Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Review Article

A Review on Computational Analysis of Big Data in Breast Cancer for Predicting Potential Biomarkers

Author(s): Nilofer Shaikh, Sanket Bapat, Muthukumarasamy Karthikeyan and Renu Vyas*

Volume 22, Issue 21, 2022

Published on: 26 September, 2022

Page: [1793 - 1810] Pages: 18

DOI: 10.2174/1568026622666220907121942

Price: $65

Open Access Journals Promotions 2
Abstract

Breast cancer is the most predominantly occurring cancer in the world. Several genes and proteins have been recently studied to predict biomarkers that enable early disease identification and monitor its recurrence. In the era of high-throughput technology, studies show several applications of big data for identifying potential biomarkers. The review aims to provide a comprehensive overview of big data analysis in breast cancer towards the prediction of biomarkers with emphasis on computational methods like text mining, network analysis, next-generation sequencing technology (NGS), machine learning (ML), deep learning (DL), and precision medicine. Integrating data from various computational approaches enables the stratification of cancer patients and the identification of molecular signatures in cancer and their subtypes. The computational methods and statistical analysis help expedite cancer prognosis and develop precision cancer medicine (PCM). As a part of case study in the present work, we constructed a large gene-drug interaction network to predict new biomarkers genes. The gene-drug network helped us to identify eight genes that could serve as novel potential biomarkers.

Keywords: Breast cancer, Biomarkers, Big data, Text mining, Network analysis, Driver genes.

« Previous
Graphical Abstract
[1]
Waks, A.G.; Winer, E.P. Breast cancer treatment: A review. JAMA, 2019, 321, 288-300.
[http://dx.doi.org/10.1001/jama.2018.19323]
[2]
Lüönd, F.; Tiede, S.; Christofori, G. Breast cancer as an example of tumour heterogeneity and tumour cell plasticity during malignant progression. Br. J. Cancer, 2021, 125(2), 164-175.
[http://dx.doi.org/10.1038/s41416-021-01328-7] [PMID: 33824479]
[3]
Heer, E.; Harper, A.; Escandor, N.; Sung, H.; McCormack, V.; Fidler-Benaoudia, M.M. Global burden and trends in premenopausal and postmenopausal breast cancer: A population-based study. Lancet Glob. Health, 2020, 8(8), e1027-e1037.
[http://dx.doi.org/10.1016/S2214-109X(20)30215-1] [PMID: 32710860]
[4]
Lei, S.; Zheng, R.; Zhang, S.; Wang, S.; Chen, R.; Sun, K.; Zeng, H.; Zhou, J.; Wei, W. Global patterns of breast cancer incidence and mortality: A population‐based cancer registry data analysis from 2000 to 2020. Cancer Commun. (Lond.), 2021, 41(11), 1183-1194.
[http://dx.doi.org/10.1002/cac2.12207] [PMID: 34399040]
[5]
Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2021, 71(3), 209-249.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[6]
Bhattacharyya, G.S.; Doval, D.C.; Desai, C.J.; Chaturvedi, H.; Sharma, S.; Somashekhar, S.P. Overview of breast cancer and implications of overtreatment of early-stage breast cancer: An Indian perspective. JCO Glob. Oncol., 2020, 6(6), 789-798.
[http://dx.doi.org/10.1200/GO.20.00033] [PMID: 32511068]
[7]
Yilmaz, T.U.; Trabzonlu, L.; Güler, S.A.; Baran, M.A.; Pösteki, G.; Erçin, C.; Utkan, Z. Characteristics of special type breast tumors in our center. Eur. J. Breast Health, 2018, 14(1), 17-22.
[http://dx.doi.org/10.5152/ejbh.2017.3219] [PMID: 29322114]
[8]
McCart Reed, A.E.; Kutasovic, J.R.; Nones, K.; Saunus, J.M.; Da Silva, L.; Newell, F.; Kazakoff, S.; Melville, L.; Jayanthan, J.; Vargas, A.C.; Reid, L.E.; Beesley, J.; Chen, X.Q.; Patch, A.M.; Clouston, D.; Porter, A.; Evans, E.; Pearson, J.V.; Chenevix-Trench, G.; Cummings, M.C.; Waddell, N.; Lakhani, S.R.; Simpson, P.T. Mixed ductal-lobular carcinomas: Evidence for progression from ductal to lobular morphology. J. Pathol., 2018, 244(4), 460-468.
[http://dx.doi.org/10.1002/path.5040] [PMID: 29344954]
[9]
Salvatorelli, L.; Puzzo, L.; Vecchio, G.M.; Caltabiano, R.; Virzì, V.; Magro, G. Ductal carcinoma in situ of the breast: An update with emphasis on radiological and morphological features as predictive prognostic factors. Cancers (Basel), 2020, 12(3), 609.
[http://dx.doi.org/10.3390/cancers12030609] [PMID: 32155777]
[10]
Dettogni, R.S.; Stur, E.; Laus, A.C.; da Costa Vieira, R.A.; Marques, M.M.C.; Santana, I.V.V.; Pulido, J.Z.; Ribeiro, L.F.; de Jesus Parmanhani, N.; Agostini, L.P.; dos Reis, R.S.; de Vargas Wolfgramm dos Santos, E.; Alves, L.N.R.; Garcia, F.M.; Santos, J.A.; do Prado Ventorim, D.; Reis, R.M.; Louro, I.D. Potential biomarkers of ductal carcinoma in situ progression. BMC Cancer, 2020, 20(1), 119.
[http://dx.doi.org/10.1186/s12885-020-6608-y] [PMID: 32050925]
[11]
Dai, X.; Xiang, L.; Li, T.; Bai, Z. Cancer hallmarks, biomarkers and breast cancer molecular subtypes. J. Cancer, 2016, 7(10), 1281-1294.
[http://dx.doi.org/10.7150/jca.13141] [PMID: 27390604]
[12]
Shee, K.; Muller, K.E.; Marotti, J.; Miller, T.W.; Wells, W.A.; Tsongalis, G.J. Ductal carcinoma in situ biomarkers in a precision medicine era. Am. J. Pathol., 2019, 189(5), 956-965.
[http://dx.doi.org/10.1016/j.ajpath.2018.08.020] [PMID: 30385093]
[13]
Wang, D.Y.; Jiang, Z.; Ben-David, Y.; Woodgett, J.R.; Zacksenhaus, E. Molecular stratification within triple-negative breast cancer subtypes. Sci. Rep., 2019, 9(1), 19107.
[http://dx.doi.org/10.1038/s41598-019-55710-w] [PMID: 31836816]
[14]
Liu, Y.X.; Zhang, K.J.; Tang, L.L. Clinical significance of androgen receptor expression in triple negative breast cancer-an immunohistochemistry study. Oncol. Lett., 2018, 15(6), 10008-10016.
[http://dx.doi.org/10.3892/ol.2018.8548] [PMID: 29844843]
[15]
Acheampong, T.; Kehm, R.D.; Terry, M.B.; Argov, E.L.; Tehranifar, P. Incidence trends of breast cancer molecular subtypes by age and race/ethnicity in the US from 2010 to 2016. JAMA Netw. Open, 2020, 3(8), e2013226.
[http://dx.doi.org/10.1001/jamanetworkopen.2020.13226] [PMID: 32804214]
[16]
Shen, G.; Zhao, F.; Huo, X.; Ren, D.; Du, F.; Zheng, F.; Zhao, J. Meta-analysis of HER2-enriched subtype predicting the pathological complete response within HER2-positive breast cancer in patients who received neoadjuvant treatment. Front. Oncol., 2021, 11, 632357.
[http://dx.doi.org/10.3389/fonc.2021.632357] [PMID: 34367947]
[17]
Yersal, O.; Barutca, S. Biological subtypes of breast cancer: Prognostic and therapeutic implications. World J. Clin. Oncol., 2014, 5(3), 412-424.
[http://dx.doi.org/10.5306/wjco.v5.i3.412] [PMID: 25114856]
[18]
Zarotti, C.; Papassotiropoulos, B.; Elfgen, C.; Dedes, K.; Vorburger, D.; Pestalozzi, B.; Trojan, A.; Varga, Z. Biomarker dynamics and prognosis in breast cancer after neoadjuvant chemotherapy. Sci. Rep., 2022, 12(1), 91.
[http://dx.doi.org/10.1038/s41598-021-04032-x] [PMID: 34997055]
[19]
Nguyen, Q.H.; Nguyen, H.; Nguyen, T.; Le, D.H. Multi-omics analysis detects novel prognostic subgroups of breast cancer. Front. Genet., 2020, 11, 574661.
[http://dx.doi.org/10.3389/fgene.2020.574661] [PMID: 33193681]
[20]
Weigel, M.T.; Dowsett, M. Current and emerging biomarkers in breast cancer: Prognosis and prediction. Endocr. Relat. Cancer, 2010, 17(4), R245-R262.
[http://dx.doi.org/10.1677/ERC-10-0136] [PMID: 20647302]
[21]
Schick, J.; Ritchie, R.P.; Restini, C. Breast cancer therapeutics and biomarkers: Past, present, and future approaches. Breast Cancer (Auckl.), 2021, 15, 1178223421995854.
[http://dx.doi.org/10.1177/1178223421995854] [PMID: 33994789]
[22]
Li, C.J.; Chen, H.M.; Lai, J.C. Diagnostic, prognostic, and predictive biomarkers in breast cancer. J. Oncol., 2020, 2020, 1835691.
[http://dx.doi.org/10.1155/2020/1835691] [PMID: 32256579]
[23]
Ades, F.; Tryfonidis, K.; Zardavas, D. The past and future of breast cancer treatment - from the Papyrus to individualised treatment approaches. Ecancermedicalscience, 2017, 11, 746.
[24]
Wang, J.; Xu, B. Targeted therapeutic options and future perspectives for HER2-positive breast cancer. Signal Transduct. Target. Ther., 2019, 4(1), 34.
[http://dx.doi.org/10.1038/s41392-019-0069-2] [PMID: 31637013]
[25]
Masoud, V.; Pagès, G. Targeted therapies in breast cancer: New challenges to fight against resistance. World J. Clin. Oncol., 2017, 8(2), 120-134.
[http://dx.doi.org/10.5306/wjco.v8.i2.120] [PMID: 28439493]
[26]
Tong, C.W.S.; Wu, M.; Cho, W.C.S.; To, K.K.W. Recent advances in the treatment of breast cancer. Front. Oncol., 2018, 8, 227.
[http://dx.doi.org/10.3389/fonc.2018.00227] [PMID: 29963498]
[27]
Incorvati, J.A.; Shah, S.; Mu, Y.; Lu, J. Targeted therapy for HER2 positive breast cancer. J. Hematol. Oncol., 2013, 6(1), 38.
[http://dx.doi.org/10.1186/1756-8722-6-38] [PMID: 23731980]
[28]
Ju, J.; Zhu, A.J.; Yuan, P. Progress in targeted therapy for breast cancer. Chronic Dis. Transl. Med., 2018, 4(3), 164-175.
[http://dx.doi.org/10.1016/j.cdtm.2018.04.002] [PMID: 30276363]
[29]
Carlisle, J.W.; Harvey, R.D. Tyrosine kinase inhibitors, antibody-drug conjugates, and proteolysis-targeting chimeras: The pharmacology of cutting-edge lung cancer therapies. Am. Soc. Clin. Oncol. Educ. Book, 2021, 41(41), e286-e293.
[http://dx.doi.org/10.1200/EDBK_320667] [PMID: 34061559]
[30]
Wu, C.; Peng, S.; Pilié, P.G.; Geng, C.; Park, S.; Manyam, G.C.; Lu, Y.; Yang, G.; Tang, Z.; Kondraganti, S.; Wang, D.; Hudgens, C.W.; Ledesma, D.A.; Marques-Piubelli, M.L.; Torres-Cabala, C.A.; Curry, J.L.; Troncoso, P.; Corn, P.G.; Broom, B.M.; Thompson, T.C. PARP and CDK4/6 inhibitor combination therapy induces apoptosis and suppresses neuroendocrine differentiation in prostate cancer. Mol. Cancer Ther., 2021, 20(9), 1680-1691.
[http://dx.doi.org/10.1158/1535-7163.MCT-20-0848] [PMID: 34158347]
[31]
Murthy, P.; Muggia, F. PARP inhibitors: Clinical development, emerging differences, and the current therapeutic issues. Cancer Drug Resist., 2019, 2(3), 665-679.
[http://dx.doi.org/10.20517/cdr.2019.002] [PMID: 35582575]
[32]
Brown, T.A., II; Mittendorf, E.A.; Hale, D.F.; Myers, J.W., III; Peace, K.M.; Jackson, D.O.; Greene, J.M.; Vreeland, T.J.; Clifton, G.T.; Ardavanis, A.; Litton, J.K.; Shumway, N.M.; Symanowski, J.; Murray, J.L.; Ponniah, S.; Anastasopoulou, E.A.; Pistamaltzian, N.F.; Baxevanis, C.N.; Perez, S.A.; Papamichail, M.; Peoples, G.E. Prospective, randomized, single-blinded, multi-center phase II trial of two HER2 peptide vaccines, GP2 and AE37, in breast cancer patients to prevent recurrence. Breast Cancer Res. Treat., 2020, 181(2), 391-401.
[http://dx.doi.org/10.1007/s10549-020-05638-x] [PMID: 32323103]
[33]
Rasha, F.; Sharma, M.; Pruitt, K. Mechanisms of endocrine therapy resistance in breast cancer. Mol. Cell. Endocrinol., 2021, 532, 111322.
[http://dx.doi.org/10.1016/j.mce.2021.111322] [PMID: 34000350]
[34]
Du, L.; Yau, C.; Brown-Swigart, L.; Gould, R.; Krings, G.; Hirst, G.L.; Bedrosian, I.; Layman, R.M.; Carter, J.M.; Klein, M.; Venters, S.; Shad, S.; van der Noordaa, M.; Chien, A.J.; Haddad, T.; Isaacs, C.; Pusztai, L.; Albain, K.; Nanda, R.; Tripathy, D.; Liu, M.C.; Boughey, J.; Schwab, R.; Hylton, N.; DeMichele, A.; Perlmutter, J.; Yee, D.; Berry, D.; van’t Veer, L.; Valero, V.; Esserman, L.J.; Symmans, W.F. Predicted sensitivity to endocrine therapy for stage II-III hormone receptor-positive and HER2-negative (HR+/HER2−) breast cancer before chemo-endocrine therapy. Ann. Oncol., 2021, 32(5), 642-651.
[http://dx.doi.org/10.1016/j.annonc.2021.02.011] [PMID: 33617937]
[35]
Mester, J.; Redeuilh, G. Proliferation of breast cancer cells: Regulation, mediators, targets for therapy. Anticancer. Agents Med. Chem., 2008, 8(8), 872-885.
[http://dx.doi.org/10.2174/187152008786847747] [PMID: 19075570]
[36]
Chalakur-Ramireddy, N.K.R.; Pakala, S.B. Combined drug therapeutic strategies for the effective treatment of Triple Negative Breast Cancer. Biosci. Rep., 2018, 38(1), BSR20171357.
[http://dx.doi.org/10.1042/BSR20171357] [PMID: 29298879]
[37]
Mir, M.A.; Qayoom, H.; Mehraj, U.; Nisar, S.; Bhat, B.; Wani, N.A. Targeting different pathways using novel combination therapy in triple negative breast cancer. Curr. Cancer Drug Targets, 2020, 20(8), 586-602.
[http://dx.doi.org/10.2174/1570163817666200518081955] [PMID: 32418525]
[38]
Li, Y.; Zhan, Z.; Yin, X.; Fu, S.; Deng, X. Targeted therapeutic strategies for triple-negative breast cancer. Front. Oncol., 2021, 11, 731535.
[http://dx.doi.org/10.3389/fonc.2021.731535] [PMID: 34778045]
[39]
Costa, R.L.B.; Czerniecki, B.J. Clinical development of immunotherapies for HER2+ breast cancer: A review of HER2-directed monoclonal antibodies and beyond. NPJ Breast Cancer, 2020, 6(1), 10.
[http://dx.doi.org/10.1038/s41523-020-0153-3] [PMID: 32195333]
[40]
Scott, A.M.; Allison, J.P.; Wolchok, J.D. Monoclonal antibodies in cancer therapy. Cancer Immun., 2012, 12, 14.
[PMID: 22896759]
[41]
Jin, S.; Sun, Y.; Liang, X.; Gu, X.; Ning, J.; Xu, Y.; Chen, S.; Pan, L. Emerging new therapeutic antibody derivatives for cancer treatment. Signal Transduct. Target. Ther., 2022, 7(1), 39.
[http://dx.doi.org/10.1038/s41392-021-00868-x] [PMID: 35132063]
[42]
Burstein, H.J.; Lacchetti, C.; Anderson, H.; Buchholz, T.A.; Davidson, N.E.; Gelmon, K.A.; Giordano, S.H.; Hudis, C.A.; Solky, A.J.; Stearns, V.; Winer, E.P.; Griggs, J.J. Adjuvant endocrine therapy for women with hormone receptor-positive breast cancer: ASCO Clinical Practice Guideline Focused Update. J. Clin. Oncol., 2019, 37(5), 423-438.
[http://dx.doi.org/10.1200/JCO.18.01160] [PMID: 30452337]
[43]
Hsu, J.L.; Hung, M.C. The role of HER2, EGFR, and other receptor tyrosine kinases in breast cancer. Cancer Metastasis Rev., 2016, 35(4), 575-588.
[http://dx.doi.org/10.1007/s10555-016-9649-6] [PMID: 27913999]
[44]
Furrer, D.; Paquet, C.; Jacob, S.; Diorio, C. The human epidermal growth factor receptor 2 (HER2) as a prognostic and predictive biomarker: Molecular insights into HER2 activation and diagnostic implications. Mol. Biol. Int., 2014, 2014, 852748.
[45]
Rossanese, O.; Eccles, S.; Springer, C.; Swain, A.; Raynaud, F.I.; Workman, P.; Kirkin, V. The pharmacological audit trail (PhAT): Use of tumor models to address critical issues in the preclinical development of targeted anticancer drugs. Drug Discov. Today Dis. Models, 2016, 21, 23-32.
[http://dx.doi.org/10.1016/j.ddmod.2017.07.002]
[46]
Yee, L.M.; Lively, T.G.; McShane, L.M. Biomarkers in early-phase trials: Fundamental issues. Bioanalysis, 2018, 10(12), 933-944.
[http://dx.doi.org/10.4155/bio-2018-0006] [PMID: 29923753]
[47]
Lauschke, V.M.; Milani, L.; Ingelman-Sundberg, M. Pharmacogenomic Biomarkers for Improved Drug Therapy—Recent Progress and Future Developments. AAPS J., 2018, 20(1), 4.
[http://dx.doi.org/10.1208/s12248-017-0161-x] [PMID: 29181807]
[48]
Jackson, R.C. Pharmacodynamic modelling of biomarker data in oncology. ISRN Pharmacol., 2012, 2012, 590626.
[http://dx.doi.org/10.5402/2012/590626] [PMID: 22523699]
[49]
Li, X.; Zeng, Z.; Wang, J.; Wu, Y.; Chen, W.; Zheng, L.; Xi, T.; Wang, A.; Lu, Y. MicroRNA-9 and breast cancer. Biomed. Pharmacother., 2020, 122, 109687.
[http://dx.doi.org/10.1016/j.biopha.2019.109687] [PMID: 31918267]
[50]
Si, W.; Shen, J.; Zheng, H.; Fan, W. The role and mechanisms of action of microRNAs in cancer drug resistance. Clin. Epigenetics, 2019, 11(1), 25.
[http://dx.doi.org/10.1186/s13148-018-0587-8] [PMID: 30744689]
[51]
Ghafouri-Fard, S.; Abak, A.; Shoorei, H.; Mohaqiq, M.; Majidpoor, J.; Sayad, A.; Taheri, M. Regulatory role of microRNAs on PTEN signaling. Biomed. Pharmacother., 2021, 133, 110986.
[http://dx.doi.org/10.1016/j.biopha.2020.110986] [PMID: 33166764]
[52]
Bhat, S.A.; Majid, S.; Hassan, T. MicroRNAs and its emerging role as breast cancer diagnostic marker- A review. Adv. Biomarker Sci. Technol., 2019, 1, 1-8.
[http://dx.doi.org/10.1016/j.abst.2019.05.001]
[53]
Rios-Colon, L.; Deep, G.; Kumar, D. Emerging role of microRNA 628-5p as a novel biomarker for cancer and other diseases. Tumour Biol., 2019, 41(10), 1010428319881344.
[http://dx.doi.org/10.1177/1010428319881344] [PMID: 31608792]
[54]
Wang, H.; Peng, R.; Wang, J.; Qin, Z.; Xue, L. Circulating microRNAs as potential cancer biomarkers: The advantage and disadvantage. Clin. Epigenetics, 2018, 10(1), 59.
[http://dx.doi.org/10.1186/s13148-018-0492-1] [PMID: 29713393]
[55]
Gao, J.J.; Swain, S.M.; Luminal, A.; Luminal, A. Breast Cancer and Molecular Assays: A Review. Oncologist, 2018, 23(5), 556-565.
[http://dx.doi.org/10.1634/theoncologist.2017-0535] [PMID: 29472313]
[56]
Puppe, J.; Seifert, T.; Eichler, C.; Pilch, H.; Mallmann, P.; Malter, W. Genomic signatures in luminal breast cancer. Breast Care (Basel), 2020, 15(4), 355-365.
[http://dx.doi.org/10.1159/000509846] [PMID: 32982645]
[57]
Ni, X.; Wan, W.; Ma, J.; Liu, X.; Zheng, B.; He, Z.; Yang, W.; Huang, L. A novel prognostic biomarker of luminal breast cancer: High CD39 expression is related to poor survival. Front. Genet., 2021, 12, 682503.
[http://dx.doi.org/10.3389/fgene.2021.682503] [PMID: 34220957]
[58]
Hamid, A.; Wang, X.V.; Chen, Y.H.; Feng, F.Y.; Den, R.B.; Attard, G.; Van Allen, E.M.; Huang, H.C.; Karns, A.; Dittamore, R.; Davicioni, E.; Liu, G.; DiPaola, R.S.; Carducci, M.A.; Sweeney, C.; Luminal, B. Luminal B subtype as a predictive biomarker of docetaxel benefit for newly diagnosed metastatic hormone sensitive prostate cancer (mHSPC): A correlative study of E3805 CHAARTED. J. Clin. Oncol., 2020, 38(6)(Suppl.), 162.
[http://dx.doi.org/10.1200/JCO.2020.38.6_suppl.162]
[59]
Li, P.; Yuan, W.; Wu, R.; Zeng, C.; Li, K.; Lu, L. Androgens in patients with Luminal B and HER2 breast cancer might be a biomarker promoting Anti-PD-1 efficacy. Front. Oncol., 2022, 12, 917400.
[http://dx.doi.org/10.3389/fonc.2022.917400] [PMID: 35880165]
[60]
Lv, J.; Ren, J.; Zheng, J.; Zhang, F.; Han, M. Prognosis of tumor microenvironment in Luminal B-Type breast cancer. Dis. Markers, 2022, 2022, 5621441.
[http://dx.doi.org/10.1155/2022/5621441] [PMID: 35242245]
[61]
Jamshidi, N.; Yamamoto, S.; Gornbein, J.; Kuo, M.D. Receptor-based surrogate subtypes and discrepancies with breast cancer intrinsic subtypes: Implications for image biomarker development. Radiology, 2018, 289(1), 210-217.
[http://dx.doi.org/10.1148/radiol.2018171118] [PMID: 30040052]
[62]
Yadav, B.S.; Chanana, P.; Jhamb, S. Biomarkers in triple negative breast cancer: A review. World J. Clin. Oncol., 2015, 6(6), 252-263.
[http://dx.doi.org/10.5306/wjco.v6.i6.252] [PMID: 26677438]
[63]
Cocco, S.; Piezzo, M.; Calabrese, A.; Cianniello, D.; Caputo, R.; Di Lauro, V.; Fusco, G.; di Gioia, G.; Licenziato, M.; de Laurentiis, M. Biomarkers in triple-negative breast cancer: State-of-the-Art and future perspectives. Int. J. Mol. Sci., 2020, 21(13), 4579.
[http://dx.doi.org/10.3390/ijms21134579] [PMID: 32605126]
[64]
Liu, Y.; Teng, L.; Fu, S.; Wang, G.; Li, Z.; Ding, C.; Wang, H.; Bi, L. Highly heterogeneous-related genes of triple-negative breast cancer: Potential diagnostic and prognostic biomarkers. BMC Cancer, 2021, 21(1), 644.
[http://dx.doi.org/10.1186/s12885-021-08318-1] [PMID: 34053447]
[65]
Marra, A.; Trapani, D.; Viale, G.; Criscitiello, C.; Curigliano, G. Practical classification of triple-negative breast cancer: Intratumoral heterogeneity, mechanisms of drug resistance, and novel therapies. NPJ Breast Cancer, 2020, 6(1), 54.
[http://dx.doi.org/10.1038/s41523-020-00197-2] [PMID: 33088912]
[66]
Chehade, R.; Awan, A.A.; Fernandes, R. A narrative review of biomarkers in advanced triple negative breast cancer. Precis. Cancer Med., 2021, 4, 24.
[http://dx.doi.org/10.21037/pcm-20-76]
[67]
Dieci, M.V.; Miglietta, F.; Griguolo, G.; Guarneri, V. Biomarkers for HER2-positive metastatic breast cancer: Beyond hormone receptors. Cancer Treat. Rev., 2020, 88, 102064.
[http://dx.doi.org/10.1016/j.ctrv.2020.102064] [PMID: 32622272]
[68]
Díaz-Gil, L.; Brasó-Maristany, F.; Locatelli, C.; Centa, A. Győrffy, B.; Ocaña, A.; Prat, A.; Pandiella, A. Modelling hypersensitivity to trastuzumab defines biomarkers of response in HER2 positive breast cancer. J. Exp. Clin. Cancer Res., 2021, 40(1), 313.
[http://dx.doi.org/10.1186/s13046-021-02098-z] [PMID: 34620206]
[69]
Martínez-Sáez, O.; Prat, A. Current and future management of HER2-Positive metastatic breast cancer. JCO Oncol. Pract., 2021, 17(10), 594-604.
[http://dx.doi.org/10.1200/OP.21.00172] [PMID: 34077236]
[70]
Zhou, X.; Xiao, C.; Han, T.; Qiu, S.; Wang, M.; Chu, J.; Sun, W.; Li, L.; Lin, L. Prognostic biomarkers related to breast cancer recurrence identified based on Logit model analysis. World J. Surg. Oncol., 2020, 18(1), 254.
[http://dx.doi.org/10.1186/s12957-020-02026-z] [PMID: 32977823]
[71]
Bao, C.; Lu, Y.; Chen, J.; Chen, D.; Lou, W.; Ding, B.; Xu, L.; Fan, W. Exploring specific prognostic biomarkers in triple-negative breast cancer. Cell Death Dis., 2019, 10(11), 807.
[http://dx.doi.org/10.1038/s41419-019-2043-x] [PMID: 31649243]
[72]
Abubakar, M.; Guo, C.; Koka, H.; Zhu, B.; Deng, J.; Hu, N.; Zhou, B.; Garcia-Closas, M.; Lu, N.; Yang, X.R. Impact of breast cancer risk factors on clinically relevant prognostic biomarkers for primary breast cancer. Breast Cancer Res. Treat., 2021, 189(2), 483-495.
[http://dx.doi.org/10.1007/s10549-021-06294-5] [PMID: 34185195]
[73]
Rakha, E.A.; Chmielik, E.; Schmitt, F.C.; Tan, P.H.; Quinn, C.M.; Gallagy, G. Assessment of predictive biomarkers in breast cancer: Challenges and updates; PAT, 2022. [Epub ahead of print]
[74]
Beelen, K.; Zwart, W.; Linn, S.C. Can predictive biomarkers in breast cancer guide adjuvant endocrine therapy? Nat. Rev. Clin. Oncol., 2012, 9(9), 529-541.
[http://dx.doi.org/10.1038/nrclinonc.2012.121] [PMID: 22825374]
[75]
Jana, D.; Sarkar, D.K.; Ganguly, S.; Saha, S.; Sa, G.; Manna, A.K.; Banerjee, A.; Mandal, S. Role of Cyclooxygenase 2 (COX-2) in prognosis of breast cancer. Indian J. Surg. Oncol., 2014, 5(1), 59-65.
[http://dx.doi.org/10.1007/s13193-014-0290-y] [PMID: 24669166]
[76]
Xu, F.; Li, M.; Zhang, C.; Cui, J.; Liu, J.; Li, J.; Jiang, H. Clinicopathological and prognostic significance of COX-2 immunohistochemical expression in breast cancer: A meta-analysis. Oncotarget, 2017, 8(4), 6003-6012.
[http://dx.doi.org/10.18632/oncotarget.13990] [PMID: 27999206]
[77]
Ortiz, A.B.; Garcia, D.; Vicente, Y.; Palka, M.; Bellas, C.; Martin, P. Prognostic significance of cyclin D1 protein expression and gene amplification in invasive breast carcinoma. PLoS One, 2017, 12(11), e0188068.
[http://dx.doi.org/10.1371/journal.pone.0188068] [PMID: 29140993]
[78]
Tobin, N.P.; Sims, A.H.; Lundgren, K.L.; Lehn, S.; Landberg, G. Cyclin D1, Id1 and EMT in breast cancer. BMC Cancer, 2011, 11(1), 417.
[http://dx.doi.org/10.1186/1471-2407-11-417] [PMID: 21955753]
[79]
Afzal, S.; Hassan, M.; Ullah, S.; Abbas, H.; Tawakkal, F.; Khan, M.A. Breast Cancer; Discovery of novel diagnostic biomarkers, drug resistance, and therapeutic implications. Front. Mol. Biosci., 2022, 9, 783450.
[http://dx.doi.org/10.3389/fmolb.2022.783450] [PMID: 35265667]
[80]
Zubair, M.; Wang, S.; Ali, N. Advanced approaches to breast cancer classification and diagnosis. Front. Pharmacol., 2021, 11, 632079.
[http://dx.doi.org/10.3389/fphar.2020.632079] [PMID: 33716731]
[81]
Rossi, R.L.; Grifantini, R.M. Big data: Challenge and opportunity for translational and industrial research in healthcare. Front. Digit. Human., 2018, 5, 13.
[82]
Stark, G.F.; Hart, G.R.; Nartowt, B.J.; Deng, J. Predicting breast cancer risk using personal health data and machine learning models. PLoS One, 2019, 14(12), e0226765.
[http://dx.doi.org/10.1371/journal.pone.0226765] [PMID: 31881042]
[83]
Agrawal, R.; Prabakaran, S. Big data in digital healthcare: Lessons learnt and recommendations for general practice. Heredity, 2020, 124(4), 525-534.
[http://dx.doi.org/10.1038/s41437-020-0303-2] [PMID: 32139886]
[84]
Tsai, C.J.; Riaz, N.; Gomez, S.L. Big Data in Cancer Research: Real-world resources for precision oncology to improve cancer care delivery. Semin. Radiat. Oncol., 2019, 29(4), 306-310.
[http://dx.doi.org/10.1016/j.semradonc.2019.05.002] [PMID: 31472730]
[85]
Yang, Y.; Dong, X.; Xie, B.; Ding, N.; Chen, J.; Li, Y.; Zhang, Q.; Qu, H.; Fang, X. Databases and web tools for cancer genomics study. Genomics Proteomics Bioinformatics, 2015, 13(1), 46-50.
[http://dx.doi.org/10.1016/j.gpb.2015.01.005] [PMID: 25707591]
[86]
Sathyanarayanan, A.; Gupta, R.; Thompson, E.W.; Nyholt, D.R.; Bauer, D.C.; Nagaraj, S.H. A comparative study of multi-omics integration tools for cancer driver gene identification and tumour subtyping. Brief. Bioinform., 2020, 21(6), 1920-1936.
[http://dx.doi.org/10.1093/bib/bbz121] [PMID: 31774481]
[87]
Rohart, F.; Gautier, B.; Singh, A.; Lê Cao, K.A. mixOmics: An R package for ‘omics feature selection and multiple data integration. PLOS Comput. Biol., 2017, 13(11), e1005752.
[http://dx.doi.org/10.1371/journal.pcbi.1005752] [PMID: 29099853]
[88]
Tamborero, D.; Lopez-Bigas, N.; Gonzalez-Perez, A. Oncodrive-CIS: A method to reveal likely driver genes based on the impact of their copy number changes on expression. PLoS One, 2013, 8(2), e55489.
[http://dx.doi.org/10.1371/journal.pone.0055489] [PMID: 23408991]
[89]
Weinstein, J.N.; Collisson, E.A.; Mills, G.B.; Shaw, K.R.M.; Ozenberger, B.A.; Ellrott, K.; Shmulevich, I.; Sander, C.; Stuart, J.M. The cancer genome atlas pan-cancer analysis project. Nat. Genet., 2013, 45, 1113-1120.
[90]
ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium. Pan-cancer analysis of whole genomes. Nature, 2020, 578(7793), 82-93.
[http://dx.doi.org/10.1038/s41586-020-1969-6] [PMID: 32025007]
[91]
Forbes, S.A.; Tang, G.; Bindal, N.; Bamford, S.; Dawson, E.; Cole, C.; Kok, C.Y.; Jia, M.; Ewing, R.; Menzies, A.; Teague, J.W.; Stratton, M.R.; Futreal, P.A. COSMIC (the Catalogue of Somatic Mutations in Cancer): A resource to investigate acquired mutations in human cancer. Nucleic Acids Res., 2010, 38(Suppl. 1), D652-D657.
[http://dx.doi.org/10.1093/nar/gkp995] [PMID: 19906727]
[92]
Rudnick, P.A.; Markey, S.P.; Roth, J.; Mirokhin, Y.; Yan, X.; Tchekhovskoi, D.V.; Edwards, N.J.; Thangudu, R.R.; Ketchum, K.A.; Kinsinger, C.R.; Mesri, M.; Rodriguez, H.; Stein, S.E. A description of the clinical proteomic tumor analysis consortium (CPTAC) common data analysis pipeline. J. Proteome Res., 2016, 15(3), 1023-1032.
[http://dx.doi.org/10.1021/acs.jproteome.5b01091] [PMID: 26860878]
[93]
Cheng, W.C.; Chung, I.F.; Chen, C.Y.; Sun, H.J.; Fen, J.J.; Tang, W.C.; Chang, T.Y.; Wong, T.T.; Wang, H.W.; Driver, D.B.; Driver, D.B. An exome sequencing database for cancer driver gene identification. Nucleic Acids Res., 2014, 42(D1), D1048-D1054.
[http://dx.doi.org/10.1093/nar/gkt1025] [PMID: 24214964]
[94]
Barretina, J.; Caponigro, G.; Stransky, N.; Venkatesan, K.; Margolin, A.A.; Kim, S.; Wilson, C.J.; Lehár, J.; Kryukov, G.V.; Sonkin, D.; Reddy, A.; Liu, M.; Murray, L.; Berger, M.F.; Monahan, J.E.; Morais, P.; Meltzer, J.; Korejwa, A.; Jané-Valbuena, J.; Mapa, F.A.; Thibault, J.; Bric-Furlong, E.; Raman, P.; Shipway, A.; Engels, I.H.; Cheng, J.; Yu, G.K.; Yu, J.; Aspesi, P., Jr; de Silva, M.; Jagtap, K.; Jones, M.D.; Wang, L.; Hatton, C.; Palescandolo, E.; Gupta, S.; Mahan, S.; Sougnez, C.; Onofrio, R.C.; Liefeld, T.; MacConaill, L.; Winckler, W.; Reich, M.; Li, N.; Mesirov, J.P.; Gabriel, S.B.; Getz, G.; Ardlie, K.; Chan, V.; Myer, V.E.; Weber, B.L.; Porter, J.; Warmuth, M.; Finan, P.; Harris, J.L.; Meyerson, M.; Golub, T.R.; Morrissey, M.P.; Sellers, W.R.; Schlegel, R.; Garraway, L.A. The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature, 2012, 483(7391), 603-607.
[http://dx.doi.org/10.1038/nature11003] [PMID: 22460905]
[95]
Cerami, E.; Gao, J.; Dogrusoz, U.; Gross, B.E.; Sumer, S.O.; Aksoy, B.A.; Jacobsen, A.; Byrne, C.J.; Heuer, M.L.; Larsson, E.; Antipin, Y.; Reva, B.; Goldberg, A.P.; Sander, C.; Schultz, N. The cBio cancer genomics portal: An open platform for exploring multidimensional cancer genomics data. Cancer Discov., 2012, 2(5), 401-404.
[http://dx.doi.org/10.1158/2159-8290.CD-12-0095] [PMID: 22588877]
[96]
Prior, F.; Smith, K.; Sharma, A.; Kirby, J.; Tarbox, L.; Clark, K.; Bennett, W.; Nolan, T.; Freymann, J. The public cancer radiology imaging collections of the cancer imaging archive. Sci. Data, 2017, 4(1), 170124.
[http://dx.doi.org/10.1038/sdata.2017.124] [PMID: 28925987]
[97]
Gentleman, R.C.; Carey, V.J.; Bates, D.M.; Bolstad, B.; Dettling, M.; Dudoit, S.; Ellis, B.; Gautier, L.; Ge, Y.; Gentry, J.; Hornik, K.; Hothorn, T.; Huber, W.; Iacus, S.; Irizarry, R.; Leisch, F.; Li, C.; Maechler, M.; Rossini, A.J.; Sawitzki, G.; Smith, C.; Smyth, G.; Tierney, L.; Yang, J.Y.H.; Zhang, J. Bioconductor: Open software development for computational biology and bioinformatics. Genome Biol., 2004, 5(10), R80.
[http://dx.doi.org/10.1186/gb-2004-5-10-r80] [PMID: 15461798]
[98]
Jalili, V.; Afgan, E.; Gu, Q.; Clements, D.; Blankenberg, D.; Goecks, J.; Taylor, J.; Nekrutenko, A. The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2020 update. Nucleic Acids Res., 2020, 48(W1), W395-W402.
[http://dx.doi.org/10.1093/nar/gkaa434] [PMID: 32479607]
[99]
Wadapurkar, R.M.; Vyas, R. Computational analysis of next generation sequencing data and its applications in clinical oncology. Inform. Med. Unlocked, 2018, 11, 75-82.
[http://dx.doi.org/10.1016/j.imu.2018.05.003]
[100]
Ma, R.; Gong, J.; Jiang, X. Novel applications of next-generation sequencing in breast cancer research. Genes Dis., 2017, 4(3), 149-153.
[http://dx.doi.org/10.1016/j.gendis.2017.07.003] [PMID: 30258916]
[101]
Tripathi, R.; Sharma, P.; Chakraborty, P.; Varadwaj, P.K. Next-generation sequencing revolution through big data analytics. Front. Life Sci., 2016, 9(2), 119-149.
[http://dx.doi.org/10.1080/21553769.2016.1178180]
[102]
Patel, R.K.; Jain, M. NGS QC Toolkit: A toolkit for quality control of next generation sequencing data. PLoS One, 2012, 7(2), e30619.
[http://dx.doi.org/10.1371/journal.pone.0030619] [PMID: 22312429]
[103]
Chaitankar, V.; Karakülah, G.; Ratnapriya, R.; Giuste, F.O.; Brooks, M.J.; Swaroop, A. Next generation sequencing technology and genomewide data analysis: Perspectives for retinal research. Prog. Retin. Eye Res., 2016, 55, 1-31.
[http://dx.doi.org/10.1016/j.preteyeres.2016.06.001] [PMID: 27297499]
[104]
Hempel, D.; Ebner, F.; Garg, A.; Trepotec, Z.; Both, A.; Stein, W.; Gaumann, A.; Güttler, L.; Janni, W.; DeGregorio, A.; Hempel, L.; Milani, V. Real world data analysis of next generation sequencing and protein expression in metastatic breast cancer patients. Sci. Rep., 2020, 10(1), 10459.
[http://dx.doi.org/10.1038/s41598-020-67393-9] [PMID: 32591580]
[105]
Nones, K.; Patch, A.M. The impact of next generation sequencing in cancer research. Cancers (Basel), 2020, 12(10), 2928.
[http://dx.doi.org/10.3390/cancers12102928] [PMID: 33053644]
[106]
Tsai, H.P.; Huang, S.F.; Li, C.F.; Chien, H.T.; Chen, S.C. Differential microRNA expression in breast cancer with different onset age. PLoS One, 2018, 13(1), e0191195.
[http://dx.doi.org/10.1371/journal.pone.0191195] [PMID: 29324832]
[107]
Jeibouei, S.; Akbari, M.E.; Kalbasi, A.; Aref, A.; Ajoudanian, M.; Rezvani, A.; Zali, H. Personalized medicine in breast cancer: Pharmacogenomics approaches. Pharm. Genomics Pers. Med., 2019, 12, 59-73.
[http://dx.doi.org/10.2147/PGPM.S167886] [PMID: 31213877]
[108]
Cirillo, D.; Valencia, A. Big data analytics for personalized medicine. Curr. Opin. Biotechnol., 2019, 58, 161-167.
[http://dx.doi.org/10.1016/j.copbio.2019.03.004] [PMID: 30965188]
[109]
Matsui, S. Genomic biomarkers for personalized medicine: Development and validation in clinical studies. Comput. Math. Methods Med., 2013, 2013, 865980.
[http://dx.doi.org/10.1155/2013/865980] [PMID: 23690882]
[110]
Suwinski, P.; Ong, C.; Ling, M.H.T.; Poh, Y.M.; Khan, A.M.; Ong, H.S. Advancing personalized medicine through the application of whole exome sequencing and big data analytics. Front. Genet., 2019, 10, 49.
[http://dx.doi.org/10.3389/fgene.2019.00049] [PMID: 30809243]
[111]
Ke, X.; Shen, L. Molecular targeted therapy of cancer: The progress and future prospect. Frontiers in Laboratory Medicine, 2017, 1(2), 69-75.
[http://dx.doi.org/10.1016/j.flm.2017.06.001]
[112]
Vyas, R.; Bapat, S.; Jain, E.; Tambe, S.S.; Karthikeyan, M.; Kulkarni, B.D. A study of applications of machine learning based classification methods for virtual screening of lead molecules. Comb. Chem. High Throughput Screen., 2015, 18(7), 658-672.
[http://dx.doi.org/10.2174/1386207318666150703112447] [PMID: 26138573]
[113]
Kourou, K.; Exarchos, T.P.; Exarchos, K.P.; Karamouzis, M.V.; Fotiadis, D.I. Machine learning applications in cancer prognosis and prediction. Comput. Struct. Biotechnol. J., 2015, 13, 8-17.
[http://dx.doi.org/10.1016/j.csbj.2014.11.005] [PMID: 25750696]
[114]
Tufail, A.B.; Ma, Y.K.; Kaabar, M.K.A.; Martínez, F.; Junejo, A.R.; Ullah, I.; Khan, R. Deep learning in cancer diagnosis and prognosis prediction: a minireview on challenges, recent trends, and future directions. Comput. Math. Methods Med., 2021, 2021, 9025470.
[http://dx.doi.org/10.1155/2021/9025470] [PMID: 34754327]
[115]
Schneider, L.; Laiouar-Pedari, S.; Kuntz, S.; Krieghoff-Henning, E.; Hekler, A.; Kather, J.N.; Gaiser, T.; Fröhling, S.; Brinker, T.J. Integration of deep learning-based image analysis and genomic data in cancer pathology: A systematic review. Eur. J. Cancer, 2022, 160, 80-91.
[http://dx.doi.org/10.1016/j.ejca.2021.10.007] [PMID: 34810047]
[116]
Tran, K.A.; Kondrashova, O.; Bradley, A.; Williams, E.D.; Pearson, J.V.; Waddell, N. Deep learning in cancer diagnosis, prognosis and treatment selection. Genome Med., 2021, 13(1), 152.
[http://dx.doi.org/10.1186/s13073-021-00968-x] [PMID: 34579788]
[117]
Vyas, R.; Bapat, S.; Jain, E.; Karthikeyan, M.; Tambe, S.; Kulkarni, B.D. Building and analysis of protein-protein interactions related to diabetes mellitus using support vector machine, biomedical text mining and network analysis. Comput. Biol. Chem., 2016, 65, 37-44.
[http://dx.doi.org/10.1016/j.compbiolchem.2016.09.011] [PMID: 27744173]
[118]
Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res., 2003, 13(11), 2498-2504.
[http://dx.doi.org/10.1101/gr.1239303] [PMID: 14597658]
[119]
Lv, C.; Huang, Y.; Huang, R.; Wang, Q.; Zhang, H.; Jin, J.; Lu, D.; Zhou, Y.; Shen, Y.; Zhang, W.; Luan, X.; Liu, S. Narciclasine targets STAT3 via distinct mechanisms in tamoxifen-resistant breast cancer cells. Mol. Ther. Oncolytics, 2022, 24, 340-354.
[http://dx.doi.org/10.1016/j.omto.2021.12.025] [PMID: 35118192]
[120]
Moon, S.Y.; Lee, H.; Kim, S.; Hong, J.H.; Chun, S.H.; Lee, H.Y.; Kang, K.; Kim, H.S.; Won, H.S.; Ko, Y.H. Inhibition of STAT3 enhances sensitivity to tamoxifen in tamoxifen-resistant breast cancer cells. BMC Cancer, 2021, 21(1), 931.
[http://dx.doi.org/10.1186/s12885-021-08641-7] [PMID: 34407787]
[121]
Zhong, P.; Hua, H.; Chen, S.; Zhu, Z.; Xie, F. The prognostic value of lncRNA AGAP2-AS1 in cancer patients. Medicine (Baltimore), 2021, 100(51), e28425.
[http://dx.doi.org/10.1097/MD.0000000000028425] [PMID: 34941192]
[122]
Zhou, D.; Gu, J.; Wang, Y.; Luo, B.; Feng, M.; Wang, X. Long noncoding RNA CCAT2 reduces chemosensitivity to 5‐fluorouracil in breast cancer cells by activating the mTOR axis. J. Cell. Mol. Med., 2022, 26(5), 1392-1401.
[http://dx.doi.org/10.1111/jcmm.17041] [PMID: 35170195]
[123]
Abba, M.C.; Fabre, M.L.; Lee, J.; Tatineni, P.; Kil, H.; Aldaz, C.M. HOTAIR Modulated Pathways in Early-Stage Breast Cancer Progression. Front. Oncol., 2021, 11, 783211.
[http://dx.doi.org/10.3389/fonc.2021.783211] [PMID: 34869037]
[124]
Gu, J.; Wang, Y.; Wang, X.; Zhou, D.; Shao, C.; Zhou, M.; He, Z. Retraction notice to “Downregulation of lncRNA GAS5 confers tamoxifen resistance by activating miR-222 in breast cancer”. [Canc. Lett. 434 (2018) 1–10]. Cancer Lett., 2021, 517, 106.
[http://dx.doi.org/10.1016/j.canlet.2021.07.004] [PMID: 34274167]
[125]
Mansoori, Y.; Tabei, M.B.; Askari, A.; Izadi, P.; Daraei, A.; Bastami, M.; Naghizadeh, M.M.; Nariman-Saleh-Fam, Z.; Mansoori, B.; Tavakkoly-Bazzaz, J. Expression levels of breast cancer-related GAS5 and LSINCT5 lncRNAs in cancer-free breast tissue: Molecular associations with age at menarche and obesity. Breast J., 2018, 24(6), 876-882.
[http://dx.doi.org/10.1111/tbj.13067] [PMID: 29785740]
[126]
Deng, J.; Liu, M.; Xiao, R.; Wang, J.; Liao, X.; Ye, Z.; Sun, Z. Risk, incidence, and mortality of breast cancer in primary sjögren’s syndrome: A systematic review and meta-analysis. Front. Immunol., 2022, 13, 904682.
[http://dx.doi.org/10.3389/fimmu.2022.904682] [PMID: 35844507]
[127]
Nabet, B.Y.; Qiu, Y.; Shabason, J.E.; Wu, T.J.; Yoon, T.; Kim, B.C.; Benci, J.L.; DeMichele, A.M.; Tchou, J.; Marcotrigiano, J.; Minn, A.J. Exosome RNA unshielding couples stromal activation to pattern recognition receptor signaling in cancer. Cell, 2017, 170(2), 352-366.e13.
[http://dx.doi.org/10.1016/j.cell.2017.06.031] [PMID: 28709002]
[128]
Xie, S-D.; Qin, C.; Jin, L-D.; Wang, Q-C.; Shen, J.; Zhou, J-C.; Chen, Y-X.; Huang, A-H.; Zhao, W-H.; Wang, L-B. Long noncoding RNA SNHG14 promotes breast cancer cell proliferation and invasion via sponging miR-193a-3p. Eur. Rev. Med. Pharmacol. Sci., 2020, 24(14), 7543.
[PMID: 32744648]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy