Generic placeholder image

Current Radiopharmaceuticals

Editor-in-Chief

ISSN (Print): 1874-4710
ISSN (Online): 1874-4729

Research Article

Histopathological Evaluation of Nanocurcumin for Mitigation of Radiation- Induced Small Intestine Injury

Author(s): Alireza Ghanbarzadeh, Bagher Farhood, Farshid Alazmani Noodeh, Reza Mosaed, Gholamreza Hassanzadeh, Hamed Bagheri* and Masoud Najafi*

Volume 16, Issue 1, 2023

Published on: 19 September, 2022

Page: [57 - 63] Pages: 7

DOI: 10.2174/1874471015666220901142858

Price: $65

conference banner
Abstract

Aim: In the current study, we aimed to mitigate radiation-induced small intestinal toxicity using post-irradiation treatment with nano-micelle curcumin.

Background: Small intestine is one of the most radiosensitive organs within the body. Wholebody exposure to an acute dose of ionizing radiation may lead to severe injuries to this tissue and may even cause death after some weeks.

Objective: This study aimed to evaluate histopathological changes in the small intestine following whole-body irradiation and treatment with nanocurcumin.

Materials and Methods: Forty male Nordic Medical Research Institute mice were grouped into control, treatment with 100 mg/kg nano-micelle curcumin, whole-body irradiation with cobalt-60 gamma-rays (dose rate of 60 cGy/min and a single dose of 7 Gy), and treatment with 100 mg/kg nano-micelle curcumin 1 day after whole-body irradiation for 4 weeks. Afterward, all mice were sacrificed for histopathological evaluation of their small intestinal tissues.

Results: Irradiation led to severe damage to villi, crypts, glands as well as vessels, leading to bleeding. Administration of nano-micelle curcumin after whole-body irradiation showed a statistically significant improvement in radiation toxicity of the duodenum, jejunum and ileum (including a reduction in infiltration of polymorphonuclear cells, villi length shortening, goblet cells injury, Lieberkühn glands injury and bleeding). Although treatment with nano-micelle curcumin showed increased bleeding in the ileum for non-irradiated mice, its administration after irradiation was able to reduce radiation-induced bleeding in the ileum.

Conclusion: Treatment with nano-micelle curcumin may be useful for mitigation of radiationinduced gastrointestinal system toxicity via suppression of inflammatory cells’ infiltration and protection against villi and crypt shortening.

Keywords: Nano-micelle curcumin, small intestine, radiation, mitigation, acute radiation syndrome, injury.

[1]
Buesseler, K.; Aoyama, M.; Fukasawa, M. Impacts of the Fukushima nuclear power plants on marine radioactivity. Environ. Sci. Technol., 2011, 45(23), 9931-9935.
[http://dx.doi.org/10.1021/es202816c] [PMID: 22013920]
[2]
Shimizu, Y.; Kodama, K.; Nishi, N.; Kasagi, F.; Suyama, A.; Soda, M.; Grant, E.J.; Sugiyama, H.; Sakata, R.; Moriwaki, H.; Hayashi, M.; Konda, M.; Shore, R.E. Radiation exposure and circulatory disease risk: Hiroshima and Nagasaki atomic bomb survivor data, 1950-2003. BMJ, 2010, 340, b5349.
[http://dx.doi.org/10.1136/bmj.b5349] [PMID: 20075151]
[3]
Ivanov, V.K.; Maksioutov, M.A.; Chekin, S.Y.; Petrov, A.V.; Biryukov, A.P.; Kruglova, Z.G.; Matyash, V.A.; Tsyb, A.F.; Manton, K.G.; Kravchenko, J.S. The risk of radiation-induced cerebrovascular disease in Chernobyl emergency workers. Health Phys., 2006, 90(3), 199-207.
[http://dx.doi.org/10.1097/01.HP.0000175835.31663.ea] [PMID: 16505616]
[4]
Waselenko, J.K.; MacVittie, T.J.; Blakely, W.F.; Pesik, N.; Wiley, A.L.; Dickerson, W.E.; Tsu, H.; Confer, D.L.; Coleman, C.N.; Seed, T.; Lowry, P.; Armitage, J.O.; Dainiak, N. Medical management of the acute radiation syndrome: Recommendations of the Strategic National Stockpile Radiation Working Group. Ann. Intern. Med., 2004, 140(12), 1037-1051.
[http://dx.doi.org/10.7326/0003-4819-140-12-200406150-00015] [PMID: 15197022]
[5]
Yehezkelli, Y.; Dushnitsky, T.; Hourvitz, A. Radiation terrorism--the medical challenge. Isr. Med. Assoc. J., 2002, 4(7), 530-534.
[PMID: 12120466]
[6]
Paris, F.; Fuks, Z.; Kang, A.; Capodieci, P.; Juan, G.; Ehleiter, D.; Haimovitz-Friedman, A.; Cordon-Cardo, C.; Kolesnick, R. Endothelial apoptosis as the primary lesion initiating intestinal radiation damage in mice. Science, 2001, 293(5528), 293-297.
[http://dx.doi.org/10.1126/science.1060191] [PMID: 11452123]
[7]
Guzman-Stein, G.; Bonsack, M.; Liberty, J.; Delaney, J.P. Abdominal radiation causes bacterial translocation. J. Surg. Res., 1989, 46(2), 104-107.
[http://dx.doi.org/10.1016/0022-4804(89)90211-4] [PMID: 2918713]
[8]
Vorotnikova, E.; Rosenthal, R.A.; Tries, M.; Doctrow, S.R.; Braunhut, S.J. Novel synthetic SOD/catalase mimetics can mitigate capillary endothelial cell apoptosis caused by ionizing radiation. Radiat. Res., 2010, 173(6), 748-759.
[http://dx.doi.org/10.1667/RR1948.1] [PMID: 20518654]
[9]
Zhang, L.; Sun, W.; Wang, J.; Zhang, M.; Yang, S.; Tian, Y.; Vidyasagar, S.; Peña, L.A.; Zhang, K.; Cao, Y. Mitigation effect of an FGF-2 peptide on acute gastrointestinal syndrome after high-dose ionizing radiation. Int. J. Rad. Oncol. Biol. Phys., 2010, 77(1), 261-268.
[10]
Farhood, B.; Mortezaee, K.; Motevaseli, E.; Mirtavoos-Mahyari, H.; Shabeeb, D.; Eleojo Musa, A.; Sanikhani, N.S.; Najafi, M.; Ahmadi, A. Selenium as an adjuvant for modification of radiation response. J. Cell. Biochem., 2019, 120(11), 18559-18571.
[http://dx.doi.org/10.1002/jcb.29171] [PMID: 31190419]
[11]
Weyemi, U.; Redon, C.E.; Aziz, T.; Choudhuri, R.; Maeda, D.; Parekh, P.R.; Bonner, M.Y.; Arbiser, J.L.; Bonner, W.M. Inactivation of NADPH oxidases NOX4 and NOX5 protects human primary fibroblasts from ionizing radiation-induced DNA damage. Radiat. Res., 2015, 183(3), 262-270.
[http://dx.doi.org/10.1667/RR13799.1] [PMID: 25706776]
[12]
Datta, K.; Suman, S.; Kallakury, B.V.S.; Fornace, A.J., Jr Exposure to heavy ion radiation induces persistent oxidative stress in mouse intestine. PLoS One, 2012, 7(8), e42224.
[http://dx.doi.org/10.1371/journal.pone.0042224] [PMID: 22936983]
[13]
Farhood, B.; Mortezaee, K.; Goradel, N.H.; Khanlarkhani, N.; Salehi, E.; Nashtaei, M.S.; Najafi, M.; Sahebkar, A. Curcumin as an anti‐inflammatory agent: Implications to radiotherapy and chemotherapy. J. Cell. Physiol., 2019, 234(5), 5728-5740.
[http://dx.doi.org/10.1002/jcp.27442] [PMID: 30317564]
[14]
Attari, F.; Zahmatkesh, M.; Aligholi, H.; Mehr, S.E.; Sharifzadeh, M.; Gorji, A.; Mokhtari, T.; Khaksarian, M.; Hassanzadeh, G. Curcumin as a double-edged sword for stem cells: dose, time and cell type-specific responses to curcumin. Daru, 2015, 23(1), 33.
[http://dx.doi.org/10.1186/s40199-015-0115-8] [PMID: 26063234]
[15]
Attari, F.; Nadia Sharifi, Z.; Movassaghi, S.; Aligholi, H.; Alizamir, T.; Hassanzadeh, G. Neuroprotective effects of curcumin against transient global ischemia are dose and area dependent. Arch. Neurosci., 2016, 3(2), e32600.
[http://dx.doi.org/10.5812/archneurosci.32600]
[16]
Mortezaee, K.; Salehi, E.; Mirtavoos-mahyari, H.; Motevaseli, E.; Najafi, M.; Farhood, B.; Rosengren, R.J.; Sahebkar, A. Mechanisms of apoptosis modulation by curcumin: Implications for cancer therapy. J. Cell. Physiol., 2019, 234(8), 12537-12550.
[http://dx.doi.org/10.1002/jcp.28122] [PMID: 30623450]
[17]
Sieber, F.; Muir, S.A.; Cohen, E.P.; Fish, B.L.; Mäder, M.; Schock, A.M.; Althouse, B.J.; Moulder, J.E. Dietary selenium for the mitigation of radiation injury: Effects of selenium dose escalation and timing of supplementation. Radiat. Res., 2011, 176(3), 366-374.
[http://dx.doi.org/10.1667/RR2456.1] [PMID: 21867430]
[18]
Shukla, P.K.; Gangwar, R.; Manda, B.; Meena, A.S.; Yadav, N.; Szabo, E.; Balogh, A.; Lee, S.C.; Tigyi, G.; Rao, R. Rapid disruption of intestinal epithelial tight junction and barrier dysfunction by ionizing radiation in mouse colon in vivo: Protection by N -acetyl- L -cysteine. Am. J. Physiol. Gastrointest. Liver Physiol., 2016, 310(9), G705-G715.
[http://dx.doi.org/10.1152/ajpgi.00314.2015] [PMID: 26822914]
[19]
Orhon, Z.N.; Uzal, C.; Kanter, M.; Erboga, M.; Demiroglu, M. Protective effects of Nigella sativa on gamma radiation-induced jejunal mucosal damage in rats. Pathol. Res. Pract., 2016, 212(5), 437-443.
[http://dx.doi.org/10.1016/j.prp.2016.02.017] [PMID: 26944830]
[20]
El-Ghazaly, M.A.; El-Hazek, R.M.; Khayyal, M.T. Protective effect of the herbal preparation, STW 5, against intestinal damage induced by gamma radiation in rats. Int. J. Radiat. Biol., 2015, 91(2), 150-156.
[http://dx.doi.org/10.3109/09553002.2014.954059] [PMID: 25131937]
[21]
Thomson, A. Abdominal irradiation and intestinal adaptation: Rational basis for prophylaxis and management of radiation-induced enteropathies.Uses of Elemental Diets in Clinical Situations; Bounous, G., Ed.; CRC Press: Boca Raton, 2018, pp. 151-192.
[22]
Bhanja, P.; Norris, A.; Nag, D.; Choudhury, S.; Hoover, A.; Saha, S. BCN057 mitigates radiation induced gastrointestinal syndrome. Int. J. Radiat. Oncol. Biol., 2017, 99(2), S200-S201.
[23]
Rahimi, H.R.; Nedaeinia, R.; Sepehri Shamloo, A.; Nikdoust, S.; Kazemi Oskuee, R. Novel delivery system for natural products: Nano-curcumin formulations. Avicenna J. Phytomed., 2016, 6(4), 383-398.
[PMID: 27516979]
[24]
Delavarian, Z.; Pakfetrat, A.; Ghazi, A.; Jaafari, M.R.; Homaei Shandiz, F.; Dalirsani, Z.; Mohammadpour, A.H.; Rahimi, H.R. Oral administration of nanomicelle curcumin in the prevention of radiotherapy-induced mucositis in head and neck cancers. Spec. Care Dentist., 2019, 39(2), 166-172.
[http://dx.doi.org/10.1111/scd.12358] [PMID: 30761565]
[25]
Saadipoor, A.; Razzaghdoust, A.; Simforoosh, N.; Mahdavi, A.; Bakhshandeh, M.; Moghadam, M.; Abdollahi, H.; Mofid, B. Randomized, double-blind, placebo-controlled phase II trial of nanocurcumin in prostate cancer patients undergoing radiotherapy. Phytother. Res., 2019, 33(2), 370-378.
[http://dx.doi.org/10.1002/ptr.6230] [PMID: 30427093]
[26]
Kim, D.C.; Ku, S.K.; Bae, J.S. Anticoagulant activities of curcumin and its derivative. BMB Rep., 2012, 45(4), 221-226.
[http://dx.doi.org/10.5483/BMBRep.2012.45.4.221] [PMID: 22531131]
[27]
Menon, V.P. Antioxidant and anti-inflammatory properties of curcumin.The Molecular Targets and Therapeutic Uses of Curcumin in Health and Disease; Agarwal, B.B.; Surh, Y.J.; Shishodia, S., Eds.; Springer: Boston, MA, 2007, pp. 105-125.
[http://dx.doi.org/10.1007/978-0-387-46401-5_3]
[28]
Xu, Y.X.; Pindolia, K.R.; Janakiraman, N.; Chapman, R.A.; Gautam, S.C. Curcumin inhibits IL1 alpha and TNF-alpha induction of AP-1 and NF-kB DNA-binding activity in bone marrow stromal cells. Hematopathol. Mol. Hematol., 1997, 11(1), 49-62.
[PMID: 9439980]
[29]
Mishra, S.; Kapoor, N.; Mubarak Ali, A.; Pardhasaradhi, B.V.V.; Kumari, A.L.; Khar, A.; Misra, K. Differential apoptotic and redox regulatory activities of curcumin and its derivatives. Free Radic. Biol. Med., 2005, 38(10), 1353-1360.
[http://dx.doi.org/10.1016/j.freeradbiomed.2005.01.022] [PMID: 15855053]
[30]
Saha, S.; Bhanja, P.; Kabarriti, R.; Liu, L.; Alfieri, A.A.; Guha, C. Bone marrow stromal cell transplantation mitigates radiation-induced gastrointestinal syndrome in mice. PLoS One, 2011, 6(9), e24072.
[http://dx.doi.org/10.1371/journal.pone.0024072] [PMID: 21935373]
[31]
Amini, P.; Ashrafizadeh, M.; Motevaseli, E.; Najafi, M.; Shirazi, A. Mitigation of radiation‐induced hematopoietic system injury by melatonin. Environ. Toxicol., 2020, 35(8), 815-821.
[http://dx.doi.org/10.1002/tox.22917] [PMID: 32125094]
[32]
Fu, Q.; Berbée, M.; Wang, W.; Boerma, M.; Wang, J.; Schmid, H.A.; Hauer-Jensen, M. Preclinical evaluation of Som230 as a radiation mitigator in a mouse model: postexposure time window and mechanisms of action. Radiat. Res., 2011, 175(6), 728-735.
[http://dx.doi.org/10.1667/RR2507.1] [PMID: 21529145]
[33]
Venkateswaran, K.; Shrivastava, A.; Agrawala, P.K.; Prasad, A.K.; Devi, S.C.; Manda, K.; Parmar, V.S.; Dwarakanath, B.S. Mitigation of radiation-induced gastro-intestinal injury by the polyphenolic acetate 7, 8-diacetoxy-4-methylthiocoumarin in mice. Sci. Rep., 2019, 9(1), 14134.
[http://dx.doi.org/10.1038/s41598-019-50785-x] [PMID: 31575959]
[34]
Patil, R.; Szabó, E.; Fells, J.I.; Balogh, A.; Lim, K.G.; Fujiwara, Y.; Norman, D.D.; Lee, S.C.; Balazs, L.; Thomas, F.; Patil, S.; Emmons-Thompson, K.; Boler, A.; Strobos, J.; McCool, S.W.; Yates, C.R.; Stabenow, J.; Byrne, G.I.; Miller, D.D.; Tigyi, G.J. Combined mitigation of the gastrointestinal and hematopoietic acute radiation syndromes by an LPA2 receptor-specific nonlipid agonist. Chem. Biol., 2015, 22(2), 206-216.
[http://dx.doi.org/10.1016/j.chembiol.2014.12.009] [PMID: 25619933]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy