101742]
[66]
Zhang, Y.; Wang, L.; Xuan, S.; Lin, X.; Luo, X. Variable effects on electrodeionization for removal of Cs+ ions from simulated wastewater. Desalination, 2014, 344, 212-218.
[http://dx.doi.org/10.1016/j.desal.2014.03.034]
[67]
Bodzek, M. Membrane technologies for the removal of micropollutants in water treatment. In: Advances in Membrane Technologies for Water Treatment; Elsevier: Netherlands, 2015; pp. 465-517.
[http://dx.doi.org/10.1016/B978-1-78242-121-4.00015-0]
[68]
Van Der Bruggen, B. Ion-exchange membrane systems—Electrodialysis and other electromembrane processes. In: Fundamental Modelling of Membrane Systems; Elsevier: Netherlands, 2018; pp. 251-300.
[http://dx.doi.org/10.1016/B978-0-12-813483-2.00007-1]
[69]
Asante, S.D.; Rathilal, S.; Kweinor, T.E.; Ezugbe, E.O.; Pillay, L.V. Donnan membrane process for the selective recovery and removal of target metal ions—A mini review. Membranes, 2021, 11(5), 358.
[http://dx.doi.org/10.3390/membranes11050358] [PMID: 34068870]
[70]
Breytus, A.; Hasson, D.; Semiat, R.; Shemer, H. Removal of nitrate from groundwater by Donnan dialysis. J. Water Process Eng., 2020, 34, 101157.
[http://dx.doi.org/10.1016/j.jwpe.2020.101157]
[71]
Altintas, O.; Tor, A.; Cengeloglu, Y.; Ersoz, M. Removal of nitrate from the aqueous phase by Donnan dialysis. Desalination, 2009, 239(1-3), 276-282.
[http://dx.doi.org/10.1016/j.desal.2008.03.024]
[72]
Ben Hamouda, S.; Touati, K.; Ben Amor, M. Donnan dialysis as membrane process for nitrate removal from drinking water: Membrane structure effect. Arab. J. Chem., 2017, 10, S287-S292.
[http://dx.doi.org/10.1016/j.arabjc.2012.07.035]
[73]
Chen, L.; He, F.; Li, F. Denitrification enhancement by electro-adsorption/reduction in Capacitive Deionization (CDI) and Membrane Capacitive Deionization (MCDI) with copper electrode. Chemosphere, 2022, 291(Pt 1), 132732.
[http://dx.doi.org/10.1016/j.chemosphere.2021.132732] [PMID: 34743794]
[74]
Ali, A.; Quist, J.C.A.; Jørgensen, M.K.; Siekierka, A.; Christensen, M.L.; Bryjak, M.; Hélix, N.C.; Drioli, E. A review of membrane crystallization, forward osmosis and membrane capacitive deionization for liquid mining. Resour. Conserv. Recycling, 2021, 168, 105273.
[http://dx.doi.org/10.1016/j.resconrec.2020.105273]
[75]
Chai, S.; Xi, J.; Chen, L.; He, W.; Shen, J.; Gong, H. Selective Ion Removal by Capacitive Deionization (CDI)-Based Technologies. Processes , 2022, 10, 1075.
[http://dx.doi.org/10.3390/pr10061075]
[76]
Hawks, S.A.; Cerón, M.R.; Oyarzun, D.I.; Pham, T.A.; Zhan, C.; Loeb, C.K.; Mew, D.; Deinhart, A.; Wood, B.C.; Santiago, J.G.; Stadermann, M.; Campbell, P.G. Using ultramicroporous carbon for the selective removal of nitrate with capacitive deionization. Environ. Sci. Technol., 2019, 53(18), 10863-10870.
[http://dx.doi.org/10.1021/acs.est.9b01374] [PMID: 31244071]
[77]
Kim, Y.J.; Kim, J.H.; Choi, J.H. Selective removal of nitrate ions by controlling the applied current in Membrane Capacitive Deionization (MCDI). J. Membr. Sci., 2013, 429, 52-57.
[http://dx.doi.org/10.1016/j.memsci.2012.11.064]
[78]
Pastushok, O.; Zhao, F.; Ramasamy, D.L.; Sillanpää, M. Nitrate removal and recovery by Capacitive Deionization (CDI). Chem. Eng. J., 2019, 375, 121943.
[http://dx.doi.org/10.1016/j.cej.2019.121943]
[79]
Çetinkaya, A.Y. Life cycle assessment of environmental effects and nitrate removal for membrane capacitive deionization technology. Environ. Monit. Assess., 2020, 192(8), 543.
[http://dx.doi.org/10.1007/s10661-020-08501-0] [PMID: 32712819]
[80]
Jiang, L.; Tu, Y.; Li, X.; Li, H. Application of reverse osmosis in purifying drinking water. E3S Web Conf; , 2018, p. 38.
[http://dx.doi.org/10.1051/e3sconf/20183801037]
[81]
Groot, C.K.; van den Broek, W.B.P.; Loewenberg, J.; Koeman-Stein, N.; Heidekamp, M.; de Schepper, W. Mild desalination of various raw water streams. Water Sci. Technol., 2015, 72(3), 371-376.
[http://dx.doi.org/10.2166/wst.2015.228] [PMID: 26204068]
[82]
Ali, M.E.A. Nanofiltration process for enhanced treatment of RO brine discharge. Membranes, 2021, 11(3), 212.
[http://dx.doi.org/10.3390/membranes11030212] [PMID: 33803579]
[83]
Urošević, T.; Trivunac, K. Achievements in low-pressure membrane processes Microfiltration (MF) and Ultrafiltration (UF) for wastewater and water treatment. In: Current Trends and Future Developments on (Bio-) Membranes; Basile, A.; Ghasemzadeh, K., Eds.; Elsevier: Amsterdam, 2020; pp. 67-107.
[http://dx.doi.org/10.1016/B978-0-12-817378-7.00003-3]
[84]
Kotsanopoulos, K.V.; Arvanitoyannis, I.S. Membrane processing technology in the food industry: food processing, wastewater treatment, and effects on physical, microbiological, organoleptic, and nutritional properties of foods. Crit. Rev. Food Sci. Nutr., 2015, 55(9), 1147-1175.
[http://dx.doi.org/10.1080/10408398.2012.685992] [PMID: 24915344]
[85]
Li, X.; Jiang, L.; Li, H. Application of ultrafiltration technology in water treatment. IOP Conf. Ser. Earth Environ. Sci., 2018, 186, 012009.
[http://dx.doi.org/10.1088/1755-1315/186/3/012009]
[86]
Sun, J.; Chen, Z.; Shen, J.; Wang, B.; Zhao, S.; Wang, W.; Zhu, X.; Wang, Z.; Kang, J. Improvement of the fabricated and application of aluminosilicate-based microfiltration membrane. Chemosphere, 2021, 273, 129628.
[http://dx.doi.org/10.1016/j.chemosphere.2021.129628] [PMID: 33508688]
[87]
Kwarciak, K.A.; Wlodarczyk, R. Treatment of waterborne pathogens by microfiltration. In: Waterborne Pathogens; Elsevier: Netherlands, 2020; pp. 81-103.
[http://dx.doi.org/10.1016/B978-0-12-818783-8.00005-0]
[88]
Singh, R.; Purkait, M.K. Microfiltration Membranes. In: Membrane Separation Principles and Applications; Ismail, A.F.; Rahman, M.A.; Othman, M.H.D.; Matsuura, T., Eds.; Elsevier: Amsterdam, 2019; pp. 111-146.
[http://dx.doi.org/10.1016/B978-0-12-812815-2.00004-1]
[89]
Maheshwari, K.; Agrawal, M. Advances in capacitive deionization as an effective technique for reverse osmosis reject stream treatment. J. Environ. Chem. Eng., 2020, 8(6), 104413.
[http://dx.doi.org/10.1016/j.jece.2020.104413]
[90]
Handojo, L.; Wardani, A.K.; Regina, D.; Bella, C.; Kresnowati, M.T.A.P.; Wenten, I.G. Electro-membrane processes for organic acid recovery. RSC Advances, 2019, 9(14), 7854-7869.
[http://dx.doi.org/10.1039/C8RA09227C] [PMID: 35521162]
[91]
Chua, S.C.; Isa, M.H.; Ho, Y.C. Electrodialysis (ED): A review on the fundamental concept, advantages, limitations and future trend. Platf. J. Sci. Technol., 2020, 3, 14-22.
[92]
Wenten, I.G. Khoiruddin; Arfianto, F.; Zudiharto. Bench scale electrodeionization for high pressure boiler feed water. Desalination, 2013, 314, 109-114.
[http://dx.doi.org/10.1016/j.desal.2013.01.008]
[93]
Rathi, B.S.; Kumar, P.S. Continuous electrodeionization on the removal of toxic pollutant from aqueous solution. Chemosphere, 2022, 291(Pt 1), 132808.
[http://dx.doi.org/10.1016/j.chemosphere.2021.132808] [PMID: 34762876]
[94]
Tanaka, Y. Donnan Dialysis. In: Membrane Science and Technology; Tanaka, Y., Ed.; Elsevier: Amsterdam,, 2007, 12, pp. 495-503.
[95]
DiNunzio, J.; Wilson, R.L.; Peter, G.F. Preconcentration of some transition and rare-earth elements by Donnan dialysis. Talanta, 1983, 30(1), 57-59.
[http://dx.doi.org/10.1016/0039-9140(83)80012-5] [PMID: 18963317]
[96]
Chung, H.J.; Kim, J.; Kim, D.I.; Gwak, G.; Hong, S. Feasibility study of Reverse Osmosis–Flow Capacitive Deionization (RO-FCDI) for energy-efficient desalination using seawater as the flow-electrode aqueous electrolyte. Desalination, 2020, 479, 114326.
[http://dx.doi.org/10.1016/j.desal.2020.114326]
[97]
Wang, L.; Zhang, Y.; Moh, K.; Presser, V. From capacitive deionization to desalination batteries and desalination fuel cells. Curr. Opin. Electrochem., 2021, 29, 100758.
[http://dx.doi.org/10.1016/j.coelec.2021.100758]
[98]
Gao, X.; Porada, S.; Omosebi, A.; Liu, K.L.; Biesheuvel, P.M.; Landon, J. Complementary surface charge for enhanced capacitive deionization. Water Res., 2016, 92, 275-282.
[http://dx.doi.org/10.1016/j.watres.2016.01.048] [PMID: 26878361]
[99]
Arar, O.; Ipek, I.; Sarp, S. Synthesis of nanomaterial-incorporated pressure retarded osmosis membrane for energy generation. In: Advanced Nanomaterials for Membrane Synthesis and its Applications; Lau, W.J.; Ismail, A.F.; Isloor, A.; Al-Ahmed, A., Eds.; Elsevier: Amsterdam, 2019; pp. 253-270.
[http://dx.doi.org/10.1016/B978-0-12-814503-6.00011-2]
[100]
Sun, W.; Shi, J.; Chen, C.; Li, N.; Xu, Z.; Li, J.; Lv, H.; Qian, X.; Zhao, L. A review on organic–inorganic hybrid nanocomposite membranes: a versatile tool to overcome the barriers of forward osmosis. RSC Advances, 2018, 8(18), 10040-10056.
[http://dx.doi.org/10.1039/C7RA12835E] [PMID: 35540855]
[101]
Mahdi; Kumar; Goswami; Perdicakis; Shankar; Sadrzadeh. Robust polymer nanocomposite membranes incorporating discrete TiO2 nanotubes for water treatment. Nanomaterials , 2019, 9(9), 1186.
[http://dx.doi.org/10.3390/nano9091186]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy