Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Research Article

The Mechanisms Underlying the Pharmacological Effects of GuiPi Decoction on Major Depressive Disorder based on Network Pharmacology and Molecular Docking

Author(s): Liyuan Chen, Tianyuan Ye, Xiaolong Wang, Lu Han, Tongxing Wang, Dongmei Qi and Xiaorui Cheng*

Volume 26, Issue 9, 2023

Published on: 31 October, 2022

Page: [1701 - 1728] Pages: 28

DOI: 10.2174/1386207325666220831152959

Price: $65

Open Access Journals Promotions 2
Abstract

Background and Aim: Major Depressive Disorder (MDD) is a common affective disorder. GuiPi decoction (GPD) is used to treat depression in China, Japan, and Korea. However, its effective ingredients and antidepressant mechanisms remain unclear. We attempted to reveal the potential mechanisms of GPD in the treatment of MDD by network pharmacology and molecular docking. In addition, we conducted an enzymatic activity assay to validate the results of molecular docking.

Methods: GPD-related compounds and targets, and MDD-related targets were retrieved from databases and literature. The herb-compound-target network was constructed by Cytoscape. The protein- protein interaction network was built using the STRING database to find key targets of GPD on MDD. Enrichment analysis of shared targets was analyzed by MetaCore database to obtain the potential pathway and biological process of GPD on MDD. The main active compounds treating MDD were screened by molecular docking. The PDE4s inhibitors were screened and verified by an enzyme activity assay.

Results: GPD contained 1222 ingredients and 190 potential targets for anti-MDD. Possible biological processes regulated by GPD were neurophysiological processes, blood vessel morphogenesis, Camp Responsive Element Modulator (CREM) pathway, and Androgen Receptor (AR) signaling crosstalk in MDD. Potential pathways in MDD associated with GPD include neurotransmission, cell differentiation, androgen signaling, and estrogen signaling. Fumarine, m-cresol, quercetin, betasitosterol, fumarine, taraxasterol, and lupeol in GPD may be the targets of SLC6A4, monoamine oxidase A (MAOA), DRD2, OPRM1, HTR3A, Albumin (ALB), and NTRK1, respectively. The IC50 values of trifolin targeting Phosphodiesterase (PDE) 4A and girinimbine targeting PDE4B1 were 73.79 μM and 31.86 μM, respectively. The IC50 values of girinimbine and benzo[a]carbazole on PDE4B2 were 51.62 μM and 94.61 μM, respectively.

Conclusion: Different compounds in GPD may target the same protein, and the same component in GPD can target multiple targets. These results suggest that the effects of GPD on MDD are holistic and systematic, unlike the pattern of one drug-one target.

Keywords: GuiPi decoction, major depressive disorder, trifolin, girinimbine, benzo[a]carbazole, network pharmacology.

Graphical Abstract
[1]
Uher, R.; Payne, J.L.; Pavlova, B.; Perlis, R.H. Major depressive disorder in DSM-5: Implications for clinical practice and research of changes from DSM-IV. Depress. Anxiety, 2014, 31(6), 459-471.
[http://dx.doi.org/10.1002/da.22217] [PMID: 24272961]
[2]
Willner, P.; Belzung, C. Treatment-resistant depression: Are animal models of depression fit for purpose? Psychopharmacology (Berl.), 2015, 232(19), 3473-3495.
[http://dx.doi.org/10.1007/s00213-015-4034-7] [PMID: 26289353]
[3]
Smith, K. Mental health: A world of depression. Nature, 2014, 515(7526), 180-181.
[http://dx.doi.org/10.1038/515180a] [PMID: 25391942]
[4]
Machado-Vieira, R.; Baumann, J.; Wheeler-Castillo, C.; Latov, D.; Henter, I.; Salvadore, G.; Zarate, C., Jr The timing of antidepressant effects: A comparison of diverse pharmacological and somatic treatments. Pharmaceuticals (Basel), 2010, 3(1), 19-41.
[http://dx.doi.org/10.3390/ph3010019] [PMID: 27713241]
[5]
Murrough, J.W.; Abdallah, C.G.; Mathew, S.J. Targeting glutamate signalling in depression: Progress and prospects. Nat. Rev. Drug Discov., 2017, 16(7), 472-486.
[http://dx.doi.org/10.1038/nrd.2017.16] [PMID: 28303025]
[6]
Mrazek, D.A.; Hornberger, J.C.; Altar, C.A.; Degtiar, I. A review of the clinical, economic, and societal burden of treatment-resistant depression: 1996-2013. Psychiatr. Serv., 2014, 65(8), 977-987.
[http://dx.doi.org/10.1176/appi.ps.201300059] [PMID: 24789696]
[7]
Nagane, A.; Baba, H.; Nakano, Y.; Maeshima, H.; Hukatsu, M.; Ozawa, K.; Suzuki, T.; Arai, H. Comparative study of cognitive impairment between medicated and medication-free patients with remitted major depression: Class-specific influence by tricyclic antidepressants and newer antidepressants. Psychiatry Res., 2014, 218(1-2), 101-105.
[http://dx.doi.org/10.1016/j.psychres.2014.04.013] [PMID: 24768252]
[8]
Larsson, J. Antidepressants and suicide among young women in Sweden 1999–2013. Int. J. Risk Saf. Med., 2017, 29(1-2), 101-106.
[http://dx.doi.org/10.3233/JRS-170739] [PMID: 28885220]
[9]
De Berardis, D.; Fornaro, M.; Anastasia, A.; Vellante, F.; Olivieri, L.; Rapini, G.; Serroni, N.; Orsolini, L.; Valchera, A.; Carano, A.; Tomasetti, C.; Ventriglio, A.; Bustini, M.; Pompili, M.; Serafini, G.; Perna, G.; Iasevoli, F.; Martinotti, G.; Di Giannantonio, M. Adjunctive vortioxetine for SSRI-resistant major depressive disorder: A “real-world” chart review study. Br. J. Psychiatry, 2020, 42(3), 317-321.
[http://dx.doi.org/10.1590/1516-4446-2019-0690] [PMID: 32159712]
[10]
Orsolini, L.; Tomasetti, C.; Valchera, A.; Iasevoli, F.; Buonaguro, E.F.; Fornaro, M.; Fiengo, A.L.C.; Martinotti, G.; Vellante, F.; Matarazzo, I.; Vecchiotti, R.; Perna, G.; Di Nicola, M.; Carano, A.; Di Bartolomeis, A.; De Giannantonio, M.; De Berardis, D. Current and future perspectives on the major depressive disorder: Focus on the new multimodal antidepressant vortioxetine. CNS Neurol. Disord. Drug Targets, 2017, 16(1), 65-92.
[http://dx.doi.org/10.2174/1871527315666161025140111] [PMID: 27781949]
[11]
De Berardis, D.; Fornaro, M.; Serroni, N.; Campanella, D.; Rapini, G.; Olivieri, L.; Srinivasan, V.; Iasevoli, F.; Tomasetti, C.; De Bartolomeis, A.; Valchera, A.; Perna, G.; Mazza, M.; Di Nicola, M.; Martinotti, G.; Di Giannantonio, M. Agomelatine beyond borders: Current evidences of its efficacy in disorders other than major depression. Int. J. Mol. Sci., 2015, 16(1), 1111-1130.
[http://dx.doi.org/10.3390/ijms16011111] [PMID: 25569089]
[12]
Bertaina-Anglade, V.; Drieu-La-Rochelle, C.; Mocaër, E.; Seguin, L. Memory facilitating effects of agomelatine in the novel object recognition memory paradigm in the rat. Pharmacol. Biochem. Behav., 2011, 98(4), 511-517.
[http://dx.doi.org/10.1016/j.pbb.2011.02.015] [PMID: 21352847]
[13]
Martinotti, G.; Pettorruso, M.; De Berardis, D.; Varasano, P.A.; Lucidi Pressanti, G.; De Remigis, V.; Valchera, A.; Ricci, V.; Di Nicola, M.; Janiri, L.; Biggio, G.; Di Giannantonio, M. Agomelatine increases BDNF serum levels in depressed patients in correlation with the improvement of depressive symptoms. Int. J. Neuropsychopharmacol., 2016, 19(5)pyw003,
[http://dx.doi.org/10.1093/ijnp/pyw003] [PMID: 26775293]
[14]
De Berardis, D.; Fornaro, M.; Orsolini, L.; Iasevoli, F.; Tomasetti, C.; de Bartolomeis, A.; Serroni, N.; De Lauretis, I.; Girinelli, G.; Mazza, M.; Valchera, A.; Carano, A.; Vellante, F.; Matarazzo, I.; Perna, G.; Martinotti, G.; Di Giannantonio, M. Effect of agomelatine treatment on C-reactive protein levels in patients with major depressive disorder: An exploratory study in “real-world,” everyday clinical practice. CNS Spectr., 2017, 22(4), 342-347.
[http://dx.doi.org/10.1017/S1092852916000572] [PMID: 27702411]
[15]
De Berardis, D.; Fornaro, M.; Valchera, A.; Cavuto, M.; Perna, G.; Di Nicola, M.; Serafini, G.; Carano, A.; Pompili, M.; Vellante, F.; Orsolini, L.; Fiengo, A.; Ventriglio, A.; Yong-Ku, K.; Martinotti, G.; Di Giannantonio, M.; Tomasetti, C. Eradicating suicide at its roots: Preclinical bases and clinical evidence of the efficacy of ketamine in the treatment of suicidal behaviors. Int. J. Mol. Sci., 2018, 19(10), 2888.
[http://dx.doi.org/10.3390/ijms19102888] [PMID: 30249029]
[16]
Moda-Sava, R.N.; Murdock, M.H.; Parekh, P.K.; Fetcho, R.N.; Huang, B.S.; Huynh, T.N.; Witztum, J.; Shaver, D.C.; Rosenthal, D.L.; Alway, E.J.; Lopez, K.; Meng, Y.; Nellissen, L.; Grosenick, L.; Milner, T.A.; Deisseroth, K.; Bito, H.; Kasai, H.; Liston, C. Sustained rescue of prefrontal circuit dysfunction by antidepressant-induced spine formation. Science, 2019, 364(6436)eaat8078,
[http://dx.doi.org/10.1126/science.aat8078] [PMID: 30975859]
[17]
Wang, X.G.; Zhou, B. Effect of Guipi Decoction combined with emotional care of traditional Chinese medicine on serum serotonin and norepinephrine levels in adults with depression. Henan Chinese Medicine, 2019, 39(08), 1213-1216.
[http://dx.doi.org/10.16367/j.issn.1003-5028.2019.08.0300]
[18]
Li, Q. Analysis of Guipi decoction plus citalopram in the treatment of post-stroke depression. North. Pharm. J., 2019, 16(06), 92-93.
[19]
Zhu, C.J.; Li, X.; Qu, M. Clinical research of Guipi decoction as treatment for heart-spleen deficiency depression. Jilin Trad. Chin. Med., 2014, 34(07), 695-699.
[http://dx.doi.org/10.13463/j.cnki.jlzyy.2014.07.016]
[20]
Liang, W.H. Study on Clinical Efficacy and the Ifluence on the 5-HT Level by Bupiyangxin Treatment in the Treating Depression; Shandong University of Traditional Chinese Medicine, 2012.
[21]
Li, H.C.; Li, Q.B.; Yang, X.Q.; Wang, Y.; Tian, X.; Chen, X.G.; Li, Y. Clinical study on modified Guipi decoction in the treatment of senile depressive disorders and improving the life quality of patients. Chin. Med., 2014, 29(06), 1855-1859.
[22]
Chen, B.Z.; Wang, L.; Liu, C.Q.; Xu, F. Effect of Guipi decoction on 5-HT and NE in brain of depression model rats. Chin. Med. Inform., 2014, 31(05), 14-15.
[23]
Dong, J.Z.; Li, X.R.; Qiu, L.S.; Tan, Z.L.; Ju, X.; Xu, L.L. Effects of Guipi decoction and fluoxetine on depression model rats’ behavior and NE, 5-HT and DA in hippocampus. Chin. Herb. Med., 2017, 40(02), 457-461.
[http://dx.doi.org/10.13863/j.issn1001-4454.2017.02.045]
[24]
Li, T.T.; Yu, X.F.; Li, X.T.; Wu, T.; Zhang, J.S.; Sun, Y.; Li, Y.T.; Cai, D.F. Effects of Guipi decoction on behavior and the level of BDNF in hippocampus CA3 area on depression model rats. Chin. Med., 2018, 33(07), 2827-2831.
[25]
Xu, F. Guipi soup on rat model of brain 5-HT、ne influence experimental study; Heilongjiang University of Chinese Medicine, 2012.
[26]
Wang, Q.S. Guipi soup on rat model of brain CRH, BDNF influence experimental study; Heilongjiang University of Chinese Medicine, 2013.
[27]
Li, Z.Q. Guipi decoction on rat model of brain GABA GLU influence experimental study; Heilongjiang University of Chinese Medicine, 2013.
[28]
Cui, Y.C.; Tang, Q.S. Effect of Guipi Decoction on HPA axis related hormones and serotonin in postpartum depression model rats. Beijing Chin. Med., 2016, 35(02), 122-126.
[http://dx.doi.org/10.16025/j.1674-1307.2016.02.007]
[29]
Wang, G.Q.; Zhao, A.M.; Zhu, S.Y. Effect of Guipi decoction on behavior and learning and memory ability of aged depression model rats. Chin. J. Gerontol., 2013, 33(20), 5051-5053.
[30]
Chen, B.Z.; Pan, Y.C.; Li, Z.Q.; Zhang, L. Effect of Guipi decoction on levels of amino acid neurotransmitters in the brain of depression model rats. J. Chengdu Univ. Trad. Chin. Med., 2019, 42(04), 41-44.
[http://dx.doi.org/10.13593/j.cnki.51-1501/r.2019.04.041]
[31]
Xin, X.; Ji, Y. Effect of Guipi decoction on IL-4 in serum of depression model mice. J. Pract. Trad. Chin. Med., 2011, 25(05), 41-42.
[http://dx.doi.org/10.3969/j.issn.1671-7813.2011.05.20]
[32]
Chen, B.Z.; Yao, D.; Yu, H.F.; Li, Y. Effect of Guipi decoction on the contents of ACTH and CORT in blood of depression model rats. J. Tradit. Chin. Med., 2010, 38(04), 19-21.
[http://dx.doi.org/10.19664/j.cnki.1002-2392.2010.04.008]
[33]
Shang, F. Effect of Guipi Decoction on the Expression of IL-1β and IL-1RⅠ. In: Depression Model Rats; Liaoning University of Traditional Chinese Medicine, 2009.
[34]
Yu, H.F. Experimental Study on the Effect of Guipi Decoction on ACTH, CORT and IL-β In: Blood of Depression Model; Heilongjiang University of Chinese Medicine, 2009.
[35]
Ru, J.; Li, P.; Wang, J.; Zhou, W.; Li, B.; Huang, C.; Li, P.; Guo, Z.; Tao, W.; Yang, Y.; Xu, X.; Li, Y.; Wang, Y.; Yang, L. TCMSP: A database of systems pharmacology for drug discovery from herbal medicines. J. Cheminform., 2014, 6(1), 13.
[http://dx.doi.org/10.1186/1758-2946-6-13] [PMID: 24735618]
[36]
Huang, L.; Xie, D.; Yu, Y.; Liu, H.; Shi, Y.; Shi, T.; Wen, C. TCMID 2.0: A comprehensive resource for TCM. Nucleic Acids Res., 2018, 46(D1), D1117-D1120.
[http://dx.doi.org/10.1093/nar/gkx1028] [PMID: 29106634]
[37]
Fang, Y.C.; Huang, H.C.; Chen, H.H.; Juan, H.F. TCMGeneDIT: A database for associated traditional Chinese medicine, gene and disease information using text mining. BMC Complement. Altern. Med., 2008, 8(1), 58.
[http://dx.doi.org/10.1186/1472-6882-8-58] [PMID: 18854039]
[38]
Xu, H.Y.; Zhang, Y.Q.; Liu, Z.M.; Chen, T.; Lv, C.Y.; Tang, S.H.; Zhang, X.B.; Zhang, W.; Li, Z.Y.; Zhou, R.R.; Yang, H.J.; Wang, X.J.; Huang, L.Q. ETCM: An encyclopaedia of traditional Chinese medicine. Nucleic Acids Res., 2019, 47(D1), D976-D982.
[http://dx.doi.org/10.1093/nar/gky987] [PMID: 30365030]
[39]
Liu, Z.; Guo, F.; Wang, Y.; Li, C.; Zhang, X.; Li, H.; Diao, L.; Gu, J.; Wang, W.; Li, D.; He, F. BATMAN-TCM: A bioinformatics analysis tool for molecular mechanism of traditional Chinese medicine. Sci. Rep., 2016, 6(1), 21146.
[http://dx.doi.org/10.1038/srep21146] [PMID: 26879404]
[40]
Szklarczyk, D.; Gable, A.L.; Lyon, D.; Junge, A.; Wyder, S.; Huerta-Cepas, J.; Simonovic, M.; Doncheva, N.T.; Morris, J.H.; Bork, P.; Jensen, L.J.; Mering, C. STRING v11: Protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res., 2019, 47(D1), D607-D613.
[http://dx.doi.org/10.1093/nar/gky1131] [PMID: 30476243]
[41]
UniProt Consortium. Activities at the Universal Protein Resource (UniProt). Nucleic Acids Res., 2014, 42(D1), D191-D198.
[http://dx.doi.org/10.1093/nar/gkt1140] [PMID: 24253303]
[42]
Amberger, J.S.; Bocchini, C.A.; Schiettecatte, F.; Scott, A.F.; Hamosh, A. OMIM.org: Online Mendelian Inheritance in Man (OMIM®), an online catalog of human genes and genetic disorders. Nucleic Acids Res., 2015, 43(D1), D789-D798.
[http://dx.doi.org/10.1093/nar/gku1205] [PMID: 25428349]
[43]
Whirl-Carrillo, M.; McDonagh, E.M.; Hebert, J.M.; Gong, L.; Sangkuhl, K.; Thorn, C.F.; Altman, R.B.; Klein, T.E. Pharmacogenomics knowledge for personalized medicine. Clin. Pharmacol. Ther., 2012, 92(4), 414-417.
[http://dx.doi.org/10.1038/clpt.2012.96] [PMID: 22992668]
[44]
Wang, Y.; Zhang, S.; Li, F.; Zhou, Y.; Zhang, Y.; Wang, Z.; Zhang, R.; Zhu, J.; Ren, Y.; Tan, Y.; Qin, C.; Li, Y.; Li, X.; Chen, Y.; Zhu, F. Therapeutic target database 2020: Enriched resource for facilitating research and early development of targeted therapeutics. Nucleic Acids Res., 2019, 48(D1)gkz981,
[http://dx.doi.org/10.1093/nar/gkz981] [PMID: 31691823]
[45]
Davis, A.P.; Grondin, C.J.; Johnson, R.J.; Sciaky, D.; McMorran, R.; Wiegers, J.; Wiegers, T.C.; Mattingly, C.J. The comparative toxicogenomics database: Update 2019. Nucleic Acids Res., 2019, 47(D1), D948-D954.
[http://dx.doi.org/10.1093/nar/gky868] [PMID: 30247620]
[46]
Wishart, D.S.; Feunang, Y.D.; Guo, A.C.; Lo, E.J.; Marcu, A.; Grant, J.R.; Sajed, T.; Johnson, D.; Li, C.; Sayeeda, Z.; Assempour, N.; Iynkkaran, I.; Liu, Y.; Maciejewski, A.; Gale, N.; Wilson, A.; Chin, L.; Cummings, R.; Le, D.; Pon, A.; Knox, C.; Wilson, M. DrugBank 5.0: A major update to the DrugBank database for 2018. Nucleic Acids Res., 2018, 46(D1), D1074-D1082.
[http://dx.doi.org/10.1093/nar/gkx1037] [PMID: 29126136]
[47]
Wang, Y.; Bryant, S.H.; Cheng, T.; Wang, J.; Gindulyte, A.; Shoemaker, B.A.; Thiessen, P.A.; He, S.; Zhang, J. PubChem BioAssay: 2017 update. Nucleic Acids Res., 2017, 45(D1), D955-D963.
[http://dx.doi.org/10.1093/nar/gkw1118] [PMID: 27899599]
[48]
Liu, B.; Liu, J.; Wang, M.; Zhang, Y.; Li, L. From serotonin to neuroplasticity: Evolvement of theories for major depressive disorder. Front. Cell. Neurosci., 2017, 11, 305.
[http://dx.doi.org/10.3389/fncel.2017.00305] [PMID: 29033793]
[49]
Otte, C.; Gold, S.M.; Penninx, B.W.; Pariante, C.M.; Etkin, A.; Fava, M.; Mohr, D.C.; Schatzberg, A.F. Major depressive disorder. Nat. Rev. Dis. Primers, 2016, 2(1), 16065.
[http://dx.doi.org/10.1038/nrdp.2016.65] [PMID: 27629598]
[50]
Schoenfeld, T.J.; McCausland, H.C.; Morris, H.D.; Padmanaban, V.; Cameron, H.A. Stress and loss of adult neurogenesis differentially reduce hippocampal volume. Biol. Psychiatry, 2017, 82(12), 914-923.
[http://dx.doi.org/10.1016/j.biopsych.2017.05.013] [PMID: 28629541]
[51]
Phillips, C. Brain-derived neurotrophic factor, depression, and physical activity: Making the neuroplastic connection. Neural Plast., 2017, 2017, 1-17.
[http://dx.doi.org/10.1155/2017/7260130] [PMID: 28928987]
[52]
CONVERGE consortium. Sparse whole-genome sequencing identifies two loci for major depressive disorder. Nature, 2015, 523(7562), 588-591.
[http://dx.doi.org/10.1038/nature14659] [PMID: 26176920]
[53]
Abe-Higuchi, N.; Uchida, S.; Yamagata, H.; Higuchi, F.; Hobara, T.; Hara, K.; Kobayashi, A.; Watanabe, Y. Hippocampal sirtuin 1 signaling mediates depression-like behavior. Biol. Psychiatry, 2016, 80(11), 815-826.
[http://dx.doi.org/10.1016/j.biopsych.2016.01.009] [PMID: 27016384]
[54]
Martins, I.J. Anti-aging genes improve appetite regulation and reverse cell senescence and apoptosis in global populations. Adv. Aging Res., 2016, 5(1), 9-26.
[http://dx.doi.org/10.4236/aar.2016.51002]
[55]
Martins, I.J. Single gene inactivation with implications to diabetes and multiple organ dysfunction syndrome. J. Clin. Epigenetics, 2017, 3(3)
[http://dx.doi.org/10.21767/2472-1158.100058]
[56]
Martins, I. Nutrition therapy regulates caffeine metabolism with relevance to NAFLD and induction of type 3 diabetes. Diabetes Metabolic Disorders, 2017, 4(1), 1-9.
[http://dx.doi.org/10.24966/DMD-201X/100019]
[57]
Caruso, G.I.; Spampinato, S.F.; Costantino, G.; Merlo, S.; Sortino, M.A. SIRT1-dependent upregulation of BDNF in human microglia challenged with Aβ An early but transient response rescued by melatonin. Biomedicines, 2021, 9(5), 466.
[http://dx.doi.org/10.3390/biomedicines9050466] [PMID: 33923297]
[58]
Ali, S.H.; Madhana, R.M. K v, A.; Kasala, E.R.; Bodduluru, L.N.; Pitta, S.; Mahareddy, J.R.; Lahkar, M. Resveratrol ameliorates depressive-like behavior in repeated corticosterone-induced depression in mice. Steroids, 2015, 101, 37-42.
[http://dx.doi.org/10.1016/j.steroids.2015.05.010] [PMID: 26048446]
[59]
Stelter, P.; Ulrich, H.D. Control of spontaneous and damage-induced mutagenesis by SUMO and ubiquitin conjugation. Nature, 2003, 425(6954), 188-191.
[http://dx.doi.org/10.1038/nature01965] [PMID: 12968183]
[60]
Bodera, P.; Stankiewicz, W.; Kocik, J. Interactions of orphanin FQ/nociceptin (OFQ/N) system with immune system factors and hypothalamic–pituitary–adrenal (HPA) axis. Pharmacol. Rep., 2014, 66(2), 288-291.
[http://dx.doi.org/10.1016/j.pharep.2013.12.003] [PMID: 24911083]
[61]
Witkin, J.M.; Statnick, M.A.; Rorick-Kehn, L.M.; Pintar, J.E.; Ansonoff, M.; Chen, Y.; Tucker, R.C.; Ciccocioppo, R. The biology of Nociceptin/Orphanin FQ (N/OFQ) related to obesity, stress, anxiety, mood, and drug dependence. Pharmacol. Ther., 2014, 141(3), 283-299.
[http://dx.doi.org/10.1016/j.pharmthera.2013.10.011] [PMID: 24189487]
[62]
Browne, C.A.; Jacobson, M.L.; Lucki, I. Novel targets to treat depression: Opioid-based therapeutics. Harv. Rev. Psychiatry, 2020, 28(1), 40-59.
[http://dx.doi.org/10.1097/HRP.0000000000000242] [PMID: 31913981]
[63]
Post, A.; Smart, T.S.; Krikke-Workel, J.; Dawson, G.R.; Harmer, C.J.; Browning, M.; Jackson, K.; Kakar, R.; Mohs, R.; Statnick, M.; Wafford, K.; McCarthy, A.; Barth, V.; Witkin, J.M. A selective nociceptin receptor antagonist to treat depression: Evidence from preclinical and clinical studies. Neuropsychopharmacology, 2016, 41(7), 1803-1812.
[http://dx.doi.org/10.1038/npp.2015.348] [PMID: 26585287]
[64]
Zou, Y.P. Effect of Guipi Decoction on Hippocampal Morphology and Cortisol Level in Depression Model Rats; Liaoning University of Traditional Chinese Medicine, 2006.
[65]
Kiuchi, T.; Lee, H.; Mikami, T. Regular exercise cures depression-like behavior via VEGF-Flk-1 signaling in chronically stressed mice. Neuroscience, 2012, 207, 208-217.
[http://dx.doi.org/10.1016/j.neuroscience.2012.01.023] [PMID: 22306286]
[66]
Chiesa, A.; Marsano, A.; Han, C.; Lee, S.J.; Patkar, A.A.; Pae, C.U.; Serretti, A. Epistatic interactions between CREB and CREM variants in affective disorder. Psychiatry Investig., 2014, 11(2), 200-203.
[http://dx.doi.org/10.4306/pi.2014.11.2.200] [PMID: 24843377]
[67]
Crisafulli, C.; Shim, D.S.; Andrisano, C.; Pae, C.U.; Chiesa, A.; Han, C.; Patkar, A.A.; Lee, S.J.; Serretti, A.; De Ronchi, D. Case–control association study of 14 variants of CREB1, CREBBP and CREM on diagnosis and treatment outcome in major depressive disorder and bipolar disorder. Psychiatry Res., 2012, 198(1), 39-46.
[http://dx.doi.org/10.1016/j.psychres.2011.08.022] [PMID: 22386572]
[68]
Sassone-Corsi, P. Coupling gene expression to cAMP signalling: Role of CREB and CREM. Int. J. Biochem. Cell Biol., 1998, 30(1), 27-38.
[http://dx.doi.org/10.1016/S1357-2725(97)00093-9] [PMID: 9597751]
[69]
Mantamadiotis, T.; Lemberger, T.; Bleckmann, S.C.; Kern, H.; Kretz, O.; Villalba, A.M.; Tronche, F.; Kellendonk, C.; Gau, D.; Kapfhammer, J.; Otto, C.; Schmid, W.; Schütz, G. Disruption of CREB function in brain leads to neurodegeneration. Nat. Genet., 2002, 31(1), 47-54.
[http://dx.doi.org/10.1038/ng882] [PMID: 11967539]
[70]
Zhang, J.M.; Tonelli, L.; Regenold, W.T.; McCarthy, M.M. Effects of neonatal flutamide treatment on hippocampal neurogenesis and synaptogenesis correlate with depression-like behaviors in preadolescent male rats. Neuroscience, 2010, 169(1), 544-554.
[http://dx.doi.org/10.1016/j.neuroscience.2010.03.029] [PMID: 20399256]
[71]
Geng, Y.G.; Su, Q.R.; Su, L.Y.; Chen, Q.; Ren, G.Y.; Shen, S.Q.; Yu, A.Y.; Xia, G.Y. Comparison of the polymorphisms of androgen receptor gene and estrogen alpha and beta gene between adolescent females with first-onset major depressive disorder and controls. Int. J. Neurosci., 2007, 117(4), 539-547.
[http://dx.doi.org/10.1080/00207450600773640] [PMID: 17365134]
[72]
Hung, Y.Y.; Huang, Y.L.; Chang, C.; Kang, H.Y. Deficiency in androgen receptor aggravates the depressive-like behaviors in chronic mild stress model of depression. Cells, 2019, 8(9), 1021.
[http://dx.doi.org/10.3390/cells8091021] [PMID: 31480771]
[73]
Su, Q.R.; Su, L.Y.; Su, H.R.; Chen, Q.; Ren, G.Y.; Yin, Y.; Shen, S.Q.; Yu, A.Y.; Xia, G.Y. Polymorphisms of androgen receptor gene in childhood and adolescent males with first-onset major depressive disorder and association with related symptomatology. Int. J. Neurosci., 2007, 117(7), 903-917.
[http://dx.doi.org/10.1080/00207450600910689] [PMID: 17613104]
[74]
Erli, F.; Palmos, A.B.; Raval, P.; Mukherjee, J.; Sellers, K.J.; Gatford, N.J.F.; Moss, S.J.; Brandon, N.J.; Penzes, P.; Srivastava, D.P. Estradiol reverses excitatory synapse loss in a cellular model of neuropsychiatric disorders. Transl. Psychiatry, 2020, 10(1), 16.
[http://dx.doi.org/10.1038/s41398-020-0682-4] [PMID: 32066698]
[75]
Holsen, L.M.; Spaeth, S.B.; Lee, J.H.; Ogden, L.A.; Klibanski, A.; Whitfield-Gabrieli, S.; Goldstein, J.M. Stress response circuitry hypoactivation related to hormonal dysfunction in women with major depression. J. Affect. Disord., 2011, 131(1-3), 379-387.
[http://dx.doi.org/10.1016/j.jad.2010.11.024] [PMID: 21183223]
[76]
Yu, Q.; Ji, Y.; Shan, D.H. Effect of Guipi decoction on behavior and estradiol level in depression model rats. J. Liaoning Coll. Trad. Chin. Med., 2006, 02, 119-120.
[77]
Zeppelin, T.; Ladefoged, L.K.; Sinning, S.; Schiøtt, B. Substrate and inhibitor binding to the serotonin transporter: Insights from computational, crystallographic, and functional studies. Neuropharmacology, 2019, 161, 107548.
[http://dx.doi.org/10.1016/j.neuropharm.2019.02.030] [PMID: 30807752]
[78]
Meyer, J.H.; Wilson, A.A.; Sagrati, S.; Hussey, D.; Carella, A.; Potter, W.Z.; Ginovart, N.; Spencer, E.P.; Cheok, A.; Houle, S. Serotonin transporter occupancy of five selective serotonin reuptake inhibitors at different doses: An [11C]DASB positron emission tomography study. Am. J. Psychiatry, 2004, 161(5), 826-835.
[http://dx.doi.org/10.1176/appi.ajp.161.5.826] [PMID: 15121647]
[79]
Meyer, J.H.; Wilson, A.A.; Ginovart, N.; Goulding, V.; Hussey, D.; Hood, K.; Houle, S. Occupancy of serotonin transporters by paroxetine and citalopram during treatment of depression: A [(11)C]DASB PET imaging study. Am. J. Psychiatry, 2001, 158(11), 1843-1849.
[http://dx.doi.org/10.1176/appi.ajp.158.11.1843] [PMID: 11691690]
[80]
Chen, X.; Lan, T.; Wang, Y.; He, Y.; Wu, Z.; Tian, Y.; Li, Y.; Bai, M.; Zhou, W.; Zhang, H.; Cheng, K.; Xie, P. Entorhinal cortex-based metabolic profiling of chronic restraint stress mice model of depression. Aging (Albany NY), 2020, 12(3), 3042-3052.
[http://dx.doi.org/10.18632/aging.102798] [PMID: 32074509]
[81]
Xu, L.F.; Chu, W.J.; Qing, X.Y.; Li, S.; Wang, X.S.; Qing, G.W.; Fei, J.; Guo, L.H. Protopine inhibits serotonin transporter and noradrenaline transporter and has the antidepressant-like effect in mice models. Neuropharmacology, 2006, 50(8), 934-940.
[http://dx.doi.org/10.1016/j.neuropharm.2006.01.003] [PMID: 16530230]
[82]
Naoi, M.; Maruyama, W.; Shamoto-Nagai, M. Type A monoamine oxidase and serotonin are coordinately involved in depressive disorders: From neurotransmitter imbalance to impaired neurogenesis. J. Neural Transm. (Vienna), 2018, 125(1), 53-66.
[http://dx.doi.org/10.1007/s00702-017-1709-8] [PMID: 28293733]
[83]
Hirschfeld, R.M. History and evolution of the monoamine hypothesis of depression. J. Clin. Psychiatry, 2000, 61(Suppl. 6), 4-6.
[PMID: 10775017]
[84]
Patkar, A.A.; Pae, C.U.; Masand, P.S. Transdermal selegiline: The new generation of monoamine oxidase inhibitors. CNS Spectr., 2006, 11(5), 363-375.
[http://dx.doi.org/10.1017/S1092852900014498] [PMID: 16641841]
[85]
Sacher, J.; Houle, S.; Parkes, J.; Rusjan, P.; Sagrati, S.; Wilson, A.A.; Meyer, J.H. Monoamine oxidase A inhibitor occupancy during treatment of major depressive episodes with moclobemide or St. John’s wort: An [ 11 C]-harmine PET study. J. Psychiatry Neurosci., 2011, 36(6), 375-382.
[http://dx.doi.org/10.1503/jpn.100117] [PMID: 21463543]
[86]
Andersen, A. Final report on the safety assessment of sodium p-chloro-m-cresol, p-chloro-m-cresol, chlorothymol, mixed cresols, m-cresol, o-cresol, p-cresol, isopropyl cresols, thymol, o-cymen-5-ol, and carvacrol. Int. J. Toxicol., 2006, 25(Suppl. 1), 29-127.
[http://dx.doi.org/10.1080/10915810600716653] [PMID: 16835130]
[87]
Mallet, J.; Gorwood, P.; Le Strat, Y.; Dubertret, C. Major Depressive Disorder (MDD) and Schizophrenia– addressing unmet needs with partial agonists at the D2 receptor: A review. Int. J. Neuropsychopharmacol., 2019, 22(10), 651-664.
[http://dx.doi.org/10.1093/ijnp/pyz043] [PMID: 31406978]
[88]
Beyer, J.L.; Weisler, R.H. Adjunctive brexpiprazole for the treatment of major depressive disorder. Expert Opin. Pharmacother., 2016, 17(17), 2331-2339.
[http://dx.doi.org/10.1080/14656566.2016.1254188] [PMID: 27788337]
[89]
Fatima, M.; Ahmad, M.H.; Srivastav, S.; Rizvi, M.A.; Mondal, A.C. A selective D2 dopamine receptor agonist alleviates depression through up-regulation of tyrosine hydroxylase and increased neurogenesis in hippocampus of the prenatally stressed rats. Neurochem. Int., 2020, 136, 104730.
[http://dx.doi.org/10.1016/j.neuint.2020.104730] [PMID: 32201282]
[90]
Millan, M.J.; Brocco, M.; Papp, M.; Serres, F.; La Rochelle, C.D.; Sharp, T.; Peglion, J.L.; Dekeyne, A. S32504, a novel naphtoxazine agonist at dopamine D3/D2 receptors: III. Actions in models of potential antidepressive and anxiolytic activity in comparison with ropinirole. J. Pharmacol. Exp. Ther., 2004, 309(3), 936-950.
[http://dx.doi.org/10.1124/jpet.103.062463] [PMID: 14978196]
[91]
Dixon Clarke, S.E.; Ramsay, R.R. Dietary inhibitors of monoamine oxidase A. J. Neural Transm. (Vienna), 2011, 118(7), 1031-1041.
[http://dx.doi.org/10.1007/s00702-010-0537-x] [PMID: 21190052]
[92]
Khan, K.; Najmi, A.K.; Akhtar, M. A natural phenolic compound quercetin showed the usefulness by targeting inflammatory, oxidative stress markers and augment 5-HT levels in one of the animal models of depression in mice. Drug Res. (Stuttg.), 2019, 69(7), 392-400.
[http://dx.doi.org/10.1055/a-0748-5518] [PMID: 30296804]
[93]
Cai, H.D.; Tao, W.W.; Su, S.L.; Guo, S.; Zhu, Y.; Guo, J.M.; Qian, D.W.; Cong, X.D.; Tang, R.M.; Duan, J.A. Antidepressant activity of flavonoid ethanol extract of Abelmoschus manihot corolla with BDNF up-regulation in the hippocampus. Yao Xue Xue Bao, 2017, 52(2), 222-228.
[PMID: 29979503]
[94]
Al-Fadhel, S.Z.; Al-Hakeim, H.K.; Al-Dujaili, A.H.; Maes, M. IL-10 is associated with increased mu-opioid receptor levels in major depressive disorder. Eur. Psychiatry, 2019, 57, 46-51.
[http://dx.doi.org/10.1016/j.eurpsy.2018.10.001] [PMID: 30677547]
[95]
Callaghan, C.K.; Rouine, J.; Dean, R.L.; Knapp, B.I.; Bidlack, J.M.; Deaver, D.R.; O’Mara, S.M. Antidepressant-like effects of 3-carboxamido seco-nalmefene (3CS-nalmefene), a novel opioid receptor modulator, in a rat IFN-α-induced depression model. Brain Behav. Immun., 2018, 67, 152-162.
[http://dx.doi.org/10.1016/j.bbi.2017.08.016] [PMID: 28844812]
[96]
Zheng, F.; Dong, X.; Meng, X. Anti-inflammatory effects of taraxasterol on LPS-stimulated human umbilical vein endothelial cells. Inflammation, 2018, 41(5), 1755-1761.
[http://dx.doi.org/10.1007/s10753-018-0818-3] [PMID: 29951871]
[97]
Xu, L.; Yu, Y.; Sang, R.; Li, J.; Ge, B.; Zhang, X. Protective effects of taraxasterol against ethanol-induced liver injury by regulating CYP2E1/Nrf2/HO-1 and NF- κ B signaling pathways in mice. Oxid. Med. Cell. Longev., 2018, 2018, 1-11.
[http://dx.doi.org/10.1155/2018/8284107] [PMID: 30344887]
[98]
Liu, B.; He, Z.; Wang, J.; Xin, Z.; Wang, J.; Li, F.; Fu, Y. Taraxasterol inhibits LPS-induced inflammatory response in BV2 microglia cells by activating LXRα. Front. Pharmacol., 2018, 9, 278.
[http://dx.doi.org/10.3389/fphar.2018.00278] [PMID: 29670526]
[99]
Lin, M.; Li, H.; Zhao, Y.; Cai, E.; Zhu, H.; Gao, Y.; Liu, S.; Yang, H.; Zhang, L.; Tang, G.; Wang, R. Ergosteryl 2-naphthoate, an ergosterol derivative, exhibits antidepressant effects mediated by the modification of gabaergic and glutamatergic systems. Molecules, 2017, 22(4), 565.
[http://dx.doi.org/10.3390/molecules22040565] [PMID: 28362353]
[100]
Zhao, D.; Zheng, L.; Qi, L.; Wang, S.; Guan, L.; Xia, Y.; Cai, J. Structural features and potent antidepressant effects of total sterols and β-sitosterol extracted from Sargassum horneri. Mar. Drugs, 2016, 14(7), 123.
[http://dx.doi.org/10.3390/md14070123] [PMID: 27367705]
[101]
Galdino, P.M.; Carvalho, A.A.V.; Florentino, I.F.; Martins, J.L.R.; Gazola, A.C.; de Paula, J.R.; de Paula, J.A.M.; Torres, L.M.B.; Costa, E.A.; de Lima, T.C.M. Involvement of monoaminergic systems in the antidepressant-like properties of Lafoensia pacari A. St. Hil. J. Ethnopharmacol., 2015, 170, 218-225.
[http://dx.doi.org/10.1016/j.jep.2015.05.015] [PMID: 25980424]
[102]
Andrade, J.M.M.; Maurmann, N.; Pranke, P.; Turatti, I.C.C.; Lopes, N.P.; Henriques, A.T. Identification of compounds from non-polar fractions of Blechnum spp and a multitarget approach involving enzymatic modulation and oxidative stress. J. Pharm. Pharmacol., 2016, 69(1), 89-98.
[http://dx.doi.org/10.1111/jphp.12653] [PMID: 27747875]
[103]
Martin, V.; Riffaud, A.; Marday, T.; Brouillard, C.; Franc, B.; Tassin, J.P.; Sevoz-Couche, C.; Mongeau, R.; Lanfumey, L. Response of Htr3a knockout mice to antidepressant treatment and chronic stress. Br. J. Pharmacol., 2017, 174(15), 2471-2483.
[http://dx.doi.org/10.1111/bph.13857] [PMID: 28493335]
[104]
Perez-Palomar, B.; Mollinedo-Gajate, I.; Berrocoso, E.; Meana, J.J.; Ortega, J.E. Serotonin 5-HT3 receptor antagonism potentiates the antidepressant activity of citalopram. Neuropharmacology, 2018, 133, 491-502.
[http://dx.doi.org/10.1016/j.neuropharm.2018.02.020] [PMID: 29477299]
[105]
Bétry, C.; Overstreet, D.; Haddjeri, N.; Pehrson, A.L.; Bundgaard, C.; Sanchez, C.; Mørk, A.A. 5-HT3 receptor antagonist potentiates the behavioral, neurochemical and electrophysiological actions of an SSRI antidepressant. Pharmacol. Biochem. Behav., 2015, 131, 136-142.
[http://dx.doi.org/10.1016/j.pbb.2015.02.011] [PMID: 25697477]
[106]
Martin, P.; Gozlan, H.; Puech, A.J. 5-HT3 receptor antagonists reverse helpless behaviour in rats. Eur. J. Pharmacol., 1992, 212(1), 73-78.
[http://dx.doi.org/10.1016/0014-2999(92)90074-E] [PMID: 1532555]
[107]
Kratz, F.; Elsadek, B. Clinical impact of serum proteins on drug delivery. J. Control. Release, 2012, 161(2), 429-445.
[http://dx.doi.org/10.1016/j.jconrel.2011.11.028] [PMID: 22155554]
[108]
Oliveira, C.M.C.; Costa, S.P.; Costa, L.C.; Pinheiro, S.M.; Lacerda, G.A.; Kubrusly, M. Depression in dialysis patients and its association with nutritional markers and quality of life. J. Nephrol., 2012, 25(6), 954-961.
[http://dx.doi.org/10.5301/jn.5000075] [PMID: 22241638]
[109]
Maes, M.; Wauters, A.; Neels, H.; Scharpé, S.; Van Gastel, A.; D’Hondt, P.; Peeters, D.; Cosyns, P.; Desnyder, R. Total serum protein and serum protein fractions in depression: Relationships to depressive symptoms and glucocorticoid activity. J. Affect. Disord., 1995, 34(1), 61-69.
[http://dx.doi.org/10.1016/0165-0327(94)00106-J] [PMID: 7542674]
[110]
Ciafrè, S.; Ferraguti, G.; Tirassa, P.; Iannitelli, A.; Ralli, M.; Greco, A.; Chaldakov, G.N.; Rosso, P.; Fico, E.; Messina, M.P.; Carito, V.; Tarani, L.; Ceccanti, M.; Fiore, M. Nerve growth factor in the psychiatric brain. Riv. Psichiatr., 2020, 55(1), 4-15.
[http://dx.doi.org/10.1708/3301.32713] [PMID: 32051620]
[111]
Wang, T.; Bai, S.; Wang, W.; Chen, Z.; Chen, J.; Liang, Z.; Qi, X.; Shen, H.; Xie, P. Diterpene ginkgolides exert an antidepressant effect through the NT3-TrkA and Ras-MAPK pathways. Drug Des. Devel. Ther., 2020, 14, 1279-1294.
[http://dx.doi.org/10.2147/DDDT.S229145] [PMID: 32308365]
[112]
Triaca, V.; Fico, E.; Sposato, V.; Caioli, S.; Ciotti, M.T.; Zona, C.; Mercanti, D.; La Mendola, D.; Satriano, C.; Rizzarelli, E.; Tirassa, P.; Calissano, P. hNGF peptides elicit the NGF-TrkA signalling pathway in cholinergic neurons and retain full neurotrophic activity in the DRG assay. Biomolecules, 2020, 10(2), 216.
[http://dx.doi.org/10.3390/biom10020216] [PMID: 32024191]
[113]
Sakamoto, Y.; Ogawa, T.; Ogawa, M.; Matsuo, Y.; Hashikawa, N.; Hashikawa, N. Effects of 15-day chronic stress on behavior and neurological changes in the hippocampus of ICR mice. Yakugaku Zasshi, 2015, 135(1), 151-158.
[http://dx.doi.org/10.1248/yakushi.14-00180] [PMID: 25743912]
[114]
Banerjee, R.; Ghosh, A.K.; Ghosh, B.; Bhattacharyya, S.; Mondal, A.C. Decreased mRNA and protein expression of BDNF, NGF, and their receptors in the hippocampus from suicide: An analysis in human postmortem brain. Clin. Med. Insights Pathol., 2013, 6CPath.S12530.,
[http://dx.doi.org/10.4137/CPath.S12530] [PMID: 24031163]
[115]
Johnson, K.R.; Nicodemus-Johnson, J.; Danziger, R.S. An evolutionary analysis of cAMP-specific phosphodiesterase 4 alternative splicing. BMC Evol. Biol., 2010, 10(1), 247.
[http://dx.doi.org/10.1186/1471-2148-10-247] [PMID: 20701803]
[116]
Pe’rez-Torres, S.; Miro´, X.; Palacios, J.M. Phosphodiesterase type 4 isozymes expression in human brain examined by in situ hybridization histochemistry and 3 binding autoradiography comparison with monkey and rat brain. J. Chem. Neuroanat., 2000, 349-374.
[http://dx.doi.org/10.1016/S0891-0618(00)00097-1]
[117]
Jiang, B.; Wang, H.; Wang, J.L.; Wang, Y.J.; Zhu, Q.; Wang, C.N.; Song, L.; Gao, T.T.; Wang, Y.; Meng, G.L.; Wu, F.; Ling, Y.; Zhang, W.; Li, J.X. Hippocampal salt-inducible kinase 2 plays a role in depression via the CREB-regulated transcription coactivator 1–cAMP response element binding–brain-derived neurotrophic factor pathway. Biol. Psychiatry, 2019, 85(8), 650-666.
[http://dx.doi.org/10.1016/j.biopsych.2018.10.004] [PMID: 30503507]
[118]
Huang, Y.; Xu, D.; Xiang, H.; Yan, S.; Sun, F.; Wei, Z. Rapid antidepressant actions of imipramine potentiated by zinc through PKA-dependented regulation of mTOR and CREB signaling. Biochem. Biophys. Res. Commun., 2019, 518(2), 337-343.
[http://dx.doi.org/10.1016/j.bbrc.2019.08.059] [PMID: 31420165]
[119]
Chen, A.C.H.; Shirayama, Y.; Shin, K.H.; Neve, R.L.; Duman, R.S. Expression of the cAMP response element binding protein (CREB) in hippocampus produces an antidepressant effect. Biol. Psychiatry, 2001, 49(9), 753-762.
[http://dx.doi.org/10.1016/S0006-3223(00)01114-8] [PMID: 11331083]
[120]
Zhong, Q.; Yu, H.; Huang, C.; Zhong, J.; Wang, H.; Xu, J.; Cheng, Y. FCPR16, a novel phosphodiesterase 4 inhibitor, produces an antidepressant-like effect in mice exposed to chronic unpredictable mild stress. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2019, 90, 62-75.
[http://dx.doi.org/10.1016/j.pnpbp.2018.10.017] [PMID: 30391306]
[121]
Zhou, Z.Z.; Cheng, Y.F.; Zou, Z.Q.; Ge, B.C.; Yu, H.; Huang, C.; Wang, H.T.; Yang, X.M.; Xu, J.P. Discovery of N -alkyl catecholamides as selective phosphodiesterase-4 inhibitors with anti-neuroinflammation potential exhibiting antidepressant-like effects at non-emetic doses. ACS Chem. Neurosci., 2017, 8(1), 135-146.
[http://dx.doi.org/10.1021/acschemneuro.6b00271] [PMID: 27690383]
[122]
Guo, J.; Lin, P.; Zhao, X.; Zhang, J.; Wei, X.; Wang, Q.; Wang, C. Etazolate abrogates the lipopolysaccharide (LPS)-induced downregulation of the cAMP/pCREB/BDNF signaling, neuroinflammatory response and depressive-like behavior in mice. Neuroscience, 2014, 263, 1-14.
[http://dx.doi.org/10.1016/j.neuroscience.2014.01.008] [PMID: 24434771]
[123]
Jindal, A.; Mahesh, R.; Bhatt, S. Etazolate, a phosphodiesterase 4 inhibitor reverses chronic unpredictable mild stress-induced depression-like behavior and brain oxidative damage. Pharmacol. Biochem. Behav., 2013, 105, 63-70.
[http://dx.doi.org/10.1016/j.pbb.2013.01.020] [PMID: 23384434]
[124]
Jindal, A.; Mahesh, R.; Gautam, B.; Bhatt, S.; Pandey, D. Antidepressant-like effect of etazolate, a cyclic nucleotide phosphodiesterase 4 inhibitor—an approach using rodent behavioral antidepressant tests battery. Eur. J. Pharmacol., 2012, 689(1-3), 125-131.
[http://dx.doi.org/10.1016/j.ejphar.2012.05.051] [PMID: 22698578]
[125]
Gong, M.F.; Wen, R.T.; Xu, Y.; Pan, J.C.; Fei, N.; Zhou, Y.M.; Xu, J.P.; Liang, J.H.; Zhang, H.T. Attenuation of ethanol abstinence-induced anxiety- and depressive-like behavior by the phosphodiesterase-4 inhibitor rolipram in rodents. Psychopharmacology (Berl.), 2017, 234(20), 3143-3151.
[http://dx.doi.org/10.1007/s00213-017-4697-3] [PMID: 28748375]
[126]
Zhang, M.Z.; Zhou, Z.Z.; Yuan, X.; Cheng, Y.F.; Bi, B.T.; Gong, M.F.; Chen, Y.P.; Xu, J.P. Chlorbipram: A novel PDE4 inhibitor with improved safety as a potential antidepressant and cognitive enhancer. Eur. J. Pharmacol., 2013, 721(1-3), 56-63.
[http://dx.doi.org/10.1016/j.ejphar.2013.09.055] [PMID: 24113523]
[127]
Hansen, R.T., III; Conti, M.; Zhang, H.T. Mice deficient in phosphodiesterase-4A display anxiogenic-like behavior. Psychopharmacology (Berl.), 2014, 231(15), 2941-2954.
[http://dx.doi.org/10.1007/s00213-014-3480-y] [PMID: 24563185]
[128]
D’Sa, C.; Eisch, A.J.; Bolger, G.B.; Duman, R.S. Differential expression and regulation of the cAMP-selective phosphodiesterase type 4A splice variants in rat brain by chronic antidepressant administration. Eur. J. Neurosci., 2005, 22(6), 1463-1475.
[http://dx.doi.org/10.1111/j.1460-9568.2005.04321.x] [PMID: 16190900]
[129]
Vagena, E.; Ryu, J.K.; Baeza-Raja, B.; Walsh, N.M.; Syme, C.; Day, J.P.; Houslay, M.D.; Baillie, G.S. A high-fat diet promotes depression-like behavior in mice by suppressing hypothalamic PKA signaling. Transl. Psychiatry, 2019, 9(1), 141.
[http://dx.doi.org/10.1038/s41398-019-0470-1] [PMID: 31076569]
[130]
Marzouk, M.S.; Soliman, F.M.; Shehata, I.A.; Rabee, M.; Fawzy, G.A. Flavonoids and biological activities of Jussiaea repens. Nat. Prod. Res., 2007, 21(5), 436-443.
[http://dx.doi.org/10.1080/14786410600943288] [PMID: 17487615]
[131]
Campbell, S.L.; van Groen, T.; Kadish, I.; Smoot, L.H.M.; Bolger, G.B. Altered phosphorylation, electrophysiology, and behavior on attenuation of PDE4B action in hippocampus. BMC Neurosci., 2017, 18(1), 77.
[http://dx.doi.org/10.1186/s12868-017-0396-6] [PMID: 29197324]
[132]
Rutten, K.; Wallace, T.L.; Works, M.; Prickaerts, J.; Blokland, A.; Novak, T.J.; Santarelli, L.; Misner, D.L. Enhanced long-term depression and impaired reversal learning in phosphodiesterase 4B-knockout (PDE4B−/−) mice. Neuropharmacology, 2011, 61(1-2), 138-147.
[http://dx.doi.org/10.1016/j.neuropharm.2011.03.020] [PMID: 21458469]
[133]
Numata, S.; Iga, J.; Nakataki, M.; Tayoshi, S.Y.; Taniguchi, K.; Sumitani, S.; Tomotake, M.; Tanahashi, T.; Itakura, M.; Kamegaya, Y.; Tatsumi, M.; Sano, A.; Asada, T.; Kunugi, H.; Ueno, S.; Ohmori, T. Gene expression and association analyses of the phosphodiesterase 4B (PDE4B) gene in major depressive disorder in the Japanese population. Am. J. Med. Genet. B. Neuropsychiatr. Genet., 2009, 150B(4), 527-534.
[http://dx.doi.org/10.1002/ajmg.b.30852] [PMID: 18785206]
[134]
Zhang, X.; Li, X.; Li, M.; Ren, J.; Yun, K.; An, Y.; Lin, L.; Zhang, H. Venlafaxine increases cell proliferation and regulates DISC1, PDE4B and NMDA receptor 2B expression in the hippocampus in chronic mild stress mice. Eur. J. Pharmacol., 2015, 755, 58-65.
[http://dx.doi.org/10.1016/j.ejphar.2015.02.044] [PMID: 25769842]
[135]
Von Angerer, E.; Prekajac, J. Benzo[a]carbazole derivatives. Synthesis, estrogen receptor binding affinities, and mammary tumor inhibiting activity. J. Med. Chem., 1986, 29(3), 380-386.
[http://dx.doi.org/10.1021/jm00153a013] [PMID: 3950918]
[136]
Xin, Q.; Muer, A. Girinimbine inhibits the proliferation of human ovarian cancer cells in vitrovia the phosphatidylinositol-3-kinase (PI3K)/Akt and the Mammalian Target of Rapamycin (mTOR) and Wnt/β-catenin signaling pathways. Med. Sci. Monit., 2018, 24, 5480-5487.
[http://dx.doi.org/10.12659/MSM.910137] [PMID: 30084434]
[137]
Iman, V.; Mohan, S.; Abdelwahab, S.; Karimian, H.; Nordin, N.; Fadaeinasab, M.; Noordin, M.I.; Mohd Noor, S. Anticancer and anti-inflammatory activities of girinimbine isolated from Murraya koenigii. Drug Des. Devel. Ther., 2016, 11, 103-121.
[http://dx.doi.org/10.2147/DDDT.S115135] [PMID: 28096658]
[138]
Thelingwani, R.S.; Dhansay, K.; Smith, P.; Chibale, K.; Masimirembwa, C.M. Potent inhibition of CYP1A2 by Frutinone A, an active ingredient of the broad spectrum antimicrobial herbal extract from P. fruticosa. Xenobiotica, 2012, 42(10), 989-1000.
[http://dx.doi.org/10.3109/00498254.2012.681077] [PMID: 22533317]
[139]
Wang, Z.Z.; Yang, W.X.; Zhang, Y.; Zhao, N.; Zhang, Y.Z.; Liu, Y.Q.; Xu, Y.; Wilson, S.P.; O’Donnell, J.M.; Zhang, H.T.; Li, Y.F. Phosphodiesterase-4D knock-down in the prefrontal cortex alleviates chronic unpredictable stress-induced depressive-like behaviors and memory deficits in mice. Sci. Rep., 2015, 5(1), 11332.
[http://dx.doi.org/10.1038/srep11332] [PMID: 26161529]
[140]
Zhu, X.; Li, W.; Li, Y.; Xu, W.; Yuan, Y.; Zheng, V.; Zhang, H.; O’Donnell, J.M.; Xu, Y.; Yin, X. The antidepressant- and anxiolytic-like effects of resveratrol: Involvement of phosphodiesterase-4D inhibition. Neuropharmacology, 2019, 153, 20-31.
[http://dx.doi.org/10.1016/j.neuropharm.2019.04.022] [PMID: 31026437]
[141]
Li, X.J.; Kim, K.W.; Oh, H.; Liu, X.Q.; Kim, Y.C. Chemical constituents and an antineuroinflammatory lignan, savinin from the roots of Acanthopanax henryi. Evid. Based Complement. Alternat. Med., 2019, 2019, 1-10.
[http://dx.doi.org/10.1155/2019/1856294] [PMID: 30915141]
[142]
Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem., 2009, 30(16), 2785-2791.
[http://dx.doi.org/10.1002/jcc.21256] [PMID: 19399780]
[143]
Ferreira, R.S.; Simeonov, A.; Jadhav, A.; Eidam, O.; Mott, B.T.; Keiser, M.J.; McKerrow, J.H.; Maloney, D.J.; Irwin, J.J.; Shoichet, B.K. Complementarity between a docking and a high-throughput screen in discovering new cruzain inhibitors. J. Med. Chem., 2010, 53(13), 4891-4905.
[http://dx.doi.org/10.1021/jm100488w] [PMID: 20540517]
[144]
Makeneni, S.; Thieker, D.F.; Woods, R.J. Applying pose clustering and MD simulations to eliminate false positives in molecular docking. J. Chem. Inf. Model., 2018, 58(3), 605-614.
[http://dx.doi.org/10.1021/acs.jcim.7b00588] [PMID: 29431438]
[145]
Schulz-Gasch, T.; Stahl, M. Scoring functions for protein–ligand interactions: A critical perspective. Drug Discov. Today. Technol., 2004, 1(3), 231-239.
[http://dx.doi.org/10.1016/j.ddtec.2004.08.004] [PMID: 24981490]
[146]
Shoichet, B.K. Virtual screening of chemical libraries. Nature, 2004, 432(7019), 862-865.
[http://dx.doi.org/10.1038/nature03197] [PMID: 15602552]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy