Review Article

CRISPR/Cas9-based Gene Therapies for Fighting Drug Resistance Mediated by Cancer Stem Cells

Author(s): Masoumeh Eliyasi Dashtaki and Sorayya Ghasemi*

Volume 23, Issue 1, 2023

Published on: 26 September, 2022

Page: [41 - 50] Pages: 10

DOI: 10.2174/1566523222666220831161225

Price: $65

Open Access Journals Promotions 2
Abstract

Cancer stem cells (CSCs) are cancer-initiating cells found in most tumors and hematological cancers. CSCs are involved in cells progression, recurrence of tumors, and drug resistance. Current therapies have been focused on treating the mass of tumor cells and cannot eradicate the CSCs. CSCs drug-specific targeting is considered as an approach to precisely target these cells. Clustered regularly interspaced short palindromic repeats (CRISPR/Cas9) gene-editing systems are making progress and showing promise in the cancer research field. One of the attractive applications of CRISPR/Cas9 as one approach of gene therapy is targeting the critical genes involved in drug resistance and maintenance of CSCs. The synergistic effects of gene editing as a novel gene therapy approach and traditional therapeutic methods, including chemotherapy, can resolve drug resistance challenges and regression of the cancers. This review article considers different aspects of CRISPR/Cas9 ability in the study and targeting of CSCs with the intention to investigate their application in drug resistance.

Keywords: Cancer stem cells, CRISPR/Cas9 systems, drug resistance, targeting therapy, gene editing, stem cells.

Graphical Abstract
[1]
Hanahan D, Weinberg RA. Hallmarks of cancer: The next generation. Cell 2011; 144(5): 646-74.
[http://dx.doi.org/10.1016/j.cell.2011.02.013] [PMID: 21376230]
[2]
Kreso A, Dick JE. Evolution of the cancer stem cell model. Cell Stem Cell 2014; 14(3): 275-91.
[http://dx.doi.org/10.1016/j.stem.2014.02.006] [PMID: 24607403]
[3]
Yoo MH, Hatfield DL. The cancer stem cell theory: Is it correct? Mol Cells 2008; 26(5): 514-6.
[PMID: 18711315]
[4]
Pagotto A, Pilotto G, Mazzoldi EL, et al. Autophagy inhibition reduces chemoresistance and tumorigenic potential of human ovarian cancer stem cells. Cell Death Dis 2017; 8(7): e2943.
[http://dx.doi.org/10.1038/cddis.2017.327] [PMID: 28726781]
[5]
Patmanathan SN, Gnanasegaran N, Lim MN, Husaini R, Fakiruddin KS, Zakaria Z. CRISPR/Cas9 in stem cell research: Current application and future perspective. Curr Stem Cell Res Ther 2018; 13(8): 632-44.
[http://dx.doi.org/10.2174/1574888X13666180613081443] [PMID: 29895256]
[6]
Goto N, Fukuda A, Yamaga Y, et al. Lineage tracing and targeting of IL17RB + tuft cell-like human colorectal cancer stem cells. Proc Natl Acad Sci USA 2019; 116(26): 12996-3005.
[http://dx.doi.org/10.1073/pnas.1900251116] [PMID: 31182574]
[7]
Yang F, Cui P, Lu Y, Zhang X. Requirement of the transcription factor YB-1 for maintaining the stemness of cancer stem cells and reverting differentiated cancer cells into cancer stem cells. Stem Cell Res Ther 2019; 10(1): 233.
[http://dx.doi.org/10.1186/s13287-019-1360-4] [PMID: 31375149]
[8]
Wang D, Prager BC, Gimple RC, et al. CRISPR screening of CAR T cells and cancer stem cells reveals critical dependencies for cell-based therapies. Cancer Discov 2021; 11(5): 1192-211.
[http://dx.doi.org/10.1158/2159-8290.CD-20-1243] [PMID: 33328215]
[9]
Chen B, Gilbert LA, Cimini BA, et al. Dynamic imaging of genomic loci in living human cells by an optimized CRISPR/Cas system. Cell 2013; 155(7): 1479-91.
[http://dx.doi.org/10.1016/j.cell.2013.12.001] [PMID: 24360272]
[10]
Klann TS, Black JB, Chellappan M, et al. CRISPR–Cas9 epigenome editing enables high-throughput screening for functional regulatory elements in the human genome. Nat Biotechnol 2017; 35(6): 561-8.
[http://dx.doi.org/10.1038/nbt.3853] [PMID: 28369033]
[11]
Mohamadi S, Zaker Bostanabad S, Mirnejad R. CRISPR arrays: A review on its mechanism. Appl Biotechnol Rep 2020; 7(2): 81-6.
[12]
Westra ER, Buckling A, Fineran PC. CRISPR-Cas systems: Beyond adaptive immunity. Nat Rev Microbiol 2014; 12(5): 317-26.
[http://dx.doi.org/10.1038/nrmicro3241] [PMID: 24704746]
[13]
Gasiunas G, Barrangou R, Horvath P, Siksnys V. Cas9–crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc Natl Acad Sci USA 2012; 109(39): E2579-86.
[http://dx.doi.org/10.1073/pnas.1208507109] [PMID: 22949671]
[14]
Moynahan ME, Jasin M. Mitotic homologous recombination maintains genomic stability and suppresses tumorigenesis. Nat Rev Mol Cell Biol 2010; 11(3): 196-207.
[http://dx.doi.org/10.1038/nrm2851] [PMID: 20177395]
[15]
Lieber MR. The mechanism of double strand DNA break repair by the nonhomologous DNA end joining pathway. Annu Rev Biochem 2010; 79(1): 181-211.
[http://dx.doi.org/10.1146/annurev.biochem.052308.093131] [PMID: 20192759]
[16]
Dominguez AA, Lim WA, Qi LS. Beyond editing: Repurposing CRISPR-Cas9 for precision genome regulation and interrogation. Nat Rev Mol Cell Biol 2016; 17(1): 5-15.
[http://dx.doi.org/10.1038/nrm.2015.2] [PMID: 26670017]
[17]
Carroll D. Genome editing: Past, present, and future. Yale J Biol Med 2017; 90(4): 653-9.
[PMID: 29259529]
[18]
Li XF, Zhou YW, Cai PF, et al. CRISPR/Cas9 facilitates genomic editing for large-scale functional studies in pluripotent stem cell cultures. Hum Genet 2019; 138(11-12): 1217-25.
[http://dx.doi.org/10.1007/s00439-019-02071-z] [PMID: 31606751]
[19]
Carroll D. Genome engineering with zinc-finger nucleases. Genetics 2011; 188(4): 773-82.
[http://dx.doi.org/10.1534/genetics.111.131433] [PMID: 21828278]
[20]
Hockemeyer D, Wang H, Kiani S, et al. Genetic engineering of human pluripotent cells using TALE nucleases. Nat Biotechnol 2011; 29(8): 731-4.
[http://dx.doi.org/10.1038/nbt.1927] [PMID: 21738127]
[21]
Miller JC, Tan S, Qiao G, et al. A TALE nuclease architecture for efficient genome editing. Nat Biotechnol 2011; 29(2): 143-8.
[http://dx.doi.org/10.1038/nbt.1755] [PMID: 21179091]
[22]
Miller JC, Zhang L, Xia DF, et al. Improved specificity of TALE-based genome editing using an expanded RVD repertoire. Nat Methods 2015; 12(5): 465-71.
[http://dx.doi.org/10.1038/nmeth.3330] [PMID: 25799440]
[23]
Tsai SQ, Wyvekens N, Khayter C, et al. Dimeric CRISPR RNA-guided FokI nucleases for highly specific genome editing. Nat Biotechnol 2014; 32(6): 569-76.
[http://dx.doi.org/10.1038/nbt.2908] [PMID: 24770325]
[24]
Urbano A, Smith J, Weeks RJ, Chatterjee A. Gene specific targeting of DNA methylation in the mammalian genome. Cancers (Basel) 2019; 11(10): 1515.
[http://dx.doi.org/10.3390/cancers11101515] [PMID: 31600992]
[25]
Ran FA, Hsu PD, Wright J, Agarwala V, Scott DA, Zhang F. Genome engineering using the CRISPR-Cas9 system. Nat Protoc 2013; 8(11): 2281-308.
[http://dx.doi.org/10.1038/nprot.2013.143] [PMID: 24157548]
[26]
Ding Q, Lee YK, Schaefer EAK, et al. A TALEN genome-editing system for generating human stem cell-based disease models. Cell Stem Cell 2013; 12(2): 238-51.
[http://dx.doi.org/10.1016/j.stem.2012.11.011] [PMID: 23246482]
[27]
Li Y, Wang H, Muffat J, et al. Global transcriptional and translational repression in human-embryonic-stem-cell-derived Rett syndrome neurons. Cell Stem Cell 2013; 13(4): 446-58.
[http://dx.doi.org/10.1016/j.stem.2013.09.001] [PMID: 24094325]
[28]
Ding Q, Regan SN, Xia Y, Oostrom LA, Cowan CA, Musunuru K. Enhanced efficiency of human pluripotent stem cell genome editing through replacing TALENs with CRISPRs. Cell Stem Cell 2013; 12(4): 393-4.
[http://dx.doi.org/10.1016/j.stem.2013.03.006] [PMID: 23561441]
[29]
Yang L, Guell M, Byrne S, et al. Optimization of scarless human stem cell genome editing. Nucleic Acids Res 2013; 41(19): 9049-61.
[http://dx.doi.org/10.1093/nar/gkt555] [PMID: 23907390]
[30]
Lee J, Bayarsaikhan D, Bayarsaikhan G, Kim JS, Schwarzbach E, Lee B. Recent advances in genome editing of stem cells for drug discovery and therapeutic application. Pharmacol Ther 2020; 209: 107501.
[http://dx.doi.org/10.1016/j.pharmthera.2020.107501] [PMID: 32061705]
[31]
Jodat YA, Kang MG, Kiaee K, et al. Human derived organ on a chip for personalized drug development. Curr Pharm Des 2019; 24(45): 5471-86.
[http://dx.doi.org/10.2174/1381612825666190308150055] [PMID: 30854951]
[32]
De Masi C, Spitalieri P, Murdocca M, Novelli G, Sangiuolo F. Application of CRISPR/Cas9 to human-induced pluripotent stem cells: From gene editing to drug discovery. Hum Genomics 2020; 14(1): 25.
[http://dx.doi.org/10.1186/s40246-020-00276-2] [PMID: 32591003]
[33]
Adkar SS, Willard VP, Brunger JM, Shiao KT, Gersbach CA, Guilak F. 318. targeted genome editing of human induced pluripotent stem cells using CRISPR/CAS9 to generate a knock in type II collagen reporter for the purification of chondrogenic cells. Mol Ther 2016; 24: S128.
[http://dx.doi.org/10.1016/S1525-0016(16)33127-6]
[34]
McCloskey AG, Miskelly MG, Moore CBT, et al. CRISPR/Cas9 gene editing demonstrates metabolic importance of GPR55 in the modulation of GIP release and pancreatic beta cell function. Peptides 2020; 125: 170251.
[http://dx.doi.org/10.1016/j.peptides.2019.170251] [PMID: 31923454]
[35]
Rose RA, Jiang H, Wang X, et al. Bone marrow-derived mesenchymal stromal cells express cardiac-specific markers, retain the stromal phenotype, and do not become functional cardiomyocytes in vitro. Stem Cells 2008; 26(11): 2884-92.
[http://dx.doi.org/10.1634/stemcells.2008-0329] [PMID: 18687994]
[36]
Mendivil-Perez M, Velez-Pardo C, Jimenez-Del-Rio M. Direct transdifferentiation of human Wharton’s jelly mesenchymal stromal cells into cholinergic-like neurons. J Neurosci Methods 2019; 312: 126-38.
[http://dx.doi.org/10.1016/j.jneumeth.2018.11.019] [PMID: 30472070]
[37]
Haragopal H, Yu D, Zeng X, et al. Stemness enhancement of human neural stem cells following bone marrow MSC coculture. Cell Transplant 2015; 24(4): 645-59.
[http://dx.doi.org/10.3727/096368915X687561] [PMID: 25719952]
[38]
Filho DM, de Carvalho Ribeiro P, Oliveira LF, et al. Enhancing the therapeutic potential of mesenchymal stem cells with the CRISPR-cas system. Stem Cell Rev 2019; 15(4): 463-73.
[http://dx.doi.org/10.1007/s12015-019-09897-0] [PMID: 31147819]
[39]
Eliyasi Dashtaki M, Hemadi M, Saki G, Mohammadiasl J, Khodadadi A. Spermatogenesis recovery potentials after transplantation of adipose tissue-derived mesenchymal stem cells cultured with growth factors in experimental azoospermic mouse models. Cell J 2020; 21(4): 401-9.
[PMID: 31376321]
[40]
Ghatreh K, Eliyasi M, Alaei S, Saki G. Differentiation potential of adipose tissue‐derived mesenchymal stem cells into germ cells with and without growth factors. Andrologia 2021; 53(1): e13892.
[http://dx.doi.org/10.1111/and.13892] [PMID: 33167071]
[41]
Pijnappels DA, Schalij MJ, Ramkisoensing AA, et al. Forced alignment of mesenchymal stem cells undergoing cardiomyogenic differentiation affects functional integration with cardiomyocyte cultures. Circ Res 2008; 103(2): 167-76.
[http://dx.doi.org/10.1161/CIRCRESAHA.108.176131] [PMID: 18556577]
[42]
Wu CC, Liu FL, Sytwu HK, Tsai CY, Chang DM. CD146+ mesenchymal stem cells display greater therapeutic potential than CD146– cells for treating collagen-induced arthritis in mice. Stem Cell Res Ther 2016; 7(1): 23.
[http://dx.doi.org/10.1186/s13287-016-0285-4] [PMID: 26841872]
[43]
Kidd S, Spaeth E, Dembinski JL, et al. Direct evidence of mesenchymal stem cell tropism for tumor and wounding microenvironments using in vivo bioluminescent imaging. Stem Cells 2009; 27(10): 2614-23.
[http://dx.doi.org/10.1002/stem.187] [PMID: 19650040]
[44]
Golchin A, Shams F, Karami F. Advancing mesenchymal stem cell therapy with CRISPR/Cas9 for clinical trial studies. Adv Exp Med Biol 2019; 1247: 89-100.
[http://dx.doi.org/10.1007/5584_2019_459] [PMID: 31974923]
[45]
Marofi F, Vahedi G, Biglari A, Esmaeilzadeh A, Athari SS. Mesenchymal stromal/stem cells: A new era in the cell-based targeted gene therapy of cancer. Front Immunol 1770; 2017: 8.
[PMID: 29326689]
[46]
Zhang J, Chen L, Zhang J, Wang Y. Drug inducible CRISPR/Cas systems. Comput Struct Biotechnol J 2019; 17: 1171-7.
[http://dx.doi.org/10.1016/j.csbj.2019.07.015] [PMID: 31462973]
[47]
Chira S, Gulei D, Hajitou A, Berindan-Neagoe I. Restoring the p53 ‘Guardian’ phenotype in p53-deficient tumor cells with CRISPR/Cas9. Trends Biotechnol 2018; 36(7): 653-60.
[http://dx.doi.org/10.1016/j.tibtech.2018.01.014] [PMID: 29478674]
[48]
Hegge B, Sjøttem E, Mikkola I. Generation of a PAX6 knockout glioblastoma cell line with changes in cell cycle distribution and sensitivity to oxidative stress. BMC Cancer 2018; 18(1): 496.
[http://dx.doi.org/10.1186/s12885-018-4394-6] [PMID: 29716531]
[49]
Liu J, Sareddy GR, Zhou M, et al. Differential effects of estrogen receptor β isoforms on glioblastoma progression. Cancer Res 2018; 78(12): 3176-89.
[http://dx.doi.org/10.1158/0008-5472.CAN-17-3470] [PMID: 29661831]
[50]
Park MY, Jung MH, Eo EY, et al. Generation of lung cancer cell lines harboring EGFR T790M mutation by CRISPR/Cas9-mediated genome editing. Oncotarget 2017; 8(22): 36331-8.
[http://dx.doi.org/10.18632/oncotarget.16752] [PMID: 28422737]
[51]
Bulstrode H, Johnstone E, Marques-Torrejon MA, et al. Elevated FOXG1 and SOX2 in glioblastoma enforces neural stem cell identity through transcriptional control of cell cycle and epigenetic regulators. Genes Dev 2017; 31(8): 757-73.
[http://dx.doi.org/10.1101/gad.293027.116] [PMID: 28465359]
[52]
Guernet A, Mungamuri SK, Cartier D, et al. CRISPR-barcoding for intratumor genetic heterogeneity modeling and functional analysis of oncogenic driver mutations. Mol Cell 2016; 63(3): 526-38.
[http://dx.doi.org/10.1016/j.molcel.2016.06.017] [PMID: 27453044]
[53]
MacLeod G, Bozek DA, Rajakulendran N, et al. Genome wide CRISPR-Cas9 screens expose genetic vulnerabilities and mechanisms of temozolomide sensitivity in glioblastoma stem cells. Cell Rep 2019; 27(3): 971-986.e9.
[http://dx.doi.org/10.1016/j.celrep.2019.03.047] [PMID: 30995489]
[54]
Wang Y, Wu J, Chen H, et al. Genome-wide CRISPR-Cas9 screen identified KLF11 as a druggable suppressor for sarcoma cancer stem cells. Sci Adv 2021; 7(5): eabe3445.
[http://dx.doi.org/10.1126/sciadv.abe3445] [PMID: 33571129]
[55]
Kawamura N, Nimura K, Nagano H, Yamaguchi S, Nonomura N, Kaneda Y. CRISPR/Cas9-mediated gene knockout of NANOG and NANOGP8 decreases the malignant potential of prostate cancer cells. Oncotarget 2015; 6(26): 22361-74.
[http://dx.doi.org/10.18632/oncotarget.4293] [PMID: 26087476]
[56]
Ghasemi S. Cancer’s epigenetic drugs: Where are they in the cancer medicines? Pharmacogenomics J 2020; 20(3): 367-79.
[http://dx.doi.org/10.1038/s41397-019-0138-5] [PMID: 31819161]
[57]
Wang H, Guo R, Du Z, et al. Epigenetic targeting of granulin in hepatoma cells by synthetic CRISPR dCas9 Epi-suppressors. Mol Ther Nucleic Acids 2018; 11: 23-33.
[http://dx.doi.org/10.1016/j.omtn.2018.01.002] [PMID: 29858058]
[58]
Qian P, De Kumar B, He XC, et al. Retinoid-sensitive epigenetic regulation of the Hoxb cluster maintains normal hematopoiesis and inhibits leukemogenesis. Cell Stem Cell 2018; 22(5): 740-754.e7.
[http://dx.doi.org/10.1016/j.stem.2018.04.012] [PMID: 29727682]
[59]
Moses C, Nugent F, Waryah CB, Garcia-Bloj B, Harvey AR, Blancafort P. Activating PTEN tumor suppressor expression with the CRISPR/dCas9 system. Mol Ther Nucleic Acids 2019; 14: 287-300.
[http://dx.doi.org/10.1016/j.omtn.2018.12.003] [PMID: 30654190]
[60]
Choi BD, Yu X, Castano AP, et al. CRISPR-Cas9 disruption of PD-1 enhances activity of universal EGFRvIII CAR T cells in a preclinical model of human glioblastoma. J Immunother Cancer 2019; 7(1): 304.
[http://dx.doi.org/10.1186/s40425-019-0806-7] [PMID: 31727131]
[61]
Cyranoski D. Chinese scientists to pioneer first human CRISPR trial. Nature 2016; 535(7613): 476-7.
[http://dx.doi.org/10.1038/nature.2016.20302] [PMID: 27466105]
[62]
Daisy PS, Shreyas KS, Anitha TS. Will CRISPR-Cas9 have cards to play against cancer? An update on its applications. Mol Biotechnol 2021; 63(2): 93-108.
[http://dx.doi.org/10.1007/s12033-020-00289-1] [PMID: 33386579]
[63]
Zhang L, Li Y, Hu C, et al. CDK6-PI3K signaling axis is an efficient target for attenuating ABCB1/P-gp mediated Multi-Drug Resistance (MDR) in cancer cells. Mol Cancer 2022; 21(1): 103.
[http://dx.doi.org/10.1186/s12943-022-01524-w] [PMID: 35459184]
[64]
Nowacka M, Ginter-Matuszewska B, Świerczewska M, Sterzyńska K, Nowicki M, Januchowski R. Effect of ALDH1A1 gene knockout on drug resistance in paclitaxel and topotecan resistant human ovarian cancer cell lines in 2D and 3D model. Int J Mol Sci 2022; 23(6): 3036.
[http://dx.doi.org/10.3390/ijms23063036] [PMID: 35328460]
[65]
Han Z, Zhou D, Wang J, Jiang B, Liu X. Reflections on drug resistance to KRAS inhibitors and gene silencing/editing tools for targeting mutant KRAS in cancer treatment. Biochim Biophys Acta Rev Cancer 2022; 1877(1): 188677.
[http://dx.doi.org/10.1016/j.bbcan.2022.188677] [PMID: 35033622]
[66]
Hwang JH, Yoon J, Cho YH, Cha PH, Park JC, Choi KY. A mutant KRAS‐induced factor REG4 promotes cancer stem cell properties via Wnt/β‐catenin signaling. Int J Cancer 2020; 146(10): 2877-90.
[http://dx.doi.org/10.1002/ijc.32728] [PMID: 31605540]
[67]
Li Y, Chu J, Feng W, et al. EPHA5 mediates trastuzumab resistance in HER2‐positive breast cancers through regulating cancer stem cell‐like properties. FASEB J 2019; 33(4): 4851-65.
[http://dx.doi.org/10.1096/fj.201701561RRRR] [PMID: 30620624]
[68]
Pandya K, Wyatt D, Gallagher B, et al. PKCα attenuates jagged-1-mediated notch signaling in ErbB-2–positive breast cancer to reverse trastuzumab resistance. Clin Cancer Res 2016; 22(1): 175-86.
[http://dx.doi.org/10.1158/1078-0432.CCR-15-0179] [PMID: 26350262]
[69]
Goltsov A, Deeni Y, Khalil H, et al. Systems analysis of drug-induced receptor tyrosine kinase reprogramming following targeted mono- and combination anti-cancer therapy. Cells 2014; 3(2): 563-91.
[http://dx.doi.org/10.3390/cells3020563] [PMID: 24918976]
[70]
Korkaya H, Kim G, Davis A, et al. Activation of an IL6 inflammatory loop mediates trastuzumab resistance in HER2+ breast cancer by expanding the cancer stem cell population. Mol Cell 2012; 47(4): 570-84.
[http://dx.doi.org/10.1016/j.molcel.2012.06.014] [PMID: 22819326]
[71]
Izumi D, Toden S, Ureta E, Ishimoto T, Baba H, Goel A. TIAM1 promotes chemoresistance and tumor invasiveness in colorectal cancer. Cell Death Dis 2019; 10(4): 267.
[http://dx.doi.org/10.1038/s41419-019-1493-5] [PMID: 30890693]
[72]
Lin SC, Wu HL, Yeh LY, Yang CC, Kao SY, Chang KW. Activation of the miR-371/372/373 miRNA cluster enhances oncogenicity and drug resistance in oral carcinoma cells. Int J Mol Sci 2020; 21(24): 9442.
[http://dx.doi.org/10.3390/ijms21249442] [PMID: 33322437]
[73]
Gao S, Soares F, Wang S, et al. CRISPR screens identify cholesterol biosynthesis as a therapeutic target on stemness and drug resistance of colon cancer. Oncogene 2021; 40(48): 6601-13.
[http://dx.doi.org/10.1038/s41388-021-01882-7] [PMID: 34621019]
[74]
Yang Z, Li C, Fan Z, et al. Single-cell sequencing reveals variants in ARID1A, GPRC5A and MLL2 driving self-renewal of human bladder cancer stem cells. Eur Urol 2017; 71(1): 8-12.
[http://dx.doi.org/10.1016/j.eururo.2016.06.025] [PMID: 27387124]
[75]
Chen A, Wen S, Liu F, et al. CRISPR/Cas9 screening identifies a kinetochore‐microtubule dependent mechanism for Aurora‐A inhibitor resistance in breast cancer. Cancer Commun (Lond) 2021; 41(2): 121-39.
[http://dx.doi.org/10.1002/cac2.12125] [PMID: 33471959]
[76]
Hu J, Guan W, Liu P, et al. Endoglin is essential for the maintenance of self-renewal and chemoresistance in renal cancer stem cells. Stem Cell Reports 2017; 9(2): 464-77.
[http://dx.doi.org/10.1016/j.stemcr.2017.07.009] [PMID: 28793246]
[77]
León TE, Rapoz-D’Silva T, Bertoli C, et al. EZH2 -deficient Tcell acute lymphoblastic leukemia is sensitized to CHK1 inhibition through enhanced replication stress. Cancer Discov 2020; 10(7): 998-1017.
[http://dx.doi.org/10.1158/2159-8290.CD-19-0789] [PMID: 32349972]
[78]
Kallifatidis G, Smith DK, Morera DS, et al. β-arrestins regulate stem cell-like phenotype and response to chemotherapy in bladder cancer. Mol Cancer Ther 2019; 18(4): 801-11.
[http://dx.doi.org/10.1158/1535-7163.MCT-18-1167] [PMID: 30787175]
[79]
Zhang F, Liu R, Zhang H, Liu C, Liu C, Lu Y. Suppressing Dazl modulates tumorigenicity and stemness in human glioblastoma cells. BMC Cancer 2020; 20(1): 673.
[http://dx.doi.org/10.1186/s12885-020-07155-y] [PMID: 32682409]
[80]
Audrito V, Messana VG, Moiso E, et al. NAMPT over-expression recapitulates the BRAF inhibitor resistant phenotype plasticity in melanoma. Cancers (Basel) 2020; 12(12): 3855.
[http://dx.doi.org/10.3390/cancers12123855] [PMID: 33419372]
[81]
Schmitt M, Sinnberg T, Nalpas NC, Maass A, Schittek B, Macek B. Quantitative proteomics links the intermediate filament nestin to resistance to targeted BRAF inhibition in melanoma cells. Mol Cell Proteomics 2019; 18(6): 1096-109.
[http://dx.doi.org/10.1074/mcp.RA119.001302] [PMID: 30890564]
[82]
Liu Y, Cai B, Chong Y, et al. Downregulation of PUMA underlies resistance to FGFR1 inhibitors in the stem cell leukemia/lymphoma syndrome. Cell Death Dis 2020; 11(10): 884.
[http://dx.doi.org/10.1038/s41419-020-03098-1] [PMID: 33082322]
[83]
Huang T, Song X, Xu D, et al. Stem cell programs in cancer initiation, progression, and therapy resistance. Theranostics 2020; 10(19): 8721-43.
[http://dx.doi.org/10.7150/thno.41648] [PMID: 32754274]
[84]
Razmkhah F, Soleimani M, Ghasemi S, Kafi-abad SA. MicroRNA-21 over expression in umbilical cord blood hematopoietic stem progenitor cells by leukemia microvesicles. Genet Mol Biol 2019; 42(2): 465-71.
[http://dx.doi.org/10.1590/1678-4685-gmb-2018-0073] [PMID: 31429853]
[85]
Motamedi M, Hashemzadeh Chaleshtori M, Ghasemi S, Mokarian F. Plasma level of miR-21 And miR-451 in primary and recurrent breast cancer patients. Breast Cancer (Dove Med Press) 2019; 11: 293-301.
[http://dx.doi.org/10.2147/BCTT.S224333] [PMID: 31749630]
[86]
Fu Y, Sander JD, Reyon D, Cascio VM, Joung JK. Improving CRISPR-Cas nuclease specificity using truncated guide RNAs. Nat Biotechnol 2014; 32(3): 279-84.
[http://dx.doi.org/10.1038/nbt.2808] [PMID: 24463574]
[87]
Mali P, Yang L, Esvelt KM, et al. RNA-guided human genome engineering via Cas9. Science 2013; 339(6121): 823-6.
[http://dx.doi.org/10.1126/science.1232033] [PMID: 23287722]
[88]
Ferronika P, van den Bos H, Taudt A, et al. Copy number alterations assessed at the single-cell level revealed mono- and polyclonal seeding patterns of distant metastasis in a small-cell lung cancer patient. Ann Oncol 2017; 28(7): 1668-70.
[http://dx.doi.org/10.1093/annonc/mdx182] [PMID: 28419234]
[89]
Charlesworth CT, Deshpande PS, Dever DP, et al. Identification of preexisting adaptive immunity to Cas9 proteins in humans. Nat Med 2019; 25(2): 249-54.
[http://dx.doi.org/10.1038/s41591-018-0326-x] [PMID: 30692695]
[90]
Yin H, Xue W, Anderson DG. CRISPR-Cas: A tool for cancer research and therapeutics. Nat Rev Clin Oncol 2019; 16(5): 281-95.
[http://dx.doi.org/10.1038/s41571-019-0166-8] [PMID: 30664678]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy