Review Article

恩格列净对2型糖尿病患者的肾脏作用

卷 30, 期 25, 2023

发表于: 04 November, 2022

页: [2850 - 2863] 页: 14

弟呕挨: 10.2174/0929867329666220831151645

价格: $65

摘要

2型糖尿病(T2DM)是全球死亡和发病的主要原因之一。它会导致各种长期并发症,例如糖尿病肾病。糖尿病肾病是接受血液透析的慢性肾脏疾病患者肾衰竭的主要原因。因此,预防糖尿病肾病的发展和进展是2型糖尿病患者管理的主要目标之一。恩格列净的钠-葡萄糖共转运蛋白2抑制剂是一种有效的抗高血糖剂。此外,它已被证明具有一些药理学潜力,可为T2DM患者提供肾保护作用。在目前的研究中,我们从机制和分子的角度回顾了关于这种药物的潜在肾保护作用的现有临床数据。

关键词: 2型糖尿病,恩格列净,钠-葡萄糖共转运蛋白2抑制剂,慢性肾脏病,糖尿病肾病,肾保护作用。

[1]
Mayer-Davis, E.J.; Lawrence, J.M.; Dabelea, D.; Divers, J.; Isom, S.; Dolan, L.; Imperatore, G.; Linder, B.; Marcovina, S.; Pettitt, D.J.; Pihoker, C.; Saydah, S.; Wagenknecht, L. Incidence trends of type 1 and type 2 diabetes among youths, 2002-2012. N. Engl. J. Med., 2017, 376(15), 1419-1429.
[http://dx.doi.org/10.1056/NEJMoa1610187] [PMID: 28402773]
[2]
Anders, H.J.; Huber, T.B.; Isermann, B.; Schiffer, M. CKD in diabetes: Diabetic kidney disease versus nondiabetic kidney disease. Nat. Rev. Nephrol., 2018, 14(6), 361-377.
[http://dx.doi.org/10.1038/s41581-018-0001-y] [PMID: 29654297]
[3]
Ilyas, Z.; Chaiban, J.T.; Krikorian, A. Novel insights into the pathophysiology and clinical aspects of diabetic nephropathy. Rev. Endocr. Metab. Disord., 2017, 18(1), 21-28.
[http://dx.doi.org/10.1007/s11154-017-9422-3] [PMID: 28289965]
[4]
Rossing, P.; Persson, F.; Frimodt-Møller, M. Prognosis and treatment of diabetic nephropathy: Recent advances and perspectives. Nephrol. Ther., 2018, 14(1), S31-S37.
[http://dx.doi.org/10.1016/j.nephro.2018.02.007] [PMID: 29606261]
[5]
Rosenstock, J.; Marquard, J.; Laffel, L.M.; Neubacher, D.; Kaspers, S.; Cherney, D.Z.; Zinman, B.; Skyler, J.S.; George, J.; Soleymanlou, N.; Perkins, B.A. Empagliflozin as adjunctive to insulin therapy in type 1 diabetes: the EASE trials. Diabetes Care, 2018, 41(12), 2560-2569.
[http://dx.doi.org/10.2337/dc18-1749] [PMID: 30287422]
[6]
Wanner, C.; Lachin, J.M.; Inzucchi, S.E.; Fitchett, D.; Mattheus, M.; George, J.; Woerle, H.J.; Broedl, U.C.; Von Eynatten, M.; Zinman, B. Empagliflozin and clinical outcomes in patients with type 2 diabetes mellitus, established cardiovascular disease, and chronic kidney disease. Circulation, 2018, 137(2), 119-129.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.117.028268] [PMID: 28904068]
[7]
Kadowaki, T.; Nangaku, M.; Hantel, S.; Okamura, T.; Von Eynatten, M.; Wanner, C.; Koitka-Weber, A. Empagliflozin and kidney outcomes in Asian patients with type 2 diabetes and established cardiovascular disease: Results from the EMPA-REG OUTCOME® trial. J. Diabetes Investig., 2019, 10(3), 760-770.
[http://dx.doi.org/10.1111/jdi.12971] [PMID: 30412655]
[8]
Association, A.D. 2. Classification and diagnosis of diabetes. Diabetes Care, 2017, 40(1), S11-S24.
[http://dx.doi.org/10.2337/dc17-S005] [PMID: 27979889]
[9]
de Faria Maraschin, J. Classification of diabetes. In: Diabetes; Springer: Berlin, Germany, 2013; pp. 12-19.
[10]
O’Neal, K.S.; Johnson, J.L.; Panak, R.L. Recognizing and appropriately treating latent autoimmune diabetes in adults. Diabetes Spectr., 2016, 29(4), 249-252.
[http://dx.doi.org/10.2337/ds15-0047] [PMID: 27899877]
[11]
Association, A.D. Diagnosis and classification of diabetes mellitus. Diabetes Care, 2014, 37(1), S81-S90.
[http://dx.doi.org/10.2337/dc14-S081] [PMID: 24357215]
[12]
Devuyst, O.; Olinger, E.; Rampoldi, L. Uromodulin: From physiology to rare and complex kidney disorders. Nat. Rev. Nephrol., 2017, 13(9), 525-544.
[http://dx.doi.org/10.1038/nrneph.2017.101] [PMID: 28781372]
[13]
Yaribeygi, H.; Katsiki, N.; Butler, A.E.; Sahebkar, A. Effects of antidiabetic drugs on NLRP3 inflammasome activity, with a focus on diabetic kidneys. Drug Discov. Today, 2019, 24(1), 256-262.
[PMID: 30086405]
[14]
Arora, M.K.; Singh, U.K. Molecular mechanisms in the pathogenesis of diabetic nephropathy: An update. Vascul. Pharmacol., 2013, 58(4), 259-271.
[http://dx.doi.org/10.1016/j.vph.2013.01.001] [PMID: 23313806]
[15]
Chang, A.S.; Hathaway, C.K.; Smithies, O.; Kakoki, M. Transforming growth factor-β1 and diabetic nephropathy. Am. J. Physiol. Renal Physiol., 2016, 310(8), F689-F696.
[http://dx.doi.org/10.1152/ajprenal.00502.2015] [PMID: 26719364]
[16]
Ahmed, S.; Mundhe, N.; Borgohain, M.; Chowdhury, L.; Kwatra, M.; Bolshette, N.; Ahmed, A.; Lahkar, M. Diosmin modulates the NF-kB signal transduction pathways and downregulation of various oxidative stress markers in alloxan-induced diabetic nephropathy. Inflammation, 2016, 39(5), 1783-1797.
[http://dx.doi.org/10.1007/s10753-016-0413-4] [PMID: 27492452]
[17]
Reidy, K.; Kang, H.M.; Hostetter, T.; Susztak, K. Molecular mechanisms of diabetic kidney disease. J. Clin. Invest., 2014, 124(6), 2333-2340.
[http://dx.doi.org/10.1172/JCI72271] [PMID: 24892707]
[18]
Yaribeygi, H.; Mohammadi, M.T.; Rezaee, R.; Sahebkar, A. Crocin improves renal function by declining Nox-4, IL-18, and p53 expression levels in an experimental model of diabetic nephropathy. J. Cell. Biochem., 2018, 119(7), 6080-6093.
[http://dx.doi.org/10.1002/jcb.26806] [PMID: 29575259]
[19]
Mora-Gutiérrez, J.M.; Garcia-Fernandez, N.; Slon Roblero, M.F.; Páramo, J.A.; Escalada, F.J.; Wang, D.J.; Benito, A.; Fernández-Seara, M.A. Arterial spin labeling MRI is able to detect early hemodynamic changes in diabetic nephropathy. J. Magn. Reson. Imaging, 2017, 46(6), 1810-1817.
[http://dx.doi.org/10.1002/jmri.25717] [PMID: 28383796]
[20]
Yaribeygi, H.; Farrokhi, F.R.; Rezaee, R.; Sahebkar, A. Oxidative stress induces renal failure: A review of possible molecular pathways. J. Cell. Biochem., 2018, 119(4), 2990-2998.
[http://dx.doi.org/10.1002/jcb.26450] [PMID: 29111576]
[21]
Bhattacharjee, N.; Barma, S.; Konwar, N.; Dewanjee, S.; Manna, P. Mechanistic insight of diabetic nephropathy and its pharmacotherapeutic targets: An update. Eur. J. Pharmacol., 2016, 791, 8-24.
[http://dx.doi.org/10.1016/j.ejphar.2016.08.022] [PMID: 27568833]
[22]
CE, M.L.; San, M.O.C.A.; JJ, R.P.; CJ, F.Z. Pathophysiology of diabetic nephropathy: A literature review. Medwave, 2017, 17(1), e6839.
[23]
Hall, J.E.; Hall, M.E. Guyton and Hall textbook of medical physiology; Elsevier: Amsterdam, 2020.
[24]
Yaribeygi, H.; Atkin, S.L.; Butler, A.E.; Sahebkar, A. Sodium-glucose cotransporter inhibitors and oxidative stress: An update. J. Cell. Physiol., 2019, 234(4), 3231-3237.
[http://dx.doi.org/10.1002/jcp.26760] [PMID: 30443936]
[25]
Yaribeygi, H.; Butler, A.E.; Atkin, S.L.; Katsiki, N.; Sahebkar, A. Sodium-glucose cotransporter 2 inhibitors and inflammation in chronic kidney disease: Possible molecular pathways. J. Cell. Physiol., 2018, 234(1), 223-230.
[http://dx.doi.org/10.1002/jcp.26851] [PMID: 30076706]
[26]
Vallon, V.; Verma, S. Effects of SGLT2 inhibitors on kidney and cardiovascular function. Annu. Rev. Physiol., 2021, 83(1), 503-528.
[http://dx.doi.org/10.1146/annurev-physiol-031620-095920] [PMID: 33197224]
[27]
Davidson, J.A.; Kuritzky, L. Sodium glucose co-transporter 2 inhibitors and their mechanism for improving glycemia in patients with type 2 diabetes. Postgrad. Med., 2014, 126(6), 33-48.
[http://dx.doi.org/10.3810/pgm.2014.10.2819] [PMID: 25414933]
[28]
Yaribeygi, H.; Sathyapalan, T.; Maleki, M.; Jamialahmadi, T.; Sahebkar, A. Molecular mechanisms by which SGLT2 inhibitors can induce insulin sensitivity in diabetic milieu: A mechanistic review. Life Sci., 2020, 240, 117090.
[http://dx.doi.org/10.1016/j.lfs.2019.117090] [PMID: 31765648]
[29]
Chao, E.C. SGLT-2 inhibitors: A new mechanism for glycemic control. Clin. Diabetes, 2014, 32(1), 4-11.
[http://dx.doi.org/10.2337/diaclin.32.1.4] [PMID: 26246672]
[30]
Kern, M.; Klöting, N.; Mark, M.; Mayoux, E.; Klein, T.; Blüher, M. The SGLT2 inhibitor empagliflozin improves insulin sensitivity in db/db mice both as monotherapy and in combination with linagliptin. Metabolism, 2016, 65(2), 114-123.
[http://dx.doi.org/10.1016/j.metabol.2015.10.010] [PMID: 26773934]
[31]
Han, S.; Hagan, D.L.; Taylor, J.R.; Xin, L.; Meng, W.; Biller, S.A.; Wetterau, J.R.; Washburn, W.N.; Whaley, J.M. Dapagliflozin, a selective SGLT2 inhibitor, improves glucose homeostasis in normal and diabetic rats. Diabetes, 2008, 57(6), 1723-1729.
[http://dx.doi.org/10.2337/db07-1472] [PMID: 18356408]
[32]
Wilding, J.P.; Woo, V.; Rohwedder, K.; Sugg, J.; Parikh, S. Dapagliflozin in patients with type 2 diabetes receiving high doses of insulin: Efficacy and safety over 2 years. Diabetes Obes. Metab., 2014, 16(2), 124-136.
[http://dx.doi.org/10.1111/dom.12187] [PMID: 23911013]
[33]
Ferrannini, E.; Muscelli, E.; Frascerra, S.; Baldi, S.; Mari, A.; Heise, T.; Broedl, U.C.; Woerle, H.J. Metabolic response to sodium-glucose cotransporter 2 inhibition in type 2 diabetic patients. J. Clin. Invest., 2014, 124(2), 499-508.
[http://dx.doi.org/10.1172/JCI72227] [PMID: 24463454]
[34]
Akbari, A.; Rafiee, M.; Sathyapalan, T.; Sahebkar, A. Impacts of sodium/glucose cotransporter-2 inhibitors on circulating uric acid concentrations: A systematic review and meta-analysis. J. Diabetes Res., 2022, 2022
[35]
Ranjbar, G.; Mikhailidis, D.P.; Sahebkar, A. Effects of newer antidiabetic drugs on nonalcoholic fatty liver and steatohepatitis: Think out of the box! Metabolism, 2019, 101, 154001.
[http://dx.doi.org/10.1016/j.metabol.2019.154001] [PMID: 31672448]
[36]
Yaribeygi, H.; Ashrafizadeh, M.; Henney, N.C.; Sathyapalan, T.; Jamialahmadi, T.; Sahebkar, A. Neuromodulatory effects of anti-diabetes medications: A mechanistic review. Pharmacol. Res., 2020, 152, 104611.
[http://dx.doi.org/10.1016/j.phrs.2019.104611] [PMID: 31863868]
[37]
Yaribeygi, H.; Atkin, S.L.; Jamialahmadi, T.; Sahebkar, A. A review on the effects of new anti-diabetic drugs on platelet function. Endocr. Metab. Immune Disord. Drug Targets, 2020, 20(3), 328-334.
[http://dx.doi.org/10.2174/1871530319666191014110414] [PMID: 31612835]
[38]
Monica Reddy, R.P.; Inzucchi, S.E. SGLT2 inhibitors in the management of type 2 diabetes. Endocrine, 2016, 53(2), 364-372.
[http://dx.doi.org/10.1007/s12020-016-0943-4] [PMID: 27270407]
[39]
Simes, B.C.; MacGregor, G.G. Sodium-Glucose Cotransporter-2 (SGLT2) inhibitors: A clinician’s guide. Diabetes Metab. Syndr. Obes., 2019, 12, 2125-2136.
[http://dx.doi.org/10.2147/DMSO.S212003] [PMID: 31686884]
[40]
Zinman, B.; Wanner, C.; Lachin, J.M.; Fitchett, D.; Bluhmki, E.; Hantel, S.; Mattheus, M.; Devins, T.; Johansen, O.E.; Woerle, H.J.; Broedl, U.C.; Inzucchi, S.E. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N. Engl. J. Med., 2015, 373(22), 2117-2128.
[http://dx.doi.org/10.1056/NEJMoa1504720] [PMID: 26378978]
[41]
Grempler, R.; Thomas, L.; Eckhardt, M.; Himmelsbach, F.; Sauer, A.; Sharp, D.E.; Bakker, R.A.; Mark, M.; Klein, T.; Eickelmann, P. Empagliflozin, a novel selective Sodium Glucose Cotransporter-2 (SGLT-2) inhibitor: Characterisation and comparison with other SGLT-2 inhibitors. Diabetes Obes. Metab., 2012, 14(1), 83-90.
[http://dx.doi.org/10.1111/j.1463-1326.2011.01517.x] [PMID: 21985634]
[42]
Ndefo, U.A.; Anidiobi, N.O.; Basheer, E.; Eaton, A.T. Empagliflozin (Jardiance): A novel SGLT2 inhibitor for the treatment of type-2 diabetes. PT, 2015, 40(6), 364-368.
[PMID: 26045645]
[43]
Inzucchi, S.E.; Fitchett, D.; Jurišić-Eržen, D.; Woo, V.; Hantel, S.; Janista, C.; Kaspers, S.; George, J.T.; Zinman, B. Are the cardiovascular and kidney benefits of empagliflozin influenced by baseline glucose-lowering therapy? Diabetes Obes. Metab., 2020, 22(4), 631-639.
[http://dx.doi.org/10.1111/dom.13938] [PMID: 31789445]
[44]
Packer, M.; Anker, S.D.; Butler, J.; Filippatos, G.; Pocock, S.J.; Carson, P.; Januzzi, J.; Verma, S.; Tsutsui, H.; Brueckmann, M.; Jamal, W.; Kimura, K.; Schnee, J.; Zeller, C.; Cotton, D.; Bocchi, E.; Böhm, M.; Choi, D.J.; Chopra, V.; Chuquiure, E.; Giannetti, N.; Janssens, S.; Zhang, J.; Gonzalez Juanatey, J.R.; Kaul, S.; Brunner-La Rocca, H.P.; Merkely, B.; Nicholls, S.J.; Perrone, S.; Pina, I.; Ponikowski, P.; Sattar, N.; Senni, M.; Seronde, M.F.; Spinar, J.; Squire, I.; Taddei, S.; Wanner, C.; Zannad, F. Cardiovascular and renal outcomes with empagliflozin in heart failure. N. Engl. J. Med., 2020, 383(15), 1413-1424.
[http://dx.doi.org/10.1056/NEJMoa2022190] [PMID: 32865377]
[45]
Gheith, O.; Farouk, N.; Nampoory, N.; Halim, M.A.; Al-Otaibi, T. Diabetic kidney disease: World wide difference of prevalence and risk factors. J. Nephropharmacol., 2015, 5(1), 49-56.
[PMID: 28197499]
[46]
Haas, M.E.; Aragam, K.G.; Emdin, C.A.; Bick, A.G.; Hemani, G.; Davey Smith, G.; Kathiresan, S. Genetic association of albuminuria with cardiometabolic disease and blood pressure. Am. J. Hum. Genet., 2018, 103(4), 461-473.
[http://dx.doi.org/10.1016/j.ajhg.2018.08.004] [PMID: 30220432]
[47]
Yaribeygi, H.; Atkin, S.L.; Katsiki, N.; Sahebkar, A. Narrative review of the effects of antidiabetic drugs on albuminuria. J. Cell. Physiol., 2019, 234(5), 5786-5797.
[http://dx.doi.org/10.1002/jcp.27503] [PMID: 30367464]
[48]
McFarlane, P.; Gilbert, R.E.; MacCallum, L.; Senior, P. Chronic kidney disease in diabetes. Can. J. Diabetes, 2013, 37(1), S129-S136.
[http://dx.doi.org/10.1016/j.jcjd.2013.01.037] [PMID: 24070935]
[49]
Dinkov, A.; Kanazirev, B. Reduction of proteinuria in patients with diabetes mellitus type 2 with empagliflozin treatment. Actual Nephrology., 2020, 14(1), 37-39.
[http://dx.doi.org/10.14748/an.v14i1.7197]
[50]
Tomita, I.; Kume, S.; Sugahara, S.; Osawa, N.; Yamahara, K.; Yasuda-Yamahara, M. SGLT2 inhibition mediates protection from diabetic kidney disease by promoting ketone body-induced mTORC1 inhibition. Cell Metabolism., 2020, 32(3), 404-19.
[http://dx.doi.org/10.1016/j.cmet.2020.06.020]
[51]
Wanner, C.; Zinman, B.; von Eynatten, M.; Koitka-Weber, A.; Zwiener, I.; Hauske, S. SAT-305 effects of empagliflozin vs placebo on cardiorenal outcomes in people with type 2 diabetes and proteinuric diabetic kidney disease: Insights from EMPA-REG outcome. Kidney Int. Rep., 2019, 4(7), S136.
[http://dx.doi.org/10.1016/j.ekir.2019.05.345]
[52]
Waijer, S.W.; Xie, D.; Inzucchi, S.E.; Zinman, B.; Koitka-Weber, A.; Mattheus, M.; von Eynatten, M.; Inker, L.A.; Wanner, C.; Heerspink, H.J.L. Short‐term changes in albuminuria and risk of cardiovascular and renal outcomes in type 2 diabetes mellitus: A post hoc analysis of the EMPAREG OUTCOME trial. J. Am. Heart Assoc., 2020, 9(18), e016976.
[http://dx.doi.org/10.1161/JAHA.120.016976] [PMID: 32893717]
[53]
Cherney, D.Z.I.; Zinman, B.; Inzucchi, S.E.; Koitka-Weber, A.; Mattheus, M.; Von Eynatten, M.; Wanner, C. Effects of empagliflozin on the urinary albumin-to-creatinine ratio in patients with type 2 diabetes and established cardiovascular disease: An exploratory analysis from the EMPA-REG OUTCOME randomised, placebo-controlled trial. Lancet Diabetes Endocrinol., 2017, 5(8), 610-621.
[http://dx.doi.org/10.1016/S2213-8587(17)30182-1] [PMID: 28666775]
[54]
Crabtree, T.S.; Bickerton, A.; Elliott, J.; Raghavan, R.; Barnes, D.; Sivappriyan, S.; Phillips, S.; Evans, A.; Sennik, D.; Rohilla, A.; Gallen, I.; Ryder, R.E.J. Effect of empagliflozin on albuminuria, eGFR and serum creatinine: Updated results from the ABCD nation-wide empagliflozin audit. Brit. J. Diabetes., 2021, 21(1), 62-66.
[http://dx.doi.org/10.15277/bjd.2021.288]
[55]
Cherney, D.; Lund, S.S.; Perkins, B.A.; Groop, P.H.; Cooper, M.E.; Kaspers, S.; Pfarr, E.; Woerle, H.J.; Von Eynatten, M. The effect of sodium glucose cotransporter 2 inhibition with empagliflozin on microalbuminuria and macroalbuminuria in patients with type 2 diabetes. Diabetologia, 2016, 59(9), 1860-1870.
[http://dx.doi.org/10.1007/s00125-016-4008-2] [PMID: 27316632]
[56]
Baker, W.L.; Smyth, L.R.; Riche, D.M.; Bourret, E.M.; Chamberlin, K.W.; White, W.B. Effects of sodium-glucose co-transporter 2 inhibitors on blood pressure: A systematic review and meta-analysis. J. Am. Soc. Hypertens., 2014, 8(4), 262-75.
[http://dx.doi.org/10.1016/j.jash.2014.01.007]
[57]
Cherney, D.Z.; Perkins, B.A.; Soleymanlou, N.; Maione, M.; Lai, V.; Lee, A.; Fagan, N.M.; Woerle, H.J.; Johansen, O.E.; Broedl, U.C.; Von Eynatten, M. Renal hemodynamic effect of sodium-glucose cotransporter 2 inhibition in patients with type 1 diabetes mellitus. Circulation, 2014, 129(5), 587-597.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.113.005081] [PMID: 24334175]
[58]
Lambers Heerspink, H.J.; De Zeeuw, D.; Wie, L.; Leslie, B.; List, J. Dapagliflozin a glucose-regulating drug with diuretic properties in subjects with type 2 diabetes. Diabetes Obes. Metab., 2013, 15(9), 853-862.
[http://dx.doi.org/10.1111/dom.12127] [PMID: 23668478]
[59]
Lytvyn, Y.; Škrtić, M.; Yang, G.K.; Yip, P.M.; Perkins, B.A.; Cherney, D.Z. Glycosuria-mediated urinary uric acid excretion in patients with uncomplicated type 1 diabetes mellitus. Am. J. Physiol. Renal Physiol., 2015, 308(2), F77-F83.
[http://dx.doi.org/10.1152/ajprenal.00555.2014] [PMID: 25377916]
[60]
Helal, I.; Fick-Brosnahan, G.M.; Reed-Gitomer, B.; Schrier, R.W. Glomerular hyperfiltration: Definitions, mechanisms and clinical implications. Nat. Rev. Nephrol., 2012, 8(5), 293-300.
[http://dx.doi.org/10.1038/nrneph.2012.19] [PMID: 22349487]
[61]
Ruggenenti, P.; Porrini, E.L.; Gaspari, F.; Motterlini, N.; Cannata, A.; Carrara, F.; Cella, C.; Ferrari, S.; Stucchi, N.; Parvanova, A.; Iliev, I.; Dodesini, A.R.; Trevisan, R.; Bossi, A.; Zaletel, J.; Remuzzi, G. Glomerular hyperfiltration and renal disease progression in type 2 diabetes. Diabetes Care, 2012, 35(10), 2061-2068.
[http://dx.doi.org/10.2337/dc11-2189] [PMID: 22773704]
[62]
Tonneijck, L.; Muskiet, M.H.; Smits, M.M.; Van Bommel, E.J.; Heerspink, H.J.; Van Raalte, D.H.; Joles, J.A. Glomerular hyperfiltration in diabetes: Mechanisms, clinical significance, and treatment. J. Am. Soc. Nephrol., 2017, 28(4), 1023-1039.
[http://dx.doi.org/10.1681/ASN.2016060666] [PMID: 28143897]
[63]
Muntner, P.; Bowling, C.B.; Gao, L.; Rizk, D.; Judd, S.; Tanner, R.M.; McClellan, W.; Warnock, D.G. Age-specific association of reduced estimated glomerular filtration rate and albuminuria with all-cause mortality. Clin. J. Am. Soc. Nephrol., 2011, 6(9), 2200-2207.
[http://dx.doi.org/10.2215/CJN.02030311] [PMID: 21737849]
[64]
Stanton, R.C. Sodium Glucose Transport 2 (SGLT2) inhibition decreases glomerular hyperfiltration: Is there a role for SGLT2 inhibitors in diabetic kidney disease? Circulation, 2014, 129, 542-544.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.113.007071]
[65]
Heerspink, H.J.; Perkins, B.A.; Fitchett, D.H.; Husain, M.; Cherney, D.Z. Sodium glucose cotransporter 2 inhibitors in the treatment of diabetes mellitus: Cardiovascular and kidney effects, potential mechanisms, and clinical applications. Circulation, 2016, 134(10), 752-772.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.116.021887] [PMID: 27470878]
[66]
Vallon, V.; Rose, M.; Gerasimova, M.; Satriano, J.; Platt, K.A.; Koepsell, H.; Cunard, R.; Sharma, K.; Thomson, S.C.; Rieg, T. Knockout of Na-glucose transporter SGLT2 attenuates hyperglycemia and glomerular hyperfiltration but not kidney growth or injury in diabetes mellitus. Am. J. Physiol. Renal Physiol., 2013, 304(2), F156-F167.
[http://dx.doi.org/10.1152/ajprenal.00409.2012] [PMID: 23152292]
[67]
Thomson, S.C.; Vallon, V. Effects of SGLT2 inhibitor and dietary NaCl on glomerular hemodynamics assessed by micropuncture in diabetic rats. Am. J. Physiol. Renal Physiol., 2021, 320(5), F761-F771.
[http://dx.doi.org/10.1152/ajprenal.00552.2020] [PMID: 33645318]
[68]
Wanner, C.; Heerspink, H.J.L.; Zinman, B.; Inzucchi, S.E.; Koitka-Weber, A.; Mattheus, M.; Hantel, S.; Woerle, H.J.; Broedl, U.C.; Von Eynatten, M.; Groop, P.H. Empagliflozin and kidney function decline in patients with type 2 diabetes: A slope analysis from the EMPA-REG OUTCOME trial. J. Am. Soc. Nephrol., 2018, 29(11), 2755-2769.
[http://dx.doi.org/10.1681/ASN.2018010103] [PMID: 30314978]
[69]
Mayer, G.J.; Wanner, C.; Weir, M.R.; Inzucchi, S.E.; Koitka-Weber, A.; Hantel, S.; von Eynatten, M.; Zinman, B.; Cherney, D.Z.I. Analysis from the EMPA-REG OUTCOME® trial indicates empagliflozin may assist in preventing the progression of chronic kidney disease in patients with type 2 diabetes irrespective of medications that alter intrarenal hemodynamics. Kidney Int., 2019, 96(2), 489-504.
[http://dx.doi.org/10.1016/j.kint.2019.02.033] [PMID: 31142441]
[70]
Hitomi, H.; Kasahara, T.; Katagiri, N.; Hoshina, A.; Mae, S.I.; Kotaka, M.; Toyohara, T.; Rahman, A.; Nakano, D.; Niwa, A.; Saito, M.K.; Nakahata, T.; Nishiyama, A.; Osafune, K. Human pluripotent stem cell-derived erythropoietin-producing cells ameliorate renal anemia in mice. Sci. Transl. Med., 2017, 9(409), eaaj2300.
[http://dx.doi.org/10.1126/scitranslmed.aaj2300] [PMID: 28954928]
[71]
Kaplan, J.M.; Sharma, N.; Dikdan, S. Hypoxia-inducible factor and its role in the management of anemia in chronic kidney disease. Int. J. Mol. Sci., 2018, 19(2), 389.
[http://dx.doi.org/10.3390/ijms19020389] [PMID: 29382128]
[72]
Packer, M. Mechanisms leading to differential hypoxia-inducible factor signaling in the diabetic kidney: Modulation by SGLT2 inhibitors and hypoxia mimetics. Am. J. Kidney Dis., 2021, 77(2), 280-286.
[http://dx.doi.org/10.1053/j.ajkd.2020.04.016] [PMID: 32711072]
[73]
Budzianowski, J.; Rzeźniczak, J.; Hiczkiewicz, J.; Kasprzak, D.; Winnicka-Zielińska, A.; Musielak, B.; Pieszko, K.; Burchardt, P. Beneficial effects of empagliflozin on hematocrit levels in a patient with severe anemia. Daru, 2021, 29(2), 507-510.
[http://dx.doi.org/10.1007/s40199-021-00417-5] [PMID: 34545553]
[74]
Sano, M.; Goto, S. Possible mechanism of hematocrit elevation by sodium glucose cotransporter 2 inhibitors and associated beneficial renal and cardiovascular effects. Circulation, 2019, 139(17), 1985-1987.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.118.038881] [PMID: 31009585]
[75]
Thiele, K.; Rau, M.; Hartmann, N.K.; Möllmann, J.; Jankowski, J.; Böhm, M.; Keszei, A.P.; Marx, N.; Lehrke, M. Effects of empagliflozin on erythropoiesis in patients with type 2 diabetes: Data from a randomized, placebo-controlled study. Diabetes Obes. Metab., 2021, 23(12), 2814-2818.
[http://dx.doi.org/10.1111/dom.14517] [PMID: 34378852]
[76]
Mazer, C.D.; Hare, G.M.T.; Connelly, P.W.; Gilbert, R.E.; Shehata, N.; Quan, A.; Teoh, H.; Leiter, L.A.; Zinman, B.; Jüni, P.; Zuo, F.; Mistry, N.; Thorpe, K.E.; Goldenberg, R.M.; Yan, A.T.; Connelly, K.A.; Verma, S. Effect of empagliflozin on erythropoietin levels, iron stores, and red blood cell morphology in patients with type 2 diabetes mellitus and coronary artery disease. Circulation, 2020, 141(8), 704-707.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.119.044235] [PMID: 31707794]
[77]
Kawanami, D.; Matoba, K.; Takeda, Y.; Nagai, Y.; Akamine, T.; Yokota, T.; Sango, K.; Utsunomiya, K. SGLT2 inhibitors as a therapeutic option for diabetic nephropathy. Int. J. Mol. Sci., 2017, 18(5), 1083.
[http://dx.doi.org/10.3390/ijms18051083] [PMID: 28524098]
[78]
Kashiwagi, A.; Maegawa, H. Metabolic and hemodynamic effects of sodium-dependent glucose cotransporter 2 inhibitors on cardio-renal protection in the treatment of patients with type 2 diabetes mellitus. J. Diabetes Investig., 2017, 8(4), 416-427.
[http://dx.doi.org/10.1111/jdi.12644] [PMID: 28178390]
[79]
Vallon, V.; Thomson, S.C. Targeting renal glucose reabsorption to treat hyperglycaemia: The pleiotropic effects of SGLT2 inhibition. Diabetologia, 2017, 60(2), 215-225.
[http://dx.doi.org/10.1007/s00125-016-4157-3] [PMID: 27878313]
[80]
Lauritsen, K.M.; Søndergaard, E.; Svart, M.; Møller, N.; Gormsen, L.C. Ketone body infusion increases circulating erythropoietin and bone marrow glucose uptake. Diabetes Care, 2018, 41(12), e152-e154.
[http://dx.doi.org/10.2337/dc18-1421] [PMID: 30327354]
[81]
Ndibalema, A.R.; Kabuye, D.; Wen, S.; Li, L.; Li, X.; Fan, Q. Empagliflozin protects against proximal renal tubular cell injury induced by high glucose via regulation of hypoxia-inducible factor 1-alpha. Diabetes Metab. Syndr. Obes., 2020, 13, 1953-1967.
[http://dx.doi.org/10.2147/DMSO.S243170] [PMID: 32606855]
[82]
Bessho, R.; Takiyama, Y.; Takiyama, T.; Kitsunai, H.; Takeda, Y.; Sakagami, H.; Ota, T. Hypoxia-inducible factor-1α is the therapeutic target of the SGLT2 inhibitor for diabetic nephropathy. Sci. Rep., 2019, 9(1), 1-12.
[http://dx.doi.org/10.1038/s41598-019-51343-1] [PMID: 30626917]
[83]
Liu, J.; Tian, J.; Sodhi, K.; Shapiro, J.I. The Na/K-ATPase signaling and SGLT2 inhibitor-mediated cardiorenal protection: A crossed road? J. Membr. Biol., 2021, 254(5-6), 513-529.
[http://dx.doi.org/10.1007/s00232-021-00192-z] [PMID: 34297135]
[84]
O’Neill, J.; Fasching, A.; Pihl, L.; Patinha, D.; Franzén, S.; Palm, F. Acute SGLT inhibition normalizes O2 tension in the renal cortex but causes hypoxia in the renal medulla in anaesthetized control and diabetic rats. Am. J. Physiol. Renal Physiol., 2015, 309(3), F227-F234.
[http://dx.doi.org/10.1152/ajprenal.00689.2014] [PMID: 26041448]
[85]
Hodgkins, K.S.; Schnaper, H.W. Tubulointerstitial injury and the progression of chronic kidney disease. Pediatr. Nephrol., 2012, 27(6), 901-909.
[http://dx.doi.org/10.1007/s00467-011-1992-9] [PMID: 21947270]
[86]
Romagnani, P.; Remuzzi, G.; Glassock, R.; Levin, A.; Jager, K.J.; Tonelli, M.; Massy, Z.; Wanner, C.; Anders, H.J. Chronic kidney disease. Nat. Rev. Dis. Primers, 2017, 3(1), 17088.
[http://dx.doi.org/10.1038/nrdp.2017.88] [PMID: 29168475]
[87]
Quagliariello, V.; De Laurentiis, M.; Rea, D.; Barbieri, A.; Monti, M.G.; Carbone, A.; Paccone, A.; Altucci, L.; Conte, M.; Canale, M.L.; Botti, G.; Maurea, N. The SGLT-2 inhibitor empagliflozin improves myocardial strain, reduces cardiac fibrosis and pro-inflammatory cytokines in non-diabetic mice treated with doxorubicin. Cardiovasc. Diabetol., 2021, 20(1), 150.
[http://dx.doi.org/10.1186/s12933-021-01346-y] [PMID: 34301253]
[88]
Abd Elmaaboud, M.A.; Kabel, A.M.; Elrashidy, M. Pretreatment with empagliflozin ameliorates cisplatin induced acute kidney injury by suppressing apoptosis. J. Appl. Biomed., 2019, 17(1), 90.
[http://dx.doi.org/10.32725/jab.2019.003] [PMID: 34907751]
[89]
Liang, R.; Wang, M.; Xu, F.; Cai, M. 1138-P: Empagliflozinameliorates kidney injury in diabetic nephropathy via SIRT1 and TXNIP Am. Diabetes Assoc., 2020, 69(1), 1138-P.
[90]
Liu, X.; Xu, C.; Xu, L.; Li, X.; Sun, H.; Xue, M.; Li, T.; Yu, X.; Sun, B.; Chen, L. Empagliflozin improves diabetic renal tubular injury by alleviating mitochondrial fission via AMPK/SP1/PGAM5 pathway. Metabolism, 2020, 111, 154334.
[http://dx.doi.org/10.1016/j.metabol.2020.154334] [PMID: 32777444]
[91]
Ashrafi Jigheh, Z.; Ghorbani Haghjo, A.; Argani, H.; Roshangar, L.; Rashtchizadeh, N.; Sanajou, D.; Nazari Soltan Ahmad, S.; Rashedi, J.; Dastmalchi, S.; Mesgari Abbasi, M. Empagliflozin alleviates renal inflammation and oxidative stress in streptozotocin-induced diabetic rats partly by repressing HMGB1-TLR4 receptor axis. Iran. J. Basic Med. Sci., 2019, 22(4), 384-390.
[PMID: 31168342]
[92]
Castoldi, G.; Carletti, R.; Ippolito, S.; Colzani, M.; Barzaghi, F.; Stella, A.; Zerbini, G.; Perseghin, G.; Di Gioia, C.R.T. Renal anti-fibrotic effect of sodium glucose cotransporter 2 inhibition in angiotensin II-dependent hypertension. Am. J. Nephrol., 2020, 51(2), 119-129.
[http://dx.doi.org/10.1159/000505144] [PMID: 31910407]
[93]
Huang, F.; Zhao, Y.; Wang, Q.; Hillebrands, J-L.; van den Born, J.; Ji, L.; An, T.; Qin, G. Dapagliflozin attenuates renal tubulointerstitial fibrosis associated with type 1 diabetes by regulating STAT1/TGFβ1 signaling. Front. Endocrinol., 2019, 10, 441.
[http://dx.doi.org/10.3389/fendo.2019.00441] [PMID: 31333586]
[94]
Xie, Y.; Hou, W.; Song, X.; Yu, Y.; Huang, J.; Sun, X.; Kang, R.; Tang, D. Ferroptosis: Process and function. Cell Death Differ., 2016, 23(3), 369-379.
[http://dx.doi.org/10.1038/cdd.2015.158] [PMID: 26794443]
[95]
Kim, S.; Kang, S.W.; Joo, J.; Han, S.H.; Shin, H.; Nam, B.Y.; Park, J.; Yoo, T.H.; Kim, G.; Lee, P.; Park, J.T. Characterization of ferroptosis in kidney tubular cell death under diabetic conditions. Cell Death Dis., 2021, 12(2), 160.
[http://dx.doi.org/10.1038/s41419-021-03452-x] [PMID: 33558472]
[96]
Lee, Y.H.; Kim, S.H.; Kang, J.M.; Heo, J.H.; Kim, D.J.; Park, S.H.; Sung, M.; Kim, J.; Oh, J.; Yang, D.H.; Lee, S.H.; Lee, S.Y. Empagliflozin attenuates diabetic tubulopathy by improving mitochondrial fragmentation and autophagy. Am. J. Physiol. Renal Physiol., 2019, 317(4), F767-F780.
[http://dx.doi.org/10.1152/ajprenal.00565.2018] [PMID: 31390268]
[97]
Korbut, A.I.; Taskaeva, I.S.; Bgatova, N.P.; Muraleva, N.A.; Orlov, N.B.; Dashkin, M.V.; Khotskina, A.S.; Zavyalov, E.L.; Konenkov, V.I.; Klein, T.; Klimontov, V.V. SGLT2 inhibitor empagliflozin and dpp4 inhibitor linagliptin reactivate glomerular autophagy in db/db mice, a model of type 2 diabetes. Int. J. Mol. Sci., 2020, 21(8), 2987.
[http://dx.doi.org/10.3390/ijms21082987] [PMID: 32340263]
[98]
Korbut, A.; Klimontov, V.; Taskaeva, I.; Bgatova, N.; Zavyalov, E. Empagliflozin and linagliptin ameliorate podocyte injury and enhance autophagy in a model of type 2 diabetic nephropathy. 11th International Multiconference Bioinformatics of Genome Regulation and Structure\Systems Biology (BGRS\SB), Novosibirsk, Russia, 2018, pp. 20-25.
[99]
Toda, A.; Ishizaka, Y.; Tani, M.; Yamakado, M. Hyperuricemia is a significant risk factor for the onset of chronic kidney disease. Nephron Clin. Pract., 2014, 126(1), 33-38.
[http://dx.doi.org/10.1159/000355639] [PMID: 24434843]
[100]
Prasad Sah, O.S.; Qing, Y.X. Associations between hyperuricemia and chronic kidney disease: A review. Nephrourol. Mon., 2015, 7(3), e27233.
[http://dx.doi.org/10.5812/numonthly.7(3)2015.27233] [PMID: 26290849]
[101]
Sonoda, H.; Takase, H.; Dohi, Y.; Kimura, G. Uric acid levels predict future development of chronic kidney disease. Am. J. Nephrol., 2011, 33(4), 352-357.
[http://dx.doi.org/10.1159/000326848] [PMID: 21430373]
[102]
Uric acid and chronic kidney disease: New understanding of an old problem. Kang, In: Semin. Nephrol; D.H., ; Chen, W., Eds.; , 2011; 31, pp. (5)447-452.
[103]
Sturm, G.; Kollerits, B.; Neyer, U.; Ritz, E.; Kronenberg, F.; Group, M.S. Uric acid as a risk factor for progression of non-diabetic chronic kidney disease? The Mild to Moderate Kidney Disease (MMKD) Study. Exp. Gerontol., 2008, 43(4), 347-352.
[http://dx.doi.org/10.1016/j.exger.2008.01.006] [PMID: 18294794]
[104]
Filiopoulos, V.; Hadjiyannakos, D.; Vlassopoulos, D. New insights into uric acid effects on the progression and prognosis of chronic kidney disease. Ren. Fail., 2012, 34(4), 510-520.
[http://dx.doi.org/10.3109/0886022X.2011.653753] [PMID: 22260409]
[105]
Zhao, D.; Liu, H.; Dong, P. Empagliflozin reduces blood pressure and uric acid in patients with type 2 diabetes mellitus: A systematic review and meta-analysis. J. Hum. Hypertens., 2019, 33(4), 327-339.
[http://dx.doi.org/10.1038/s41371-018-0134-2] [PMID: 30443007]
[106]
Xin, Y.; Guo, Y.; Li, Y.; Ma, Y.; Li, L.; Jiang, H. Effects of sodium glucose cotransporter-2 inhibitors on serum uric acid in type 2 diabetes mellitus: A systematic review with an indirect comparison meta-analysis. Saudi J. Biol. Sci., 2019, 26(2), 421-426.
[http://dx.doi.org/10.1016/j.sjbs.2018.11.013] [PMID: 31485187]
[107]
Ferreira, J.P.; Inzucchi, S.E.; Mattheus, M.; Meinicke, T.; Steubl, D.; Wanner, C. Empagliflozin and uric acid metabolism in diabetes: A post-hoc analysis of the EMPA‐REG OUTCOME trial. Diabetes Obes. Metab., 2021, 24(1), 135-141.
[PMID: 34558768]
[108]
Hussain, M.; Elahi, A.; Hussain, A.; Iqbal, J.; Akhtar, L.; Majid, A. Sodium-Glucose Cotransporter-2 (SGLT-2) attenuates Serum Uric Acid (SUA) level in patients with type 2 diabetes. J. Diabetes Res., 2021, 2021, 9973862.
[109]
Fralick, M.; Chen, S.K.; Patorno, E.; Kim, S.C. Assessing the risk for gout with sodium–glucose cotransporter-2 inhibitors in patients with type 2 diabetes: A population-based cohort study. Ann. Intern. Med., 2020, 172(3), 186-194.
[http://dx.doi.org/10.7326/M19-2610] [PMID: 31931526]
[110]
Lu, Y.H.; Chang, Y.P.; Li, T.; Han, F.; Li, C.J.; Li, X.Y.; Xue, M.; Cheng, Y.; Meng, Z.Y.; Han, Z.; Sun, B.; Chen, L.M. Empagliflozin attenuates hyperuricemia by upregulation of ABCG2 via AMPK/AKT/CREB signaling pathway in type 2 diabetic mice. Int. J. Biol. Sci., 2020, 16(3), 529-542.
[http://dx.doi.org/10.7150/ijbs.33007] [PMID: 32015688]
[111]
Doblado, M.; Moley, K.H. Facilitative glucose transporter 9, a unique hexose and urate transporter. Am. J. Physiol. Endocrinol. Metab., 2009, 297(4), E831-E835.
[http://dx.doi.org/10.1152/ajpendo.00296.2009] [PMID: 19797240]
[112]
Kohler, S.; Zeller, C.; Iliev, H.; Kaspers, S. Safety and tolerability of empagliflozin in patients with type 2 diabetes: Pooled analysis of phase I–III clinical trials. Adv. Ther., 2017, 34(7), 1707-1726.
[http://dx.doi.org/10.1007/s12325-017-0573-0] [PMID: 28631216]
[113]
Novikov, A.; Fu, Y.; Huang, W.; Freeman, B.; Patel, R.; Van Ginkel, C.; Koepsell, H.; Busslinger, M.; Onishi, A.; Nespoux, J.; Vallon, V. SGLT2 inhibition and renal urate excretion: Role of luminal glucose, GLUT9, and URAT1. Am. J. Physiol. Renal Physiol., 2019, 316(1), F173-F185.
[http://dx.doi.org/10.1152/ajprenal.00462.2018] [PMID: 30427222]
[114]
Chino, Y.; Samukawa, Y.; Sakai, S.; Nakai, Y.; Yamaguchi, J.; Nakanishi, T.; Tamai, I. SGLT2 inhibitor lowers serum uric acid through alteration of uric acid transport activity in renal tubule by increased glycosuria. Biopharm. Drug Dispos., 2014, 35(7), 391-404.
[http://dx.doi.org/10.1002/bdd.1909] [PMID: 25044127]
[115]
Hoshika, Y.; Kubota, Y.; Mozawa, K.; Tara, S.; Tokita, Y.; Yodogawa, K. Effect of empagliflozin versus placebo on body fluid balance in patients with acute myocardial infarction and type 2 diabetes mellitus: Subgroup analysis of the EMBODY trial. J. Card. Fail., 2021, 28(1), 56-64.
[PMID: 34425223]
[116]
Kusaka, H.; Koibuchi, N.; Hasegawa, Y.; Ogawa, H.; Kim-Mitsuyama, S. Empagliflozin lessened cardiac injury and reduced visceral adipocyte hypertrophy in prediabetic rats with metabolic syndrome. Cardiovasc. Diabetol., 2016, 15(1), 157.
[http://dx.doi.org/10.1186/s12933-016-0473-7] [PMID: 27835975]
[117]
Boorsma, E.M.; Beusekamp, J.C.; Ter Maaten, J.M.; Figarska, S.M.; Danser, A.H.J.; Van Veldhuisen, D.J.; Van Der Meer, P.; Heerspink, H.J.L.; Damman, K.; Voors, A.A. Effects of empagliflozin on renal sodium and glucose handling in patients with acute heart failure. Eur. J. Heart Fail., 2021, 23(1), 68-78.
[http://dx.doi.org/10.1002/ejhf.2066] [PMID: 33251643]
[118]
Yaribeygi, H.; Atkin, S.L.; Pirro, M.; Sahebkar, A. A review of the anti-inflammatory properties of antidiabetic agents providing protective effects against vascular complications in diabetes. J. Cell. Physiol., 2019, 234(6), 8286-8294.
[http://dx.doi.org/10.1002/jcp.27699] [PMID: 30417367]
[119]
Li, N.; Lv, D.; Zhu, X.; Wei, P.; Gui, Y.; Liu, S.; Zhou, E.; Zheng, M.; Zhou, D.; Zhang, L. Effects of SGLT2 inhibitors on renal outcomes in patients with chronic kidney disease: A meta-analysis. Front. Med., 2021, 8, 728089.
[http://dx.doi.org/10.3389/fmed.2021.728089] [PMID: 34790672]
[120]
Giorgino, F.; Vora, J.; Fenici, P.; Solini, A. Renoprotection with SGLT2 inhibitors in type 2 diabetes over a spectrum of cardiovascular and renal risk. Cardiovasc. Diabetol., 2020, 19(1), 196.
[http://dx.doi.org/10.1186/s12933-020-01163-9] [PMID: 33222693]
[121]
Wheeler, D.C.; Stefansson, B.V.; Batiushin, M.; Bilchenko, O.; Cherney, D.Z.I.; Chertow, G.M.; Douthat, W.; Dwyer, J.P.; Escudero, E.; Pecoits-Filho, R.; Furuland, H.; Górriz, J.L.; Greene, T.; Haller, H.; Hou, F.F.; Kang, S.W.; Isidto, R.; Khullar, D.; Mark, P.B.; McMurray, J.J.V.; Kashihara, N.; Nowicki, M.; Persson, F.; Correa-Rotter, R.; Rossing, P.; Toto, R.D.; Umanath, K.; Van Bui, P.; Wittmann, I.; Lindberg, M.; Sjöström, C.D.; Langkilde, A.M.; Heerspink, H.J.L. The Dapagliflozin And Prevention of Adverse outcomes in Chronic Kidney Disease (DAPA-CKD) trial: Baseline characteristics. Nephrol. Dial. Transplant., 2020, 35(10), 1700-1711.
[http://dx.doi.org/10.1093/ndt/gfaa234] [PMID: 32862232]
[122]
Van Der Aart-Van Der Beek, A.B.; De Boer, R.A.; Heerspink, H.J.L. Kidney and heart failure outcomes associated with SGLT2 inhibitor use. Nat. Rev. Nephrol., 2022, 18(5), 294-306.
[http://dx.doi.org/10.1038/s41581-022-00535-6] [PMID: 35145275]
[123]
Williams, D.M.; Nawaz, A.; Evans, M. Sodium-Glucose Co-Transporter 2 (SGLT2) inhibitors: are they all the same? A narrative review of cardiovascular outcome trials. Diabetes Ther., 2021, 12(1), 55-70.
[http://dx.doi.org/10.1007/s13300-020-00951-6] [PMID: 33185854]
[124]
ESC. DAPA-CKD trial meets primary endpoint in patients with chronic kidney disease. ESC, 2020. Available from: https://www.escardio.org/The-ESC/Press-Office/Press-releases/DAPA

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy