Generic placeholder image

Current Computer-Aided Drug Design

Editor-in-Chief

ISSN (Print): 1573-4099
ISSN (Online): 1875-6697

Research Article

Study on the Effect of Pogostemon Cablin Benth on Skin Aging Based on Network Pharmacology

Author(s): Jiting Wu and Liming Pan*

Volume 18, Issue 6, 2022

Published on: 13 October, 2022

Page: [459 - 468] Pages: 10

DOI: 10.2174/1573409918666220901120750

Price: $65

Abstract

Background: There is still little research on the anti-aging effect of Pogostemon cablin Benth (PCB) on human skin. In this paper, the mechanism of the anti-aging effect of PCB on human skin was studied by using network pharmacology and molecular docking methods.

Objective: To analyze the pharmacological mechanism of PCB in the treatment of skin aging to provide a reference for new drug development and clinical application.

Methods: Active ingredients and related targets of PCB and skin aging-related disease targets are obtained through public databases, and the "drug-disease-target" and protein-protein interaction (PPI) network diagrams were constructed with the help of software to screen the core targets; then GO analysis and KEGG pathway analyses were performed on the target; finally, the molecular docking between the components and the targets were verified.

Results: 112 intersection targets of active compounds of skin aging and PCB were obtained after the screening. GO, and KEGG enrichment analysis found that these biological processes mainly focus on epithelial cell proliferation, aging, growth factors, longevity regulation pathway, cancer pathway, AGE-RAGE signal pathway, PI3K Akt signal pathway and IL-17 signal pathway. The molecular docking results showed quercetin, apigenin, irisnepalensis isoflavone, 3,23-dihydroxy- 12-oleorene-28-oleic acid, 5-hydroxy-7,4'- dimethoxyflavone and other major compounds were connected with TP53, JUN, HSP90AAL, AKT1 and MAPK1 through hydrogen bonds, and there was high binding energy between them.

Conclusion: Through multi-target prediction and molecular docking verification, it shows that PCB has a strong effect in the treatment of skin aging, which provides a reference for further research.

Keywords: Network pharmacology, pogostemon cablin benth, molecular docking, skin aging, PPI, GO.

« Previous
Graphical Abstract
[1]
Tang, P.P.; Bai, M.; Miao, M.S. Traditional Chinese medicine research and network pharmacology. J. Tradit. Chin. Med., 2012, 27(9), 1112-1115.
[2]
Azmi, A.S.; Mohammad, R.M. Rectifying cancer drug discovery through network pharmacology. Future Med. Chem., 2014, 6(5), 529-539.
[http://dx.doi.org/10.4155/fmc.14.6] [PMID: 24649956]
[3]
Zheng, R.; Chen, Q.; Huang, M.H. Syndrome differentiation and treatment of severe acute respiratory syndrome coronavirus 2 infected pneumonia from “cold and dampness epidemic virus. Chin. J. Inform. Trad. Chin. Med., 2020, 27(08), 18-20.
[4]
Huang, F.S.; Xie, K.M.; Ma, Y.F.; Wu, J.D.; Qi, Y.Z.; Pan, X.Y.; Wang, S.L.; Lei, Z.; Tao, J.W.; Zhu, H.J.; Chen, Z.J. Mechanism of Yuanhuzhitong decotin for osteoarthritis based on network pharmacology. J.Hainan Med. Coll., 2020, 26(07), 496-505.
[5]
Anderson, J.; Anderson, Y.; Diyabalanage, T. Paving the way with actives for skincare. Planta Med., 2015, 81(11), IL23.
[http://dx.doi.org/10.1055/s-0035-1556120]
[6]
Carmona, J.J.; Michan, S. Biology of healthy aging and longevity. Rev. Invest. Clin., 2016, 68(1), 7-16.
[PMID: 27028172]
[7]
Xu, S.; Cui, H.J.; Zhao, W.; Sun, X.R.; Yuan, Y.; Zheng, T.T.; Xiong, X.D.; Liu, X.G. Advances in the molecular mechanism of cellular senescence. J. Guangdong Med. Univ., 2020, 38(1), 1-10.
[8]
Yonei, Y.; Ichihashi, M.; Takabe, W. Age-related diseases of the skin and anti-aging medicine. Jpn. J. Clin. Med., 2016, 74(9), 1541-1547.
[PMID: 30557490]
[9]
Aguiar, J.; Estevinho, B.N.; Santos, L. Microencapsulation of natural antioxidants for food application: The specific case of coffee antioxidants: A review. Trends Food Sci. Technol., 2016, 58, 21-39.
[http://dx.doi.org/10.1016/j.tifs.2016.10.012]
[10]
Laura, V.; Mattia, F.; Roberta, G.; Federico, I.; Emi, D.; Chiara, T.; Luca, B.; Elena, C. Potential of curcumin in skin disorders. Nutrients, 2019, 11(9), 2169.
[http://dx.doi.org/10.3390/nu11092169] [PMID: 31509968]
[11]
Xie, J.H.; Chai, T.T.; Xu, R.; Liu, D.; Yang, Y.X.; Deng, Z.C.; Jin, H.; He, H. Induction of defense-related enzymes in patchouli inoculated with virulent Ralstonia solanacearum. Electron. J. Biotechnol., 2017, 27, 63-69.
[http://dx.doi.org/10.1016/j.ejbt.2017.03.007]
[12]
Yuko, T. Drug used characteristics and prescription-formulating principle in TCM cosmetology and skin care; Nanjing University of Chinese Medicine, 2009.
[13]
Yang, D.P.; Chaumont, J.P.; Millet, J. Antibacterial activity on skin and chemical composition of the volatile oils from Agastache rugosa and Pogostemon cablin. J. Microbiol., 1998, 18, 1-5.
[14]
Yang, D.P.; Chaumont, J.P.; Millet, J. Antifungal activity of the essential oils from Agastache rugosa and Pogostemon cablin against dermatophytes and opportunistic fungi. Chung Kuo Yao Hsueh Tsa Chih, 2000, 35, 9-11.
[15]
Ru, J.; Li, P.; Wang, J.; Zhou, W.; Li, B.; Huang, C.; Li, P.; Guo, Z.; Tao, W.; Yang, Y.; Xu, X.; Li, Y.; Wang, Y.; Yang, L. TCMSP: A database of systems pharmacology for drug discovery from herbal medicines. J. Cheminform., 2014, 6(1), 13.
[http://dx.doi.org/10.1186/1758-2946-6-13] [PMID: 24735618]
[16]
Soudy, M.; Anwar, A.M.; Ahmed, E.A.; Osama, A.; Ezzeldin, S.; Mahgoub, S.; Magdeldin, S. UniprotR: Retrieving and visualizing protein sequence and functional information from universal protein resource (uniprot knowledgebase). J. Proteomics, 2020, 213, 103613.
[http://dx.doi.org/10.1016/j.jprot.2019.103613] [PMID: 31843688]
[17]
Kováčik, A.; Kopečná, M.; Vávrová, K. Permeation enhancers in transdermal drug delivery: Benefits and limitations. Expert Opin. Drug Deliv., 2020, 17(2), 145-155.
[http://dx.doi.org/10.1080/17425247.2020.1713087] [PMID: 31910342]
[18]
Wei, M.; Li, H.; Li, Q.; Qiao, Y.; Ma, Q.; Xie, R.; Wang, R.; Liu, Y.; Wei, C.; Li, B.; Zheng, C.; Sun, B.; Yu, B. Based on network pharmacology to explore the molecular targets and mechanisms of gegen qinlian decoction for the treatment of ulcerative colitis. BioMed Res. Int., 2020, 2020, 1-18.
[http://dx.doi.org/10.1155/2020/5217405] [PMID: 33299870]
[19]
Naik, A.; Kalia, Y.N.; Guy, R.H. Transdermal drug delivery: Overcoming the skin’s barrier function. Pharm. Sci. Technol. Today, 2000, 3(9), 318-326.
[http://dx.doi.org/10.1016/S1461-5347(00)00295-9] [PMID: 10996573]
[20]
Xie, Z.R.; Li, L.; Zhou, M.Y. To explore the mechanism of "galangal - patchouli" in preventing gastric empties in diabetic gastroparesis based on network pharmacology. J. Hainan Med. Coll., 2021, 0520.002.
[21]
Stelzer, G.; Rosen, R.; Plaschkes, I.; Zimmerman, S.; Twik, M.; Fishilevich, S.; Iny Stein, T.; Nudel, R.; Lieder, I.; Mazor, Y.; Kaplan, S.; Dahary, D.; Warshawsky, D.; Guan - Golan, Y.; Kohn, A.; Rappaport, N.; Safran, M.; Lancet, D. GeneCards – the human gene database. The genecards suite: From gene data mining to disease genome sequence analysis. Curr. Protocols Bioinform., 2016, 54, 1.30.1-1.30.33. Available from: www.genecards.org
[22]
Hamosh, A.; Scott, A.F.; Amberger, J.; Valle, D.; McKusick, V.A. Online mendelian inheritance in man (OMIM). Hum. Mutat., 2000, 15(1), 57-61.
[http://dx.doi.org/10.1002/(SICI)1098-1004(200001)15:1<57::AID-HUMU12>3.0.CO;2-G] [PMID: 10612823]
[23]
Bardou, P.; Mariette, J.; Escudié, F.; Djemiel, C.; Klopp, C. jvenn: An interactive venn diagram viewer. BMC Bioinform, 2014, 15(1), 293.
[http://dx.doi.org/10.1186/1471-2105-15-293] [PMID: 25176396]
[24]
Szklarczyk, D.; Gable, A.L.; Nastou, K.C.; Lyon, D.; Kirsch, R.; Pyysalo, S.; Doncheva, N.T.; Legeay, M.; Fang, T.; Bork, P.; Jensen, L.J.; von Mering, C. The STRING database in 2021: Customizable protein–protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res., 2021, 49(D1), D605-D612.
[http://dx.doi.org/10.1093/nar/gkaa1074] [PMID: 33237311]
[25]
Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res., 2003, 13(11), 2498-2504.
[http://dx.doi.org/10.1101/gr.1239303] [PMID: 14597658]
[26]
Berman, H.M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T.N.; Weissig, H.; Shindyalov, I.N.; Bourne, P.E. The protein data bank. Nucleic Acids Res., 2000, 28(1), 235-242.
[http://dx.doi.org/10.1093/nar/28.1.235] [PMID: 10592235]
[27]
Zhou, Y.; Zhou, B.; Pache, L.; Chang, M.; Khodabakhshi, A.H.; Tanaseichuk, O.; Benner, C.; Chanda, S.K. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat. Commun., 2019, 10(1), 1523.
[http://dx.doi.org/10.1038/s41467-019-09234-6] [PMID: 30944313]
[28]
Ma, J.Y. Studies on the chemical constituents and biological activities of patchouli and Sophora flavescens; Kunming University of Science and Technology, 2020.
[29]
Chen, P.; Yao, H.; Yuan, Q.; Li, P.; Wang, X.; Su, W.; Wang, Y.; Li, P. Discovery of the possible mechanisms in kouyanqing granule for treatment of oral ulcers based on network pharmacology. BMC Complement. Med. Ther., 2020, 20(1), 258.
[http://dx.doi.org/10.1186/s12906-020-03043-x] [PMID: 32811507]
[30]
Zhang, Y.; Forli, S.; Omelchenko, A.; Sanner, M.F. AutoGridFR: Improvements on autodock affinity maps and associated software tools. J. Comput. Chem., 2019, 40(32), 2882-2886.
[http://dx.doi.org/10.1002/jcc.26054] [PMID: 31436329]
[31]
Xu, L.; Zhang, J.; Wang, Y.; Zhang, Z.; Wang, F.; Tang, X. Uncovering the mechanism of Ge-Gen-Qin-Lian decoction for treating ulcerative colitis based on network pharmacology and molecular docking verification. Biosci. Rep., 2021, 41(2), BSR20203565.
[http://dx.doi.org/10.1042/BSR20203565] [PMID: 33409535]
[32]
Hsin, K.Y.; Ghosh, S.; Kitano, H. Combining machine learning systems and multiple docking simulation packages to improve docking prediction reliability for network pharmacology. PLoS One, 2013, 8(12), e83922.
[http://dx.doi.org/10.1371/journal.pone.0083922] [PMID: 24391846]
[33]
Ye, J.; Li, L.; Hu, Z. Exploring the molecular mechanism of action of yinchen wuling powder for the treatment of hyperlipidemia, using network pharmacology, molecular docking, and molecular dynamics simulation. BioMed Res. Int., 2021, 2021, 1-14.
[http://dx.doi.org/10.1155/2021/9965906] [PMID: 34746316]
[34]
Yi, P.; Zhang, Z.; Huang, S.; Huang, J.; Peng, W.; Yang, J. Integrated meta-analysis, network pharmacology, and molecular docking to investigate the efficacy and potential pharmacological mechanism of Kai-Xin-San on Alzheimer’s disease. Pharm. Biol., 2020, 58(1), 932-943.
[http://dx.doi.org/10.1080/13880209.2020.1817103] [PMID: 32956608]
[35]
Strnadova, K.; Sandera, V.; Dvorankova, B.; Kodet, O.; Duskova, M.; Smetana, K.; Lacina, L. Skin aging: The dermal perspective. Clin. Dermatol., 2019, 37(4), 326-335.
[http://dx.doi.org/10.1016/j.clindermatol.2019.04.005] [PMID: 31345320]
[36]
Zhou, X.P.; Ma, S.J.; Yuan, S.P.; Xu, W.Q.; Yu, Y. Effects of Buyiyingwei prescription on expression of TGFβ1 and its receptor gene in aging skin fibroblasts. Shi zhen. Traditional Chin. Med., 2014, 25(02), 260-262.
[37]
Yang, Y.; Yang, L.P.; Zhao, C.J. Flavonoids from Iris and their biological activities. Chin. Herb. Med., 2015, 46(11), 1692-1703.
[38]
Burt, S. Essential oils: Their antibacterial properties and potential applications in foods-A review. Int. J. Food Microbiol., 2004, 94(3), 223-253.
[http://dx.doi.org/10.1016/j.ijfoodmicro.2004.03.022] [PMID: 15246235]
[39]
Cañuelo, A.; Esteban, F.J.; Peragón, J. Gene expression profiling to investigate tyrosol-induced lifespan extension in Caenorhabditis elegans. Eur. J. Nutr., 2016, 55(2), 639-650.
[http://dx.doi.org/10.1007/s00394-015-0884-3] [PMID: 25804201]
[40]
Mukherjee, S.; Lekli, I.; Gurusamy, N.; Bertelli, A.A.A.; Das, D.K. RETRACTED: Expression of the longevity proteins by both red and white wines and their cardioprotective components, resveratrol, tyrosol, and hydroxytyrosol. Free Radic. Biol. Med., 2009, 46(5), 573-578.
[http://dx.doi.org/10.1016/j.freeradbiomed.2008.11.005] [PMID: 19071213]
[41]
Staats, S.; Wagner, A.E.; Lüersen, K.; Künstner, A.; Meyer, T.; Kahns, A.K.; Derer, S.; Graspeuntner, S.; Rupp, J.; Busch, H.; Sina, C.; Ipharraguerre, I.R.; Rimbach, G. Dietary ursolic acid improves health span and life span in male Drosophila melanogaster. Biofactors, 2019, 45(2), 169-186.
[http://dx.doi.org/10.1002/biof.1467] [PMID: 30496629]
[42]
Bahrami, S.A.; Bakhtiari, N. Ursolic acid regulates aging process through enhancing of metabolic sensor proteins level. Biomed. Pharmacother., 2016, 82, 8-14.
[http://dx.doi.org/10.1016/j.biopha.2016.04.047] [PMID: 27470332]
[43]
Huang, C.B.; Luo, Z.M.; Bin, L.Y. Study on the relationship between antioxidant activity and structure of flavonoids. J. Guangdong Univ. Technol., 2000, (02), 71-75.
[44]
Darband, S.G.; Kaviani, M.; Yousefi, B.; Sadighparvar, S.; Pakdel, F.G.; Attari, J.A.; Mohebbi, I.; Naderi, S.; Majidinia, M. Quercetin: A functional dietary flavonoid with potential chemo‐preventive properties in colorectal cancer. J. Cell. Physiol., 2018, 233(9), 6544-6560.
[http://dx.doi.org/10.1002/jcp.26595] [PMID: 29663361]
[45]
Gu, Y.J.; Fu, J.Y.; Wu, W.J.; Wu, X.L.; Wu, H.K. A preliminary study of quercetin in the treatment of estrogen deficient osteoporosis by anti-aging of bone associated cells. J. Tongji Univer., 2019, 40(03), 274-280.
[46]
Dillon, R.L.; Marcotte, R.; Hennessy, B.T.; Woodgett, J.R.; Mills, G.B.; Muller, W.J. Akt1 and akt2 play distinct roles in the initiation and metastatic phases of mammary tumor progression. Cancer Res., 2009, 69(12), 5057-5064.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-4287] [PMID: 19491266]
[47]
Ya, Y.; Bao, H.Y.; Kang, Y.Y. Protective mechanism of Lavender against skin photodamage based on network pharmacology and experimental verification. Chin. J. Experiment. Formul., 2022, 28(08), 167-174.
[48]
Zhang, B.; Zhao, Z.; Meng, X.; Chen, H.; Fu, G.; Xie, K. Hydrogen ameliorates oxidative stress via PI3K-Akt signaling pathway in UVB-induced HaCaT cells. Int. J. Mol. Med., 2018, 41(6), 3653-3661.
[http://dx.doi.org/10.3892/ijmm.2018.3550] [PMID: 29532858]
[49]
Zhang, H. Mechanism research of Qi Bao Mei Ran Dan in delaying skin photoaging based on network pharmacology; molecular docking and experimental verification. Wuhan: Hubei University of traditional. Chin. Med., 2022.
[50]
Zhang, T.; Wang, H.Y.; Wei, G.J.; Zhao, W.W.; Sun, X.R.; Zhang, Z.; Ma, P.K.; Zhang, Y.J. Astragalus root active ingredient anti-aging mechanism of network pharmacology study. J. Chin. Mod. Med., 2021, 23(5), 807-814.
[51]
Zhang, J. The protective mechanism of Taohong Siwu Decoction on oxidative stress of light-damaged HDMEC cells based on AGEs/RAGE pathway; Liaoning University of Chinese Medicine, 2018.
[52]
Avelar, R.A.; Ortega, J.G.; Tacutu, R.; Tyler, E.J.; Bennett, D.; Binetti, P.; Budovsky, A.; Chatsirisupachai, K.; Johnson, E.; Murray, A.; Shields, S.; Tejada-Martinez, D.; Thornton, D.; Fraifeld, V.E.; Bishop, C.L.; de Magalhães, J.P. A multidimensional systems biology analysis of cellular senescence in aging and disease. Genome Biol., 2020, 21(1), 91.
[http://dx.doi.org/10.1186/s13059-020-01990-9] [PMID: 32264951]
[53]
Budovsky, A.; Tacutu, R.; Yanai, H.; Abramovich, A.; Wolfson, M.; Fraifeld, V. Common gene signature of cancer and longevity. Mech. Ageing Dev., 2009, 130(1-2), 33-39.
[http://dx.doi.org/10.1016/j.mad.2008.04.002] [PMID: 18486187]
[54]
Zhu, Z.Y.; Zhang, Y.; Li, Z.; Li, J.H.; Rui, J.Z.; Yuan, J. Research progress of receptor protein and drug molecular docking. Chin. J. Clin. Pharmacol. Therapeut., 2009, 14(11), 1308-1313.
[55]
Morris, G.M.; Wilby, L. Molecular docking. Molecular modeling of proteins; Springer, 2008, 13, pp. 365-382.
[56]
Zhang, H.X.; Mezei, M.; Cui, M. Molecular docking: A powerful approach for structure-based drug discovery. Curr. Computeraided Drug Des., 2011, 7(2), 146-157.
[http://dx.doi.org/10.2174/157340911795677602] [PMID: 21534921]
[57]
Huang, T.; Zaretzki, J.; Bergeron, C.; Bennett, K.P.; Breneman, C.M. DR-predictor: Incorporating flexible docking with specialized electronic reactivity and machine learning techniques to predict CYP-mediated sites of metabolism. J. Chem. Inf. Model., 2013, 53(12), 3352-3366.
[http://dx.doi.org/10.1021/ci4004688] [PMID: 24261543]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy