Generic placeholder image

Current Drug Delivery

Editor-in-Chief

ISSN (Print): 1567-2018
ISSN (Online): 1875-5704

Mini-Review Article

Novel Formulation Approaches used for the Management of Osteoarthritis: A Recent Review

Author(s): Mohit Kumar, Raghav Dogra and Uttam Kumar Mandal*

Volume 20, Issue 7, 2023

Published on: 26 September, 2022

Page: [841 - 856] Pages: 16

DOI: 10.2174/1567201819666220901092832

Price: $65

Open Access Journals Promotions 2
Abstract

Background: Osteoarthritis (OA) causes economic, social, and health difficulties in patients. Approximately 10% to 15% of all persons above the age of 60 have some degree of OA. OA is more common in women than in males. Diagnosed OA prevalence varies widely among EU member states, from 2.8% in Romania to 18.3% in Hungary.

Introduction: Osteoarthritis (OA) is a slow-progressing, non-inflammatory disorder. This disorder ultimately destroys articular cartilage and other joint components. The main symptoms are stiffness, pain, loss of flexibility, swelling, and bone spurs. Many modifiable and non-modifiable risk factors have been associated with osteoarthritis (OA), including obesity and lack of exercise, genetic susceptibility, bone density, work-related damage, and trauma.

Methods: Hydrogels, micro and nano-sized particles, and novel topical gels are the most common examples. Hydrogels are cross-linked polymers with 3-D architecture that can hold water and expand like living tissue. The micro-carriers and nano-based drug delivery systems provide several advantages and may demonstrate prolonged release, controlled release, and higher joint half-life.

Results: OA-induced male Lewis rats were injected with celecoxib-loaded PEA microspheres to assess in vivo biocompatibility and degradation. According to the findings of this research, PEA microspheres loaded with celecoxib may be employed as safe delivery of drugs with self-regulating behavior for pain treatment related to knee osteoarthritis.

Conclusion: The concept of novel drug delivery systems has shown tangible benefits as a new avenue for precise, safe, high-quality drug delivery for OA treatment. Currently, herbal drugs are also used in osteoarthritis treatment due to their potency and fewer side effects than synthetic drugs. The herbosynthetic approach is a new concept for the delivery of both herbal and synthetic drugs together to exploit their individual beneficial effects while reducing undesirable side effects.

Keywords: Osteoarthritis, nanoparticle, hydrogel, microsphere, medicinal plants, synthetic drugs.

Graphical Abstract
[1]
Haq, I.; Murphy, E. Dacre. J. Osteoarthritis. Postgrad. Med. J., 2003, 79(933), 377-383.
[http://dx.doi.org/10.1136/pmj.79.933.377] [PMID: 12897215]
[2]
Wittenauer, R.; Smith, L.; Aden, K. Background Paper 6.12 Osteoarthritis; World Health Organization, 2013.
[4]
Burns, L.C.; Ritvo, S.E.; Ferguson, M.K.; Clarke, H.; Seltzer, Z.; Katz, J. Pain catastrophizing as a risk factor for chronic pain after total knee arthroplasty: A systematic review. J. Pain Res., 2015, 8, 21-32.
[PMID: 25609995]
[5]
Goldring, S.R.; Goldring, M.B. Changes in the osteochondral unit during osteoarthritis: Structure, function and cartilage-bone crosstalk. Nat. Rev. Rheumatol., 2016, 12(11), 632-644.
[http://dx.doi.org/10.1038/nrrheum.2016.148] [PMID: 27652499]
[6]
Deveza, L.A.; Nelson, A.E.; Loeser, R.F. Phenotypes of osteoarthritis: Current state and future implications. Clin. Exp. Rheumatol., 2019, 37(5)(Suppl. 120), 64-72.
[PMID: 31621574]
[7]
Grässel, S.; Muschter, D. Recent advances in the treatment of osteoarthritis. F1000 Res., 2020, 9, 325.
[http://dx.doi.org/10.12688/f1000research.22115.1] [PMID: 32419923]
[8]
Berenbaum, F.; Wallace, I.J.; Lieberman, D.E.; Felson, D.T. Modern-day environmental factors in the pathogenesis of osteoarthritis. Nat. Rev. Rheumatol., 2018, 14(11), 674-681.
[http://dx.doi.org/10.1038/s41584-018-0073-x] [PMID: 30209413]
[9]
Dell’Isola, A.; Allan, R.; Smith, S.L.; Marreiros, S.S.P.; Steultjens, M. Identification of clinical phenotypes in knee osteoarthritis: A systematic review of the literature. BMC Musculoskelet. Disord., 2016, 17(1), 425.
[http://dx.doi.org/10.1186/s12891-016-1286-2] [PMID: 27733199]
[10]
Guilak, F. Biomechanical factors in osteoarthritis. Best Pract. Res. Clin. Rheumatol., 2011, 25(6), 815-823.
[http://dx.doi.org/10.1016/j.berh.2011.11.013] [PMID: 22265263]
[11]
Brandt, K.D.; Dieppe, P.; Radin, E.L. Commentary: Is it useful to subset primary osteoarthritis? A critique based on evidence regarding the etiopathogenesis of osteoarthritis. Semin. Arthritis Rheum., 2009, 39, 81-95.
[12]
Moskowitz, R.W. Osteoarthritis, Diagnosis and Management; WB Saunders Company, 1984.
[13]
Bournia, V.K.; Kitas, G.; Protogerou, A.D.; Sfikakis, P.P. Impact of non-steroidal anti-inflammatory drugs on cardiovascular risk: Is it the same in osteoarthritis and rheumatoid arthritis? Mod. Rheumatol., 2017, 27(4), 559-569.
[http://dx.doi.org/10.1080/14397595.2016.1232332] [PMID: 27659504]
[14]
Vane, J.R.; Botting, R.M. Mechanism of action of aspirin-like drugs. Semin. Arthritis Rheum., 1997, 26, 2-10.
[15]
Watson, M.; Brookes, S.T.; Faulkner, A.; Kirwan, J.R. Non‐aspirin, non‐steroidal anti‐inflammatory drugs for treating osteoarthritis of the knee. Cochrane Database Syst. Rev., 1997, 1, CD000142.
[http://dx.doi.org/10.1002/14651858.CD000142]
[16]
Saxne, T.; Heinegård, D.; Wollheim, F.A. Therapeutic effects on cartilage metabolism in arthritis as measured by release of proteoglycan structures into the synovial fluid. Ann. Rheum. Dis., 1986, 45(6), 491-497.
[http://dx.doi.org/10.1136/ard.45.6.491] [PMID: 3729574]
[17]
Hepper, C.T.; Halvorson, J.J.; Duncan, S.T.; Gregory, A.J.M.; Dunn, W.R.; Spindler, K.P. The efficacy and duration of intra-articular corticosteroid injection for knee osteoarthritis: A systematic review of level I studies. J. Am. Acad. Orthop. Surg., 2009, 17(10), 638-646.
[http://dx.doi.org/10.5435/00124635-200910000-00006] [PMID: 19794221]
[18]
Arroll, B.; Goodyear-Smith, F. Corticosteroid injections for osteoarthritis of the knee: Meta-analysis. BMJ, 2004, 328(7444), 869.
[http://dx.doi.org/10.1136/bmj.38039.573970.7C] [PMID: 15039276]
[19]
Krebs, E.E.; Gravely, A.; Nugent, S.; Jensen, A.C.; DeRonne, B.; Goldsmith, E.S.; Kroenke, K.; Bair, M.J.; Noorbaloochi, S. Effect of opioid vs nonopioid medications on pain-related function in patients with chronic back pain or hip or knee osteoarthritis pain: The SPACE randomized clinical trial. JAMA, 2018, 319(9), 872-882.
[http://dx.doi.org/10.1001/jama.2018.0899] [PMID: 29509867]
[20]
Murphy, G.; Nagase, H. Reappraising metalloproteinases in rheumatoid arthritis and osteoarthritis: Destruction or repair? Nat. Clin. Pract. Rheumatol., 2008, 4(3), 128-135.
[http://dx.doi.org/10.1038/ncprheum0727] [PMID: 18253109]
[21]
Leff, R.L.; Elias, I.; Ionescu, M.; Reiner, A.; Poole, A.R. Molecular changes in human osteoarthritic cartilage after 3 weeks of oral administration of BAY 12-9566, a matrix metalloproteinase inhibitor. J. Rheumatol., 2003, 30(3), 544-549.
[PMID: 12610815]
[22]
Karsdal, M.A.; Bay-Jensen, A.C.; Lories, R.J.; Abramson, S.; Spector, T.; Pastoureau, P.; Christiansen, C.; Attur, M.; Henriksen, K.; Goldring, S.R.; Kraus, V. The coupling of bone and cartilage turnover in osteoarthritis: Opportunities for bone antiresorptives and anabolics as potential treatments? Ann. Rheum. Dis., 2014, 73(2), 336-348.
[http://dx.doi.org/10.1136/annrheumdis-2013-204111] [PMID: 24285494]
[23]
Strassle, B.W.; Mark, L.; Leventhal, L.; Piesla, M.J.; Li, Jian X.; Kennedy, J.D.; Glasson, S.S.; Whiteside, G.T. Inhibition of osteoclasts prevents cartilage loss and pain in a rat model of degenerative joint disease. Osteoarthritis Cartilage, 2010, 18(10), 1319-1328.
[http://dx.doi.org/10.1016/j.joca.2010.06.007] [PMID: 20633675]
[24]
Spector, T.D.; Conaghan, P.G.; Buckland-Wright, J.C.; Garnero, P.; Cline, G.A.; Beary, J.F.; Valent, D.J.; Meyer, J.M. Effect of risedronate on joint structure and symptoms of knee osteoarthritis: Results of the BRISK randomized, controlled trial. Arthritis Res.ISRCTN01928173, 2005, 7(3), R625-R633.
[http://dx.doi.org/10.1186/ar1716] [PMID: 15899049]
[25]
Buckland-Wright, J.C.; Messent, E.A.; Bingham, C.O., III; Ward, R.J.; Tonkin, C.A. 2 yr longitudinal radiographic study examining the effect of a bisphosphonate (risedronate) upon subchondral bone loss in osteoarthritic knee patients. Rheumatology (Oxford), 2006, 46(2), 257-264.
[http://dx.doi.org/10.1093/rheumatology/kel213] [PMID: 16837470]
[26]
Gamero, P.; Bingham, C.; Aronstein, W.; Cohen, S.; Conaghan, P.; Cline, G.; Meyer, J. Treatment with risedronate reduced urinary CTX-II, a specific biochemical marker of cartilage type II collagen degradation, in a 24-month study of knee OA. Arthritis Rheum., 2004, 50, 656.
[27]
Karsdal, M.A.; Henriksen, K.; Arnold, M.; Christiansen, C. Calcitonin??? A drug of the past or for the future? BioDrugs, 2008, 22(3), 137-144.
[http://dx.doi.org/10.2165/00063030-200822030-00001] [PMID: 18481897]
[28]
Behets, C.; Williams, J.M.; Chappard, D.; Devogelaer, J.P.; Manicourt, D.H. Effects of calcitonin on subchondral trabecular bone changes and on osteoarthritic cartilage lesions after acute anterior cruciate ligament deficiency. J. Bone Miner. Res., 2004, 19(11), 1821-1826.
[http://dx.doi.org/10.1359/JBMR.040609] [PMID: 15476582]
[29]
Sondergaard, B.C.; Oestergaard, S.; Christiansen, C.; Tankó, L.B.; Karsdal, M.A. The effect of oral calcitonin on cartilage turnover and surface erosion in an ovariectomized rat model. Arthritis Rheum., 2007, 56(8), 2674-2678.
[http://dx.doi.org/10.1002/art.22797] [PMID: 17665432]
[30]
Karsdal, M.A.; Tanko, L.B.; Riis, B.J.; Sondergard, B.C.; Henriksen, K.; Altman, R.D.; Qvist, P.; Christiansen, C. Calcitonin is involved in cartilage homeostasis: Is calcitonin a treatment for OA? Osteoarthritis Cartilage, 2006, 14(7), 617-624.
[http://dx.doi.org/10.1016/j.joca.2006.03.014] [PMID: 16698291]
[31]
Manicourt, D.H.; Azria, M.; Mindeholm, L.; Thonar, E.J.M.; Devogelaer, J.P. Oral salmon calcitonin reduces Lequesne’s algofunctional index scores and decreases urinary and serum levels of biomarkers of joint metabolism in knee osteoarthritis. Arthritis Rheum., 2006, 54(10), 3205-3211.
[http://dx.doi.org/10.1002/art.22075] [PMID: 17009253]
[32]
Manicourt, D.H.; Azria, M.; Mindeholm, L.; Devogelaer, J.P. Efficacy of calcitonin therapy in patients with knee osteoarthritis: A clinical and biochemical preliminary study. Osteoarthritis Cartilage, 2005, 13(Suppl. A), 88.
[33]
Karsdal, M.A.; Byrjalsen, I.; Alexandersen, P.; Bihlet, A.; Andersen, J.R.; Riis, B.J.; Bay-Jensen, A.C.; Christiansen, C. Treatment of symptomatic knee osteoarthritis with oral salmon calcitonin: Results from two phase 3 trials. Osteoarthritis Cartilage, 2015, 23(4), 532-543.
[http://dx.doi.org/10.1016/j.joca.2014.12.019] [PMID: 25582279]
[34]
Lee, S.W.; Song, Y.S.; Shin, S.H.; Kim, K.T.; Park, Y.C.; Park, B.S.; Yun, I.; Kim, K.; Lee, S.Y.; Chung, W.T.; Lee, H.J.; Yoo, Y.H. Cilostazol protects rat chondrocytes against nitric oxide-induced apoptosis in vitro and prevents cartilage destruction in a rat model of osteoarthritis. Arthritis Rheum., 2008, 58(3), 790-800.
[http://dx.doi.org/10.1002/art.23220] [PMID: 18311796]
[35]
Hellio le Graverand, M.P.; Clemmer, R.S.; Redifer, P.; Brunell, R.M.; Hayes, C.W.; Brandt, K.D.; Abramson, S.B.; Manning, P.T.; Miller, C.G.; Vignon, E. A 2-year randomised, double-blind, placebo-controlled, multicentre study of oral selective iNOS inhibitor, cindunistat (SD-6010), in patients with symptomatic osteoarthritis of the knee. Ann. Rheum. Dis., 2013, 72(2), 187-195.
[http://dx.doi.org/10.1136/annrheumdis-2012-202239] [PMID: 23144445]
[36]
Pinney, J.R.; Taylor, C.; Doan, R.; Burghardt, A.J.; Li, X.; Kim, H.T.; Benjamin Ma, C.; Majumdar, S. Imaging longitudinal changes in articular cartilage and bone following doxycycline treatment in a rabbit anterior cruciate ligament transection model of osteoarthritis. Magn. Reson. Imaging, 2012, 30(2), 271-282.
[http://dx.doi.org/10.1016/j.mri.2011.09.025] [PMID: 22071411]
[37]
Brandt, K.D.; Mazzuca, S.A.; Katz, B.P.; Lane, K.A.; Buckwalter, K.A.; Yocum, D.E.; Wolfe, F.; Schnitzer, T.J.; Moreland, L.W.; Manzi, S.; Bradley, J.D.; Sharma, L.; Oddis, C.V.; Hugenberg, S.T.; Heck, L.W. Effects of doxycycline on progression of osteoarthritis: Results of a randomized, placebo-controlled, double-blind trial. Arthritis Rheum., 2005, 52(7), 2015-2025.
[http://dx.doi.org/10.1002/art.21122] [PMID: 15986343]
[38]
Nüesch, E.; Rutjes, A.W.S.; Trelle, S.; Reichenbach, S.; Jüni, P. Doxycycline for osteoarthritis of the knee or hip. Cochrane Database Syst. Rev., 2009, 4, CD007323.
[http://dx.doi.org/10.1002/14651858.CD007323.pub2]
[39]
Meunier, P.J.; Roux, C.; Seeman, E.; Ortolani, S.; Badurski, J.E.; Spector, T.D.; Cannata, J.; Balogh, A.; Lemmel, E.M.; Pors-Nielsen, S.; Rizzoli, R.; Genant, H.K.; Reginster, J.Y. The effects of strontium ranelate on the risk of vertebral fracture in women with postmenopausal osteoporosis. N. Engl. J. Med., 2004, 350(5), 459-468.
[http://dx.doi.org/10.1056/NEJMoa022436] [PMID: 14749454]
[40]
Alexandersen, P.; Karsdal, M.A.; Qvist, P.; Reginster, J-Y.; Christiansen, C. Strontium ranelate reduces the urinary level of cartilage degradation biomarker CTX-II in postmenopausal women. Bone, 2007, 40(1), 218-222.
[http://dx.doi.org/10.1016/j.bone.2006.07.028] [PMID: 17010685]
[41]
Reginster, J.Y.; Badurski, J.; Bellamy, N.; Bensen, W.; Chapurlat, R.; Chevalier, X.; Christiansen, C.; Genant, H.; Navarro, F.; Nasonov, E.; Sambrook, P.N.; Spector, T.D.; Cooper, C. Efficacy and safety of strontium ranelate in the treatment of knee osteoarthritis: Results of a double-blind, randomised placebo-controlled trial. Ann. Rheum. Dis., 2013, 72(2), 179-186.
[http://dx.doi.org/10.1136/annrheumdis-2012-202231] [PMID: 23117245]
[42]
Tortorella, M.D.; Burn, T.C.; Pratta, M.A.; Abbaszade, I.; Hollis, J.M.; Liu, R.; Rosenfeld, S.A.; Copeland, R.A.; Decicco, C.P.; Wynn, R.; Rockwell, A.; Yang, F.; Duke, J.L.; Solomon, K.; George, H.; Bruckner, R.; Nagase, H.; Itoh, Y.; Ellis, D.M.; Ross, H.; Wiswall, B.H.; Murphy, K.; Hillman, M.C., Jr; Hollis, G.F.; Newton, R.C.; Magolda, R.L.; Trzaskos, J.M.; Arner, E.C. Purification and cloning of aggrecanase-1: A member of the ADAMTS family of proteins. Science, 1999, 284(5420), 1664-1666.
[http://dx.doi.org/10.1126/science.284.5420.1664] [PMID: 10356395]
[43]
Larkin, J.; Lohr, T.A.; Elefante, L.; Shearin, J.; Matico, R.; Su, J.L.; Xue, Y.; Liu, F.; Genell, C.; Miller, R.E.; Tran, P.B.; Malfait, A.M.; Maier, C.C.; Matheny, C.J. Translational development of an ADAMTS-5 antibody for osteoarthritis disease modification. Osteoarthritis Cartilage, 2015, 23(8), 1254-1266.
[http://dx.doi.org/10.1016/j.joca.2015.02.778] [PMID: 25800415]
[44]
Connor, J.R.; LePage, C.; Swift, B.A.; Yamashita, D.; Bendele, A.M.; Maul, D.; Kumar, S. Protective effects of a cathepsin K inhibitor, SB-553484, in the canine partial medial meniscectomy model of osteoarthritis. Osteoarthritis Cartilage, 2009, 17(9), 1236-1243.
[http://dx.doi.org/10.1016/j.joca.2009.03.015] [PMID: 19361586]
[45]
McDougall, J.J.; Schuelert, N.; Bowyer, J. Cathepsin K inhibition reduces CTXII levels and joint pain in the guinea pig model of spontaneous osteoarthritis. Osteoarthritis Cartilage, 2010, 18(10), 1355-1357.
[http://dx.doi.org/10.1016/j.joca.2010.07.014] [PMID: 20692355]
[46]
Hayami, T.; Zhuo, Y.; Wesolowski, G.A.; Pickarski, M.; Duong, L.T. Inhibition of cathepsin K reduces cartilage degeneration in the anterior cruciate ligament transection rabbit and murine models of osteoarthritis. Bone, 2012, 50(6), 1250-1259.
[http://dx.doi.org/10.1016/j.bone.2012.03.025] [PMID: 22484689]
[47]
Bone, H.G.; McClung, M.R.; Roux, C.; Recker, R.R.; Eisman, J.A.; Verbruggen, N.; Hustad, C.M.; DaSilva, C.; Santora, A.C.; Ince, B.A. Odanacatib, a cathepsin-K inhibitor for osteoporosis: A two-year study in postmenopausal women with low bone density. J. Bone Miner. Res., 2010, 25(5), 937-947.
[PMID: 19874198]
[48]
Grabowska, U.; Lindstrom, E.; Jerling, M.; Edenius, C. MIV-711, a highly selective cathepsin K inhibitor: Safety, pharmacokinetics and pharmacodynamics of multiple oral doses in healthy postmenopausal women. Bone Abstracts, 2014, 3, PP6.
[49]
Rnger, T.M.; Adami, S.; Benhamou, C.L.; Czerwiski, E.; Farrerons, J.; Kendler, D.L.; Mindeholm, L.; Realdi, G.; Roux, C.; Smith, V. Morphea-like skin reactions in patients treated with the cathepsin K inhibitor balicatib. J. Am. Acad. Dermatol., 2012, 66(3), e89-e96.
[http://dx.doi.org/10.1016/j.jaad.2010.11.033] [PMID: 21571394]
[50]
Mouritzen, U.; Christgau, S.; Lehmann, H.J.; Tankó, L.B.; Christiansen, C. Cartilage turnover assessed with a newly developed assay measuring collagen type II degradation products: Influence of age, sex, menopause, hormone replacement therapy, and body mass index. Ann. Rheum. Dis., 2003, 62(4), 332-336.
[http://dx.doi.org/10.1136/ard.62.4.332] [PMID: 12634232]
[51]
Ham, K.D.; Loeser, R.F.; Lindgren, B.R.; Carlson, C.S. Effects of long-term estrogen replacement therapy on osteoarthritis severity in cynomolgus monkeys. Arthritis Rheum., 2002, 46(7), 1956-1964.
[http://dx.doi.org/10.1002/art.10406] [PMID: 12124881]
[52]
Oestergaard, S.; Sondergaard, B.C.; Hoegh-Andersen, P.; Henriksen, K.; Qvist, P.; Christiansen, C.; Tankó, L.B.; Karsdal, M.A. Effects of ovariectomy and estrogen therapy on type II collagen degradation and structural integrity of articular cartilage in rats: Implications of the time of initiation. Arthritis Rheum., 2006, 54(8), 2441-2451.
[http://dx.doi.org/10.1002/art.22009] [PMID: 16871544]
[53]
Cirillo, D.J.; Wallace, R.B.; Wu, L.; Yood, R.A. Effect of hormone therapy on risk of hip and knee joint replacement in the women’s health initiative. Arthritis Rheum., 2006, 54(10), 3194-3204.
[http://dx.doi.org/10.1002/art.22138] [PMID: 17009251]
[54]
Christgau, S.; Tankó, L.B.; Cloos, P.A.C.; Mouritzen, U.; Christiansen, C.; Delaissé, J.M.; Høegh-Andersen, P. Suppression of elevated cartilage turnover in postmenopausal women and in ovariectomized rats by estrogen and a Selective Estrogen-Receptor Modulator (SERM). Menopause, 2004, 11(5), 508-518.
[http://dx.doi.org/10.1097/01.WCB.0000121484.18437.98] [PMID: 15356403]
[55]
Karsdal, M.A.; Bay-Jensen, A.C.; Henriksen, K.; Christiansen, C. The pathogenesis of osteoarthritis involves bone, cartilage and synovial inflammation: May estrogen be a magic bullet? Menopause Int., 2012, 18(4), 139-146.
[http://dx.doi.org/10.1258/mi.2012.012025] [PMID: 23024184]
[56]
Elder, B.D.; Athanasiou, K.A. Systematic assessment of growth factor treatment on biochemical and biomechanical properties of engineered articular cartilage constructs. Osteoarthritis Cartilage, 2009, 17(1), 114-123.
[http://dx.doi.org/10.1016/j.joca.2008.05.006] [PMID: 18571441]
[57]
Hayashi, M.; Muneta, T.; Takahashi, T.; Ju, Y.J.; Tsuji, K.; Sekiya, I. Intra-articular injections of bone morphogenetic protein-7 retard progression of existing cartilage degeneration. J. Orthop. Res., 2010, 28(11), 1502-1506.
[http://dx.doi.org/10.1002/jor.21165] [PMID: 20872588]
[58]
Lo, K.W.H.; Ulery, B.D.; Ashe, K.M.; Laurencin, C.T. Studies of bone morphogenetic protein-based surgical repair. Adv. Drug Deliv. Rev., 2012, 64(12), 1277-1291.
[http://dx.doi.org/10.1016/j.addr.2012.03.014] [PMID: 22512928]
[59]
Hunter, D.J.; Pike, M.C.; Jonas, B.L.; Kissin, E.; Krop, J.; McAlindon, T. Phase 1 safety and tolerability study of BMP-7 in symptomatic knee osteoarthritis. BMC Musculoskelet. Disord., 2010, 11(1), 232.
[http://dx.doi.org/10.1186/1471-2474-11-232] [PMID: 20932341]
[60]
Moore, E.E.; Bendele, A.M.; Thompson, D.L.; Littau, A.; Waggie, K.S.; Reardon, B.; Ellsworth, J.L. Fibroblast growth factor-18 stimulates chondrogenesis and cartilage repair in a rat model of injury-induced osteoarthritis. Osteoarthritis Cartilage, 2005, 13(7), 623-631.
[http://dx.doi.org/10.1016/j.joca.2005.03.003] [PMID: 15896984]
[61]
Lohmander, L.S.; Hellot, S.; Dreher, D.; Krantz, E.F.W.; Kruger, D.S.; Guermazi, A.; Eckstein, F. Intraarticular sprifermin (recombinant human fibroblast growth factor 18) in knee osteoarthritis: A randomized, double-blind, placebo-controlled trial. Arthritis Rheumatol., 2014, 66(7), 1820-1831.
[http://dx.doi.org/10.1002/art.38614] [PMID: 24740822]
[62]
Farahat, M.N.; Yanni, G.; Poston, R.; Panayi, G.S. Cytokine expression in synovial membranes of patients with rheumatoid arthritis and osteoarthritis. Ann. Rheum. Dis., 1993, 52(12), 870-875.
[http://dx.doi.org/10.1136/ard.52.12.870] [PMID: 8311538]
[63]
Scanzello, C.R.; Goldring, S.R. The role of synovitis in osteoarthritis pathogenesis. Bone, 2012, 51(2), 249-257.
[http://dx.doi.org/10.1016/j.bone.2012.02.012] [PMID: 22387238]
[64]
Cohen, S.B.; Proudman, S.; Kivitz, A.J.; Burch, F.X.; Donohue, J.P.; Burstein, D.; Sun, Y.N.; Banfield, C.; Vincent, M.S.; Ni, L.; Zack, D.J. A randomized, double-blind study of AMG 108 (a fully human monoclonal antibody to IL-1R1) in patients with osteoarthritis of the knee. Arthritis Res. Ther., 2011, 13(4), R125.
[http://dx.doi.org/10.1186/ar3430] [PMID: 21801403]
[65]
Akhtar, M.; Athar, M.; Yaqub, M. Effect of Momordica charantia on blood glucose level of normal and alloxan-diabetic rabbits. Planta Med., 1981, 42(7), 205-212.
[http://dx.doi.org/10.1055/s-2007-971629] [PMID: 7280086]
[66]
Lacy, S.E.; Wu, C.; Ambrosi, D.J.; Hsieh, C-M.; Bose, S.; Miller, R.; Ghayur, T. Generation and characterization of ABT-981, a dual variable domain immunoglobulin (DVD-IgTM) molecule that specifically and potently neutralizes both IL-1α and IL-1β. MAbs, 2015, Vol. 7, 605-619.
[http://dx.doi.org/10.1080/19420862.2015.1026501]
[67]
Hopwood, B.; Tsykin, A.; Findlay, D.M.; Fazzalari, N.L. Microarray gene expression profiling of osteoarthritic bone suggests altered bone remodelling, WNT and transforming growth factor-β/bone morphogenic protein signalling. Arthritis Res. Ther., 2007, 9(5), R100.
[http://dx.doi.org/10.1186/ar2301] [PMID: 17900349]
[68]
Tonge, D.P.; Pearson, M.J.; Jones, S.W. The hallmarks of osteoarthritis and the potential to develop personalised disease-modifying pharmacological therapeutics. Osteoarthritis Cartilage, 2014, 22(5), 609-621.
[http://dx.doi.org/10.1016/j.joca.2014.03.004] [PMID: 24632293]
[69]
Evans, C.H.; Kraus, V.B.; Setton, L.A. Progress in intra-articular therapy. Nat. Rev. Rheumatol., 2014, 10(1), 11-22.
[http://dx.doi.org/10.1038/nrrheum.2013.159] [PMID: 24189839]
[70]
Van Spil, W.E.; Kubassova, O.; Boesen, M.; Bay-Jensen, A.C.; Mobasheri, A. Osteoarthritis phenotypes and novel therapeutic targets. Biochem. Pharmacol., 2019, 165, 41-48.
[http://dx.doi.org/10.1016/j.bcp.2019.02.037] [PMID: 30831073]
[71]
Vaysbrot, E.E.; Osani, M.C.; Musetti, M.C.; McAlindon, T.E.; Bannuru, R.R. Are bisphosphonates efficacious in knee osteoarthritis? A meta-analysis of randomized controlled trials. Osteoarthritis Cartilage, 2018, 26(2), 154-164.
[http://dx.doi.org/10.1016/j.joca.2017.11.013] [PMID: 29222056]
[72]
Conaghan, P.G.; Bowes, M.A.; Kingsbury, S.R.; Brett, A.; Guillard, G.; Rizoska, B.; Sjögren, N.; Graham, P.; Jansson, Å.; Wadell, C.; Bethell, R.; Öhd, J. Disease-modifying effects of a novel cathepsin K inhibitor in osteoarthritis: A randomized controlled trial. Ann. Intern. Med., 2020, 172(2), 86-95.
[http://dx.doi.org/10.7326/M19-0675] [PMID: 31887743]
[73]
Chevalier, X.; Goupille, P.; Beaulieu, A.D.; Burch, F.X.; Bensen, W.G.; Conrozier, T.; Loeuille, D.; Kivitz, A.J.; Silver, D.; Appleton, B.E. Intraarticular injection of anakinra in osteoarthritis of the knee: A multicenter, randomized, double-blind, placebo-controlled study. Arthritis Rheum., 2009, 61(3), 344-352.
[http://dx.doi.org/10.1002/art.24096] [PMID: 19248129]
[74]
Chevalier, X.; Conrozier, T.; Richette, P. Desperately looking for the right target in osteoarthritis: The anti-IL-1 strategy. Arthritis Res. Ther., 2011, 13(4), 124.
[http://dx.doi.org/10.1186/ar3436] [PMID: 21888686]
[75]
Fleischmann, R.M.; Bliddal, H.; Blanco, F.J.; Schnitzer, T.J.; Peterfy, C.; Chen, S.; Wang, L.; Feng, S.; Conaghan, P.G.; Berenbaum, F.; Pelletier, J.P.; Martel-Pelletier, J.; Vaeterlein, O.; Kaeley, G.S.; Liu, W.; Kosloski, M.P.; Levy, G.; Zhang, L.; Medema, J.K.; Levesque, M.C. A Phase II trial of lutikizumab, an anti–interleukin‐1α/β dual variable domain immunoglobulin, in knee osteoarthritis patients with synovitis. Arthritis Rheumatol., 2019, 71(7), 1056-1069.
[http://dx.doi.org/10.1002/art.40840] [PMID: 30653843]
[76]
Aitken, D.; Laslett, L.L.; Pan, F.; Haugen, I.K.; Otahal, P.; Bellamy, N.; Bird, P.; Jones, G. A randomised double-blind placebo-controlled crossover trial of HUMira (adalimumab) for erosive hand OsteoaRthritis – the HUMOR trial. Osteoarthritis Cartilage, 2018, 26(7), 880-887.
[http://dx.doi.org/10.1016/j.joca.2018.02.899] [PMID: 29499287]
[77]
Kloppenburg, M.; Ramonda, R.; Bobacz, K.; Kwok, W.Y.; Elewaut, D.; Huizinga, T.W.J.; Kroon, F.P.B.; Punzi, L.; Smolen, J.S.; Vander Cruyssen, B.; Wolterbeek, R.; Verbruggen, G.; Wittoek, R. Etanercept in patients with inflammatory hand osteoarthritis (EHOA): A multicentre, randomised, double-blind, placebo-controlled trial. Ann. Rheum. Dis., 2018, 77(12), 1757-1764.
[http://dx.doi.org/10.1136/annrheumdis-2018-213202] [PMID: 30282670]
[78]
Loef, M.; Kroon, F.P.B.; Bergstra, S.A.; van der Pol, J.A.; Lems, W.F.; Kerstens, P.J.S.M.; Allaart, C.F.; Kloppenburg, M. TNF inhibitor treatment is associated with a lower risk of hand osteoarthritis progression in rheumatoid arthritis patients after 10 years. Rheumatology (Oxford), 2018, 57(11), 1917-1924.
[http://dx.doi.org/10.1093/rheumatology/key016] [PMID: 29471377]
[79]
Lee, W.; Ruijgrok, L.; Boxma-de Klerk, B.; Kok, M.R.; Kloppenburg, M.; Gerards, A.; Huisman, M.; Hazes, M.; de Sonnaville, P.; Grillet, B.; Weel, A.; Basoski, N. Efficacy of hydroxychloroquine in hand osteoarthritis: A randomized, double‐blind, placebo‐controlled trial. Arthritis Care Res. (Hoboken), 2018, 70(9), 1320-1325.
[http://dx.doi.org/10.1002/acr.23471] [PMID: 29125901]
[80]
Grothe, K.; Flechsenhar, K.; Paehler, T.; Ritzeler, O.; Beninga, J.; Saas, J.; Herrmann, M.; Rudolphi, K. IκB kinase inhibition as a potential treatment of osteoarthritis - results of a clinical proof-of-concept study. Osteoarthritis Cartilage, 2017, 25(1), 46-52.
[http://dx.doi.org/10.1016/j.joca.2016.08.010] [PMID: 27592041]
[81]
Schnitzer, T.J.; Easton, R.; Pang, S.; Levinson, D.J.; Pixton, G.; Viktrup, L.; Davignon, I.; Brown, M.T.; West, C.R.; Verburg, K.M. Effect of tanezumab on joint pain, physical function, and patient global assessment of osteoarthritis among patients with osteoarthritis of the hip or knee: A randomized clinical trial. JAMA, 2019, 322(1), 37-48.
[http://dx.doi.org/10.1001/jama.2019.8044] [PMID: 31265100]
[82]
Krupka, E.; Jiang, G.L.; Jan, C. Efficacy and safety of intra-articular injection of tropomyosin receptor kinase A inhibitor in painful knee osteoarthritis: A randomized, double-blind and placebo-controlled study. Osteoarthritis Cartilage, 2019, 27(11), 1599-1607.
[http://dx.doi.org/10.1016/j.joca.2019.05.028] [PMID: 31351965]
[83]
Manitpisitkul, P.; Flores, C.M.; Moyer, J.A.; Romano, G.; Shalayda, K.; Tatikola, K.; Hutchison, J.S.; Mayorga, A.J. A multiple-dose double-blind randomized study to evaluate the safety, pharmacokinetics, pharmacodynamics and analgesic efficacy of the TRPV1 antagonist JNJ-39439335 (mavatrep). Scand. J. Pain, 2018, 18(2), 151-164.
[http://dx.doi.org/10.1515/sjpain-2017-0184] [PMID: 29794306]
[84]
Jin, Y.; Smith, C.; Monteith, D.; Brown, R.; Camporeale, A.; McNearney, T.A.; Deeg, M.A.; Raddad, E.; Xiao, N.; de la Peña, A.; Kivitz, A.J.; Schnitzer, T.J. CGRP blockade by galcanezumab was not associated with reductions in signs and symptoms of knee osteoarthritis in a randomized clinical trial. Osteoarthritis Cartilage, 2018, 26(12), 1609-1618.
[http://dx.doi.org/10.1016/j.joca.2018.08.019] [PMID: 30240937]
[85]
Ruggles, D.R.; Freyman, R.L.; Oxenham, A.J. Influence of musical training on understanding voiced and whispered speech in noise. PLoS One, 2014, 9(1), e86980.
[http://dx.doi.org/10.1371/journal.pone.0086980] [PMID: 24489819]
[86]
Ahmed, E.M. Hydrogel: Preparation, characterization, and applications: A review. J. Adv. Res., 2015, 6(2), 105-121.
[http://dx.doi.org/10.1016/j.jare.2013.07.006] [PMID: 25750745]
[87]
Chevalier, X. Intraarticular treatments for osteoarthritis: New perspectives. Curr. Drug Targets, 2010, 11(5), 546-560.
[http://dx.doi.org/10.2174/138945010791011866] [PMID: 20199394]
[88]
Zhu, J.; Marchant, R.E. Design properties of hydrogel tissue-engineering scaffolds. Expert Rev. Med. Devices, 2011, 8(5), 607-626.
[http://dx.doi.org/10.1586/erd.11.27] [PMID: 22026626]
[89]
Censi, R.; Dubbini, A.; Matricardi, P. Bioactive hydrogel scaffolds - advances in cartilage regeneration through controlled drug delivery. Curr. Pharm. Des., 2015, 21(12), 1545-1555.
[http://dx.doi.org/10.2174/1381612821666150115150712] [PMID: 25594409]
[90]
Ren, X.; Wang, N.; Zhou, Y.; Song, A.; Jin, G.; Li, Z.; Luan, Y. An injectable hydrogel using an immunomodulating gelator for amplified tumor immunotherapy by blocking the arginase pathway. Acta Biomater., 2021, 124, 179-190.
[http://dx.doi.org/10.1016/j.actbio.2021.01.041] [PMID: 33524560]
[91]
Zhao, Z.; Li, Q.; Qin, X.; Zhang, M.; Du, Q.; Luan, Y. An injectable hydrogel reshaping adenosinergic axis for cancer therapy. Adv. Funct. Mater., 2022, 32(24), 2200801.
[http://dx.doi.org/10.1002/adfm.202200801]
[92]
Zhang, Z.; Huang, G. Micro-and nano-carrier mediated intra-articular drug delivery systems for the treatment of osteoarthritis. J. Nanotechnol., 2012, 2012, 748909.
[http://dx.doi.org/10.1155/2012/748909]
[93]
Raj, H.; Sharma, S.; Sharma, A.; Verma, K.K.; Chaudhary, A. A novel drug delivery system: Review on microspheres. J. Drug Deliv. Ther., 2021, 11(2-S), 156-161.
[http://dx.doi.org/10.22270/jddt.v11i2-S.4792]
[94]
Butoescu, N.; Seemayer, C.A.; Palmer, G.; Guerne, P.A.; Gabay, C.; Doelker, E.; Jordan, O. Magnetically retainable microparticles for drug delivery to the joint: Efficacy studies in an antigen-induced arthritis model in mice. Arthritis Res. Ther., 2009, 11(3), R72.
[http://dx.doi.org/10.1186/ar2701] [PMID: 19454011]
[95]
Natarajan, V.; Krithica, N.; Madhan, B.; Sehgal, P.K. Formulation and evaluation of quercetin polycaprolactone microspheres for the treatment of rheumatoid arthritis. J. Pharm. Sci., 2011, 100(1), 195-205.
[http://dx.doi.org/10.1002/jps.22266] [PMID: 20607810]
[96]
Musumeci, T.; Bonaccorso, A.; Carbone, C.; Impallomeni, G.; Ballistreri, A.; Duskey, J.T.; Puglisi, G.; Pignatello, R. Development and biocompatibility assessments of poly(3-hydroxybutyrate-co-ε-caprolactone) microparticles for diclofenac sodium delivery. J. Drug Deliv. Sci. Technol., 2020, 60, 102081.
[http://dx.doi.org/10.1016/j.jddst.2020.102081]
[97]
Sulistio, A.; Mansfeld, F.M.; Reyes-Ortega, F.; D’Souza, A.M.; Ng, S.M.Y.; Birkett, S.; Blencowe, A.; Qiao, G.G.; Little, C.B.; Shu, C.C.; Bendele, A.M.; Valade, D.; Donohue, A.C.; Quinn, J.F.; Whittaker, M.R.; Davis, T.P.; Tait, R.J. Intra-articular treatment of osteoarthritis with diclofenac-conjugated polymer reduces inflammation and pain. ACS Appl. Bio Mater., 2019, 2(7), 2822-2832.
[http://dx.doi.org/10.1021/acsabm.9b00232] [PMID: 35030816]
[98]
Wang, S.J.; Qin, J.Z.; Zhang, T.E.; Xia, C. Intra-articular injection of kartogenin-incorporated thermogel enhancing osteoarthritis treatment. Front Chem., 2019, 7, 677.
[http://dx.doi.org/10.3389/fchem.2019.00677] [PMID: 31681730]
[99]
Miao, B.; Song, C.; Ma, G. Injectable thermosensitive hydrogels for intra-articular delivery of methotrexate. J. Appl. Polym. Sci., 2011, 122(3), 2139-2145.
[http://dx.doi.org/10.1002/app.34332]
[100]
Fan, W.; Li, J.; Yuan, L.; Chen, J.; Wang, Z.; Wang, Y.; Guo, C.; Mo, X.; Yan, Z. Intra-articular injection of kartogenin-conjugated polyurethane nanoparticles attenuates the progression of osteoarthritis. Drug Deliv., 2018, 25(1), 1004-1012.
[http://dx.doi.org/10.1080/10717544.2018.1461279] [PMID: 29667446]
[101]
Mok, S.W.; Fu, S.C.; Cheuk, Y.C.; Chu, I.M.; Chan, K.M.; Qin, L.; Yung, S.H.; Kevin Ho, K.W. Intra-articular delivery of quercetin using thermosensitive hydrogel attenuate cartilage degradation in an osteoarthritis rat model. Cartilage, 2020, 11(4), 490-499.
[http://dx.doi.org/10.1177/1947603518796550] [PMID: 30160166]
[102]
Liu, X.; Corciulo, C.; Arabagian, S.; Ulman, A.; Cronstein, B.N. Adenosine-functionalized biodegradable PLA-b-PEG nanoparticles ameliorate osteoarthritis in rats. Sci. Rep., 2019, 9(1), 7430.
[http://dx.doi.org/10.1038/s41598-019-43834-y] [PMID: 31092864]
[103]
Lan, Q.; Lu, R.; Chen, H.; Pang, Y.; Xiong, F.; Shen, C.; Qin, Z.; Zheng, L.; Xu, G.; Zhao, J. MMP-13 enzyme and pH responsive theranostic nanoplatform for osteoarthritis. J. Nanobiotechnology, 2020, 18(1), 117.
[http://dx.doi.org/10.1186/s12951-020-00666-7] [PMID: 32854712]
[104]
Jiang, T.; Kan, H.M.; Rajpura, K.; Carbone, E.J.; Li, Y.; Lo, K.W.H. Development of targeted nanoscale drug delivery system for osteoarthritic cartilage tissue. J. Nanosci. Nanotechnol., 2018, 18(4), 2310-2317.
[http://dx.doi.org/10.1166/jnn.2018.14311] [PMID: 29442897]
[105]
McMasters, J.; Poh, S.; Lin, J.B.; Panitch, A. Delivery of anti-inflammatory peptides from hollow PEGylated poly(NIPAM) nanoparticles reduces inflammation in an ex vivo osteoarthritis model. J. Control. Release, 2017, 258, 161-170.
[http://dx.doi.org/10.1016/j.jconrel.2017.05.008] [PMID: 28495577]
[106]
Aini, H.; Itaka, K.; Fujisawa, A.; Uchida, H.; Uchida, S.; Fukushima, S.; Kataoka, K.; Saito, T.; Chung, U.; Ohba, S. Messenger RNA delivery of a cartilage-anabolic transcription factor as a disease-modifying strategy for osteoarthritis treatment. Sci. Rep., 2016, 6(1), 18743.
[http://dx.doi.org/10.1038/srep18743] [PMID: 26728350]
[107]
Whitmire, R.E.; Scott Wilson, D.; Singh, A.; Levenston, M.E.; Murthy, N.; García, A.J. Self-assembling nanoparticles for intra-articular delivery of anti-inflammatory proteins. Biomaterials, 2012, 33(30), 7665-7675.
[http://dx.doi.org/10.1016/j.biomaterials.2012.06.101] [PMID: 22818981]
[108]
Sharma, G.; Kaur, M.; Raza, K.; Thakur, K.; Katare, O.P. Aceclofenac-β-cyclodextrin-vesicles: A dual carrier approach for skin with enhanced stability, efficacy and dermatokinetic profile. RSC Adv., 2016, 6(25), 20713-20727.
[http://dx.doi.org/10.1039/C5RA24516H]
[109]
Zhang, K.; Yang, J.; Sun, Y.; Liang, J.; Cui, W.; Deng, L.; Zhang, H. Thermo-sensitive dual-functional nanospheres with enhanced lubrication and drug delivery for the treatment of osteoarthritis. Chemistry, 2020, 26(46), 10564-10574.
[http://dx.doi.org/10.1002/chem.202001372]
[110]
Sandker, M.J.; Duque, L.F.; Redout, E.M.; Klijnstra, E.C.; Steendam, R.; Kops, N.; Waarsing, J.H.; van Weeren, R.; Hennink, W.E.; Weinans, H. Degradation, intra-articular biocompatibility, drug release, and bioactivity of tacrolimus-loaded poly(d-l -lactide-PEG)- b -poly(l -lactide) multiblock copolymer-based monospheres. ACS Biomater. Sci. Eng., 2018, 4(7), 2390-2403.
[http://dx.doi.org/10.1021/acsbiomaterials.8b00116] [PMID: 33435104]
[111]
Janssen, M.; Timur, U.T.; Woike, N.; Welting, T.J.M.; Draaisma, G.; Gijbels, M.; van Rhijn, L.W.; Mihov, G.; Thies, J.; Emans, P.J. Celecoxib-loaded PEA microspheres as an auto regulatory drugdelivery system after intra-articular injection. J. Control. Release, 2016, 244(Pt A)), 30-40.
[http://dx.doi.org/10.1016/j.jconrel.2016.11.003 ] [PMID: 27836707]
[112]
Zhang, Z.; Huang, G. Intra-articular lornoxicam loaded PLGA microspheres: Enhanced therapeutic efficiency and decreased systemic toxicity in the treatment of osteoarthritis. Drug Deliv., 2012, 19(5), 255-263.
[http://dx.doi.org/10.3109/10717544.2012.700962] [PMID: 22775466]
[113]
Eswaramoorthy, R.; Chang, C.C.; Wu, S.C.; Wang, G.J.; Chang, J.K.; Ho, M.L. Sustained release of PTH(1–34) from PLGA microspheres suppresses osteoarthritis progression in rats. Acta Biomater., 2012, 8(6), 2254-2262.
[http://dx.doi.org/10.1016/j.actbio.2012.03.015] [PMID: 22414620]
[114]
Goto, N.; Okazaki, K.; Akasaki, Y.; Ishihara, K.; Murakami, K.; Koyano, K.; Ayukawa, Y.; Yasunami, N.; Masuzaki, T.; Nakashima, Y. Single intra-articular injection of fluvastatin-PLGA microspheres reduces cartilage degradation in rabbits with experimental osteoarthritis. J. Orthop. Res., 2017, 35(11), 2465-2475.
[http://dx.doi.org/10.1002/jor.23562] [PMID: 28303595]
[115]
Ko, J.Y.; Choi, Y.J.; Jeong, G.J.; Im, G.I. Sulforaphane–PLGA microspheres for the intra-articular treatment of osteoarthritis. Biomaterials, 2013, 34(21), 5359-5368.
[http://dx.doi.org/10.1016/j.biomaterials.2013.03.066] [PMID: 23601658]
[116]
Lindler, B.N.; Long, K.E.; Taylor, N.A.; Lei, W. Use of herbal medications for treatment of osteoarthritis and rheumatoid arthritis. Medicines (Basel), 2020, 7(11), 67.
[http://dx.doi.org/10.3390/medicines7110067] [PMID: 33126603]
[117]
Barkat, M.A.; Goyal, A.; Barkat, H.A.; Salauddin, M.; Pottoo, F.H.; Anwer, E.T. Herbal medicine: Clinical perspective and regulatory status. Comb. Chem. High Throughput Screen., 2021, 24(10), 1573-1582.
[http://dx.doi.org/10.2174/1386207323999201110192942] [PMID: 33176638]
[118]
Solomon, D.H.; Husni, M.E.; Wolski, K.E.; Wisniewski, L.M.; Borer, J.S.; Graham, D.Y.; Libby, P.; Lincoff, A.M.; Lüscher, T.F.; Menon, V.; Yeomans, N.D.; Wang, Q.; Bao, W.; Berger, M.F.; Nissen, S.E. Differences in safety of nonsteroidal antiinflammatory drugs in patients with osteoarthritis and patients with rheumatoid arthritis: A randomized clinical trial. Arthritis Rheumatol., 2018, 70(4), 537-546.
[http://dx.doi.org/10.1002/art.40400] [PMID: 29266879]
[119]
Fowler, T.O.; Durham, C.O.; Planton, J.; Edlund, B.J. Use of nonsteroidal anti-inflammatory drugs in the older adult. J. Am. Assoc. Nurse Pract., 2014, 26(8), 414-423.
[http://dx.doi.org/10.1002/2327-6924.12139] [PMID: 24956506]
[120]
Towheed, T.; Maxwell, L.; Judd, M.; Catton, M.; Hochberg, M.C.; Wells, G.A. Acetaminophen for osteoarthritis. Cochrane Database Syst. Rev., 2006, 2006(1), CD004257.
[http://dx.doi.org/10.1002/14651858.CD004257.pub2]
[121]
Vazzana, M.; Andreani, T.; Fangueiro, J.; Faggio, C.; Silva, C.; Santini, A.; Garcia, M.L.; Silva, A.M.; Souto, E.B. Tramadol hydrochloride: Pharmacokinetics, pharmacodynamics, adverse side effects, co-administration of drugs and new drug delivery systems. Biomed. Pharmacother., 2015, 70, 234-238.
[http://dx.doi.org/10.1016/j.biopha.2015.01.022] [PMID: 25776506]
[122]
Weick, J.W.; Bawa, H.S.; Dirschl, D.R. Hyaluronic acid injections for treatment of advanced osteoarthritis of the knee: Utilization and cost in a national population sample. J. Bone Joint Surg. Am., 2016, 98(17), 1429-1435.
[http://dx.doi.org/10.2106/JBJS.15.01358] [PMID: 27605686]
[123]
Gilani, S.T.; Khan, D.A.; Khan, F.A.; Ahmed, M. Adverse effects of low dose methotrexate in rheumatoid arthritis patients. J. Coll. Physicians Surg. Pak., 2012, 22(2), 101-104.
[PMID: 22313647]
[124]
Codreanu, C.; Damjanov, N. Safety of biologics in rheumatoid arthritis: Data from randomized controlled trials and registries. Biologics, 2015, 9, 1-6.
[PMID: 25670881]
[125]
Majeed, M.; Majeed, S.; Narayanan, N.K.; Nagabhushanam, K. A pilot, randomized, double‐blind, placebo‐controlled trial to assess the safety and efficacy of a novel Boswellia serrata extract in the management of osteoarthritis of the knee. Phytother. Res., 2019, 33(5), 1457-1468.
[http://dx.doi.org/10.1002/ptr.6338] [PMID: 30838706]
[126]
Majeed, M.; Vaidyanathan, P.; Natarajan, S.; Majeed, S.; Vuppala, K.K. Effect of Boswellin® Super on knee pain in Japanese adults: A randomized, double-blind, placebo-controlled trial. Eur. J. Biomed, 2016, 3, 293-298.
[127]
Shep, D.; Khanwelkar, C.; Gade, P.; Karad, S. Efficacy and safety of combination of curcuminoid complex and diclofenac versus diclofenac in knee osteoarthritis. Medicine (Baltimore), 2020, 99(16), e19723.
[http://dx.doi.org/10.1097/MD.0000000000019723] [PMID: 32311961]
[128]
Kuptniratsaikul, V.; Dajpratham, P.; Taechaarpornkul, W.; Buntragulpoontawee, M.; Lukkanapichonchut, P.; Chootip, C.; Saengsuwan, J.; Tantayakom, K.; Laongpech, S. Efficacy and safety of Curcuma domestica extracts compared with ibuprofen in patients with knee osteoarthritis: A multicenter study. Clin. Interv. Aging, 2014, 9, 451-458.
[http://dx.doi.org/10.2147/CIA.S58535] [PMID: 24672232]
[129]
Shep, D.; Khanwelkar, C.; Gade, P.; Karad, S. Safety and efficacy of curcumin versus diclofenac in knee osteoarthritis: A randomized open-label parallel-arm study. Trials, 2019, 20(1), 214.
[http://dx.doi.org/10.1186/s13063-019-3327-2] [PMID: 30975196]
[130]
Delazar, A.; Sarker, S.D.; Nahar, L.; Jalali, S.B.; Modaresi, M.; Hamedeyazdan, S.; Babaei, H.; Javadzadeh, Y.; Asnaashari, S.; Bamdad Moghadam, S. Rhizomes of Eremostachys laciniata: Isolation and structure elucidation of chemical constituents and a clinical trial on inflammatory diseases. Adv. Pharm. Bull., 2013, 3(2), 385-393.
[PMID: 24312865]
[131]
Ramakanth, G.S.H.; Uday Kumar, C.; Kishan, P.V.; Usharani, P. A randomized, double blind placebo controlled study of efficacy and tolerability of Withaina somnifera extracts in knee joint pain. J. Ayurveda Integr. Med., 2016, 7(3), 151-157.
[http://dx.doi.org/10.1016/j.jaim.2016.05.003] [PMID: 27647541]
[132]
Zakeri, Z.; Izadi, S.; Bari, Z.; Soltani, F.; Narouie, B.; Ghasemi-Rad, M. Evaluating the effects of ginger extract on knee pain, stiffness and difficulty in patients with knee osteoarthritis. J. Med. Plants Res., 2011, 5(15), 3375-3379.
[133]
Haghighi, M.; Khalvat, A.; Toliat, T.; Jallaei, S.H. Comparing the effects of ginger (Zingiber officinale) extract and ibuprofen on patients with osteoarthritis. Arch. Iran Med., 2005, 8(4), 267-271.
[134]
Tao, X.; Cush, J.J.; Garret, M.; Lipsky, P.E. A phase I study of ethyl acetate extract of the Chinese antirheumatic herb Tripterygium wilfordii hook F in rheumatoid arthritis. J. Rheumatol., 2001, 28(10), 2160-2167.
[PMID: 11669150]
[135]
Nakagawa, Y.; Mukai, S.; Yamada, S.; Matsuoka, M.; Tarumi, E.; Hashimoto, T.; Tamura, C.; Imaizumi, A.; Nishihira, J.; Nakamura, T. Short-term effects of highly-bioavailable curcumin for treating knee osteoarthritis: A randomized, double-blind, placebo-controlled prospective study. J. Orthop. Sci., 2014, 19(6), 933-939.
[http://dx.doi.org/10.1007/s00776-014-0633-0] [PMID: 25308211]
[136]
Altman, R.D.; Marcussen, K.C. Effects of a ginger extract on knee pain in patients with osteoarthritis. Arthritis Rheum., 2001, 44(11), 2531-2538.
[http://dx.doi.org/10.1002/1529-0131(200111)44:11<2531:AID-ART433>3.0.CO;2-J] [PMID: 11710709]
[137]
Shoara, R.; Hashempur, M.H.; Ashraf, A.; Salehi, A.; Dehshahri, S.; Habibagahi, Z. Efficacy and safety of topical Matricaria chamomilla L. (chamomile) oil for knee osteoarthritis: A randomized controlled clinical trial. Complement. Ther. Clin. Pract., 2015, 21(3), 181-187.
[http://dx.doi.org/10.1016/j.ctcp.2015.06.003] [PMID: 26256137]
[138]
Pirouzpanah, S.; Mahboob, S.; Sanayei, M.; Hajaliloo, M.; Safaeiyan, A. The effect of chamomile tea consumption on inflammation among rheumatoid arthritis patients: Randomized clinical trial. Prog. Nutr., 2017, 19, 27-33.
[139]
Zhang, W.; Dai, S.M. Mechanisms involved in the therapeutic effects of Paeonia lactiflora Pallas in rheumatoid arthritis. Int. Immunopharmacol., 2012, 14(1), 27-31.
[http://dx.doi.org/10.1016/j.intimp.2012.06.001] [PMID: 22705050]
[140]
Bolognesi, G.; Belcaro, G.; Feragalli, B.; Cornelli, U.; Cotellese, R.; Hu, S.; Dugall, M. Movardol® (N-acetylglucosamine, Boswellia serrata, ginger) supplementation in the management of knee osteoarthritis: Preliminary results from a 6-month registry study. Eur. Rev. Med. Pharmacol. Sci., 2016, 20(24), 5198-5204.
[PMID: 28051248]
[141]
Sumantran, V.N.; Kulkarni, A.; Boddul, S.; Chinchwade, T.; Koppikar, S.J.; Harsulkar, A.; Patwardhan, B.; Chopra, A.; Wagh, U.V. Chondroprotective potential of root extracts of Withania somnifera in osteoarthritis. J. Biosci., 2007, 32(2), 299-307.
[http://dx.doi.org/10.1007/s12038-007-0030-3] [PMID: 17435322]
[142]
Alipour, Z.; Asadizaker, M.; Fayazi, S.; Yegane, N.; Kochak, M.; Haghighi Zadeh, M.H. The effect of ginger on pain and satisfaction of patients with knee osteoarthritis. Jundishapur J. Chron. Dis. Care, 2016, 6(1), e34798.
[http://dx.doi.org/10.17795/jjcdc-34798]
[143]
Amorndoljai, P.; Taneepanichskul, S.; Niempoog, S.; Nimmannit, U. A comparative of ginger extract in Nanostructure Lipid Carrier (NLC) and 1% diclofenac gel for treatment of knee osteoarthritis (OA). J. Med. Assoc. Thai., 2017, 100(4), 447-456.
[PMID: 29911849]
[144]
Amorndoljai, P.; Taneepanichskul, S.; Niempoog, S.; Nimmannit, U. A clinical study phase II of ginger extract in nanostructured lipid carrier for pain relief in knee osteoarthritis patients. Isan J. Pharm. Sci., 2015, 10, 121-132.
[145]
Haroyan, A.; Mukuchyan, V.; Mkrtchyan, N.; Minasyan, N.; Gasparyan, S.; Sargsyan, A.; Narimanyan, M.; Hovhannisyan, A. Efficacy and safety of curcumin and its combination with boswellic acid in osteoarthritis: A comparative, randomized, double-blind, placebo-controlled study. BMC Complement. Altern. Med., 2018, 18(1), 7.
[http://dx.doi.org/10.1186/s12906-017-2062-z] [PMID: 29295712]
[146]
Jiang, Q.; Tang, X.P.; Chen, X.C.; Xiao, H.; Liu, P.; Jiao, J. Will Chinese external therapy with compound Tripterygium wilfordii hook F gel safely control disease activity in patients with rheumatoid arthritis: Design of a double-blinded randomized controlled trial. BMC Complement. Altern. Med., 2017, 17(1), 444.
[http://dx.doi.org/10.1186/s12906-017-1957-z] [PMID: 28870177]
[147]
Hu, C.X.; Hu, K.Y.; Wang, J.F. Potential role of the compound Eucommia bone tonic granules in patients with osteoarthritis and osteonecrosis: A retrospective study. World J. Clin. Cases, 2020, 8(1), 46-53.
[http://dx.doi.org/10.12998/wjcc.v8.i1.46] [PMID: 31970169]
[148]
Notarnicola, A.; Maccagnano, G.; Moretti, L.; Pesce, V.; Tafuri, S.; Fiore, A.; Moretti, B. Methylsulfonylmethane and boswellic acids versus glucosamine sulfate in the treatment of knee arthritis: Randomized trial. Int. J. Immunopathol. Pharmacol., 2016, 29(1), 140-146.
[http://dx.doi.org/10.1177/0394632015622215] [PMID: 26684635]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy