Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Review Article

The Roles and Regulation of Ferroptosis in Cancer Progression

Author(s): Yu yang, Te Ma, Ting Hu, Chengcheng Ma, Huiqing Tu and Shunqin Zhu*

Volume 26, Issue 6, 2023

Published on: 08 November, 2022

Page: [1141 - 1148] Pages: 8

DOI: 10.2174/1386207325666220831151036

Price: $65

Abstract

Ferroptosis is an iron-dependent, nonapoptotic form of regulatory death and has received extensive attention. Fenton reaction related to iron metabolism release high levels of Reactive Oxygen Species (ROS), and the intracellular ROS content is closely related to various diseases; the iron ion concentration in many diseased cells is also disordered. In this paper, the advances in ferroptosis research are summarized, and the regulatory mechanisms of ferroptosis, including inducers and regulatory protein of ferroptosis in cancer progression. We expect that this study will benefit the further development of basic research and clinical application of ferroptosis for cancer treatment.

Keywords: Ferroptosis, ROS, cancer progression, system Xc-, GPX4, cell death.

Graphical Abstract
[1]
Chen, X.; Li, J.; Kang, R.; Klionsky, D.J.; Tang, D. Ferroptosis: Machinery and regulation. Autophagy, 2021, 17(9), 2054-2081.
[http://dx.doi.org/10.1080/15548627.2020.1810918] [PMID: 32804006]
[2]
Mittler, R. ROS are good. Trends Plant Sci., 2017, 22(1), 11-19.
[http://dx.doi.org/10.1016/j.tplants.2016.08.002] [PMID: 27666517]
[3]
Bodega, G.; Alique, M.; Puebla, L.; Carracedo, J.; Ramírez, R.M. Microvesicles: ROS scavengers and ROS producers. J. Extracell. Vesicles, 2019, 8(1), 1626654.
[http://dx.doi.org/10.1080/20013078.2019.1626654] [PMID: 31258880]
[4]
Liu, Z.; Zhou, T.; Ziegler, A.C.; Dimitrion, P.; Zuo, L. Oxidative stress in neurodegenerative diseases: From molecular mechanisms to clinical applications. Oxid. Med. Cell. Longev., 2017, 2017, 1-11.
[http://dx.doi.org/10.1155/2017/2525967] [PMID: 28785371]
[5]
Panth, N.; Paudel, K.R.; Parajuli, K. Reactive oxygen species: A key hallmark of cardiovascular disease. Adv. Med., 2016, 2016, 1-12.
[http://dx.doi.org/10.1155/2016/9152732] [PMID: 27774507]
[6]
Shen, Z.; Song, J.; Yung, B.C.; Zhou, Z.; Wu, A.; Chen, X. Emerging strategies of cancer therapy based on ferroptosis. Adv. Mater., 2018, 30(12), 1704007.
[http://dx.doi.org/10.1002/adma.201704007] [PMID: 29356212]
[7]
Morales, M.; Xue, X. Targeting iron metabolism in cancer therapy. Theranostics, 2021, 11(17), 8412-8429.
[http://dx.doi.org/10.7150/thno.59092] [PMID: 34373750]
[8]
Shin, D.; Kim, E.H.; Lee, J.; Roh, J.L. Nrf2 inhibition reverses resistance to GPX4 inhibitor-induced ferroptosis in head and neck cancer. Free Radic. Biol. Med., 2018, 129, 454-462.
[http://dx.doi.org/10.1016/j.freeradbiomed.2018.10.426] [PMID: 30339884]
[9]
Du, J.; Wang, T.; Li, Y.; Zhou, Y.; Wang, X.; Yu, X.; Ren, X.; An, Y.; Wu, Y.; Sun, W.; Fan, W.; Zhu, Q.; Wang, Y.; Tong, X. DHA inhibits proliferation and induces ferroptosis of leukemia cells through autophagy dependent degradation of ferritin. Free Radic. Biol. Med., 2019, 131, 356-369.
[http://dx.doi.org/10.1016/j.freeradbiomed.2018.12.011] [PMID: 30557609]
[10]
Xie, Y.; Hou, W.; Song, X.; Yu, Y.; Huang, J.; Sun, X.; Kang, R.; Tang, D. Ferroptosis: Process and function. Cell Death Differ., 2016, 23(3), 369-379.
[http://dx.doi.org/10.1038/cdd.2015.158] [PMID: 26794443]
[11]
Marianna, D.B. Ferritin is secreted via 2 distinct nonclassical vesicular pathways. Blood, 2018, 131, 11.
[12]
Paolo, S.L. Evidence that the specificity of iron incorporation into homopolymers of human ferritin L- and H-chains is conferred by the nucleation and ferroxidase centres. Biochem. J., 1996, 314, 6.
[13]
El Hout, M.; Dos Santos, L.; Hamaï, A.; Mehrpour, M. A promising new approach to cancer therapy: Targeting iron metabolism in cancer stem cells. Semin. Cancer Biol., 2018, 53, 125-138.
[http://dx.doi.org/10.1016/j.semcancer.2018.07.009] [PMID: 30071257]
[14]
Bystrom, L.M.; Rivella, S. Cancer cells with irons in the fire. Free Radic. Biol. Med., 2015, 79, 337-342.
[http://dx.doi.org/10.1016/j.freeradbiomed.2014.04.035] [PMID: 24835768]
[15]
Pavlova, N.N.; Thompson, C.B. The emerging hallmarks of cancer metabolism. Cell Metab., 2016, 23(1), 27-47.
[http://dx.doi.org/10.1016/j.cmet.2015.12.006] [PMID: 26771115]
[16]
Goldie, Y.L. Targeting cancer by binding iron: Dissecting cellular signaling pathways. Oncotarget, 2015, 6, 32.
[17]
Dixon, S.J.; Lemberg, K.M.; Lamprecht, M.R.; Skouta, R.; Zaitsev, E.M.; Gleason, C.E.; Patel, D.N.; Bauer, A.J.; Cantley, A.M.; Yang, W.S.; Morrison, B., III; Stockwell, B.R. Ferroptosis: An iron-dependent form of nonapoptotic cell death. Cell, 2012, 149(5), 1060-1072.
[http://dx.doi.org/10.1016/j.cell.2012.03.042] [PMID: 22632970]
[18]
Li, Y.; Chen, F.; Chen, J.; Chan, S.; He, Y.; Liu, W.; Zhang, G. Disulfiram/copper induces antitumor activity against both nasopharyngeal cancer cells and cancer-associated fibroblasts through ROS/MAPK and ferroptosis pathways. Cancers (Basel), 2020, 12(1), 138.
[http://dx.doi.org/10.3390/cancers12010138] [PMID: 31935835]
[19]
Stockwell, B.R.; Friedmann Angeli, J.P.; Bayir, H.; Bush, A.I.; Conrad, M.; Dixon, S.J.; Fulda, S.; Gascón, S.; Hatzios, S.K.; Kagan, V.E.; Noel, K.; Jiang, X.; Linkermann, A.; Murphy, M.E.; Overholtzer, M.; Oyagi, A.; Pagnussat, G.C.; Park, J.; Ran, Q.; Rosenfeld, C.S.; Salnikow, K.; Tang, D.; Torti, F.M.; Torti, S.V.; Toyokuni, S.; Woerpel, K.A.; Zhang, D.D. Ferroptosis: A regulated cell death nexus linking metabolism, redox biology, and disease. Cell, 2017, 171(2), 273-285.
[http://dx.doi.org/10.1016/j.cell.2017.09.021] [PMID: 28985560]
[20]
Yang, B.; Chen, Y.; Shi, J. Reactive Oxygen Species (ROS)-based nanomedicine. Chem. Rev., 2019, 119(8), 4881-4985.
[http://dx.doi.org/10.1021/acs.chemrev.8b00626] [PMID: 30973011]
[21]
D’Autréaux, B.; Toledano, M.B. ROS as signalling molecules: Mechanisms that generate specificity in ROS homeostasis. Nat. Rev. Mol. Cell Biol., 2007, 8(10), 813-824.
[http://dx.doi.org/10.1038/nrm2256] [PMID: 17848967]
[22]
Feng, H.; Stockwell, B.R. Unsolved mysteries: How does lipid peroxidation cause ferroptosis? PLoS Biol., 2018, 16(5), e2006203.
[http://dx.doi.org/10.1371/journal.pbio.2006203] [PMID: 29795546]
[23]
Salehi, F.; Behboudi, H.; Kavoosi, G.; Ardestani, S.K. Oxidative DNA damage induced by ROS-modulating agents with the ability to target DNA: A comparison of the biological characteristics of citrus pectin and apple pectin. Sci. Rep., 2018, 8(1), 13902.
[http://dx.doi.org/10.1038/s41598-018-32308-2] [PMID: 30224635]
[24]
Seibt, T.M.; Proneth, B.; Conrad, M. Role of GPX4 in ferroptosis and its pharmacological implication. Free Radic. Biol. Med., 2019, 133, 144-152.
[http://dx.doi.org/10.1016/j.freeradbiomed.2018.09.014] [PMID: 30219704]
[25]
Park, M-T.; Kim, M-J.; Suh, Y.; Kim, R-K.; Kim, H.; Lim, E-J.; Yoo, K-C.; Lee, G-H.; Kim, Y-H.; Hwang, S-G.; Yi, J-M.; Lee, S-J. Novel signaling axis for ROS generation during K-Ras-induced cellular transformation. Cell Death Differ., 2014, 21(8), 1185-1197.
[http://dx.doi.org/10.1038/cdd.2014.34] [PMID: 24632950]
[26]
Kotsantis, P.; Petermann, E.; Boulton, S.J. Mechanisms of oncogene-induced replication stress: Jigsaw falling into place. Cancer Discov., 2018, 8(5), 537-555.
[http://dx.doi.org/10.1158/2159-8290.CD-17-1461] [PMID: 29653955]
[27]
Zhu, S.; Yu, Q.; Huo, C.; Li, Y.; He, L.; Ran, B.; Chen, J.; Li, Y.; Liu, W. Ferroptosis: A novel mechanism of artemisinin and its derivatives in cancer therapy. Curr. Med. Chem., 2020, 28(2), 329-345.
[http://dx.doi.org/10.2174/0929867327666200121124404] [PMID: 31965935]
[28]
Liu, J.; Xia, X.; Huang, P. xCT: A critical molecule that links cancer metabolism to redox signaling. Mol. Ther., 2020, 28(11), 2358-2366.
[http://dx.doi.org/10.1016/j.ymthe.2020.08.021] [PMID: 32931751]
[29]
Cramer, S.L.; Saha, A.; Liu, J.; Tadi, S.; Tiziani, S.; Yan, W.; Triplett, K.; Lamb, C.; Alters, S.E.; Rowlinson, S.; Zhang, Y.J.; Keating, M.J.; Huang, P.; DiGiovanni, J.; Georgiou, G.; Stone, E. Systemic depletion of L-cyst(e)ine with cyst(e)inase increases reactive oxygen species and suppresses tumor growth. Nat. Med., 2017, 23(1), 120-127.
[http://dx.doi.org/10.1038/nm.4232] [PMID: 27869804]
[30]
Ji, X.; Qian, J.; Rahman, S.M.J.; Siska, P.J.; Zou, Y.; Harris, B.K.; Hoeksema, M.D.; Trenary, I.A.; Heidi, C.; Eisenberg, R.; Rathmell, J.C.; Young, J.D.; Massion, P.P. xCT (SLC7A11)-mediated metabolic reprogramming promotes non-small cell lung cancer progression. Oncogene, 2018, 37(36), 5007-5019.
[http://dx.doi.org/10.1038/s41388-018-0307-z] [PMID: 29789716]
[31]
Trachootham, D.; Zhang, H.; Zhang, W.; Feng, L.; Du, M.; Zhou, Y.; Chen, Z.; Pelicano, H.; Plunkett, W.; Wierda, W.G.; Keating, M.J.; Huang, P. Effective elimination of fludarabine-resistant CLL cells by PEITC through a redox-mediated mechanism. Blood, 2008, 112(5), 1912-1922.
[http://dx.doi.org/10.1182/blood-2008-04-149815] [PMID: 18574029]
[32]
Trachootham, D.; Zhou, Y.; Zhang, H.; Demizu, Y.; Chen, Z.; Pelicano, H.; Chiao, P.J.; Achanta, G.; Arlinghaus, R.B.; Liu, J.; Huang, P. Selective killing of oncogenically transformed cells through a ROS-mediated mechanism by β-phenylethyl isothiocyanate. Cancer Cell, 2006, 10(3), 241-252.
[http://dx.doi.org/10.1016/j.ccr.2006.08.009] [PMID: 16959615]
[33]
Zhang, W.; Trachootham, D.; Liu, J.; Chen, G.; Pelicano, H.; Garcia-Prieto, C.; Lu, W.; Burger, J.A.; Croce, C.M.; Plunkett, W.; Keating, M.J.; Huang, P. Stromal control of cystine metabolism promotes cancer cell survival in chronic lymphocytic leukaemia. Nat. Cell Biol., 2012, 14(3), 276-286.
[http://dx.doi.org/10.1038/ncb2432] [PMID: 22344033]
[34]
Kagan, V.E.; Mao, G.; Qu, F.; Angeli, J.P.F.; Doll, S.; Croix, C.S.; Dar, H.H.; Liu, B.; Tyurin, V.A.; Ritov, V.B.; Kapralov, A.A.; Amoscato, A.A.; Jiang, J.; Anthonymuthu, T.; Mohammadyani, D.; Yang, Q.; Proneth, B.; Klein-Seetharaman, J.; Watkins, S.; Bahar, I.; Greenberger, J.; Mallampalli, R.K.; Stockwell, B.R.; Tyurina, Y.Y.; Conrad, M.; Bayır, H. Oxidized arachidonic and adrenic PEs navigate cells to ferroptosis. Nat. Chem. Biol., 2017, 13(1), 81-90.
[http://dx.doi.org/10.1038/nchembio.2238] [PMID: 27842066]
[35]
Cozza, G.; Rossetto, M.; Bosello-Travain, V.; Maiorino, M.; Roveri, A.; Toppo, S.; Zaccarin, M.; Zennaro, L.; Ursini, F. Glutathione peroxidase 4-catalyzed reduction of lipid hydroperoxides in membranes: The polar head of membrane phospholipids binds the enzyme and addresses the fatty acid hydroperoxide group toward the redox center. Free Radic. Biol. Med., 2017, 112, 1-11.
[http://dx.doi.org/10.1016/j.freeradbiomed.2017.07.010] [PMID: 28709976]
[36]
Proneth, B.; Conrad, M. Ferroptosis and necroinflammation, a yet poorly explored link. Cell Death Differ., 2019, 26(1), 14-24.
[http://dx.doi.org/10.1038/s41418-018-0173-9] [PMID: 30082768]
[37]
Cheng, Z.; Zhang, J.; Ballou, D.P.; Williams, C.H., Jr Reactivity of thioredoxin as a protein thiol-disulfide oxidoreductase. Chem. Rev., 2011, 111(9), 5768-5783.
[http://dx.doi.org/10.1021/cr100006x] [PMID: 21793530]
[38]
Zhang, J.; Li, X.; Han, X.; Liu, R.; Fang, J. Targeting the thioredoxin system for cancer therapy. Trends Pharmacol. Sci., 2017, 38(9), 794-808.
[http://dx.doi.org/10.1016/j.tips.2017.06.001] [PMID: 28648527]
[39]
Marcus Conrad, V.E.K. Regulation of lipid peroxidation and ferroptosis in diverse species. Genes Dev., 2018, 32, 18.
[40]
Yang, W.S.; Stockwell, B.R. Ferroptosis: Death by lipid peroxidation. Trends Cell Biol., 2016, 26(3), 165-176.
[http://dx.doi.org/10.1016/j.tcb.2015.10.014] [PMID: 26653790]
[41]
Cao, J.; Chen, X.; Jiang, L.; Lu, B.; Yuan, M.; Zhu, D.; Zhu, H.; He, Q.; Yang, B.; Ying, M. DJ-1 suppresses ferroptosis through preserving the activity of S-adenosyl homocysteine hydrolase. Nat. Commun., 2020, 11(1), 1251.
[http://dx.doi.org/10.1038/s41467-020-15109-y] [PMID: 32144268]
[42]
Cao, J.; Lou, S.; Ying, M.; Yang, B. DJ-1 as a human oncogene and potential therapeutic target. Biochem. Pharmacol., 2015, 93(3), 241-250.
[http://dx.doi.org/10.1016/j.bcp.2014.11.012] [PMID: 25498803]
[43]
Wilson, M.A. The role of cysteine oxidation in DJ-1 function and dysfunction. Antioxid. Redox Signal., 2011, 15(1), 111-122.
[http://dx.doi.org/10.1089/ars.2010.3481] [PMID: 20812780]
[44]
Cao, J.; Ying, M.; Xie, N.; Lin, G.; Dong, R.; Zhang, J.; Yan, H.; Yang, X.; He, Q.; Yang, B. The oxidation states of DJ-1 dictate the cell fate in response to oxidative stress triggered by 4-hpr: Autophagy or apoptosis? Antioxid. Redox Signal., 2014, 21(10), 1443-1459.
[http://dx.doi.org/10.1089/ars.2013.5446] [PMID: 24392637]
[45]
Casey, M. DJ-1, a cancer- and Parkinson’s disease-associated protein, stabilizes the antioxidant transcriptional master regulator Nrf2. Proc. Natl. Acad. Sci. USA, 2006, 103, 6.
[46]
Raninga, P.V.; Di Trapani, G.; Tonissen, K.F. The multifaceted roles of DJ-1 as an antioxidant. Adv. Exp. Med. Biol., 2017, 1037, 67-87.
[http://dx.doi.org/10.1007/978-981-10-6583-5_6] [PMID: 29147904]
[47]
Jiang, L.; Chen, X.; Wu, Q.; Zhu, H.; Du, C.; Ying, M.; He, Q.; Zhu, H.; Yang, B.; Cao, J. The C terminus of DJ-1 determines its homodimerization, MGO detoxification activity and suppression of ferroptosis. Acta Pharmacol. Sin., 2021, 42(7), 1150-1159.
[http://dx.doi.org/10.1038/s41401-020-00531-1] [PMID: 33024240]
[48]
Doll, S.; Freitas, F.P.; Shah, R.; Aldrovandi, M.; da Silva, M.C.; Ingold, I.; Goya Grocin, A.; Xavier da Silva, T.N.; Panzilius, E.; Scheel, C.H.; Mourão, A.; Buday, K.; Sato, M.; Wanninger, J.; Vignane, T.; Mohana, V.; Rehberg, M.; Flatley, A.; Schepers, A.; Kurz, A.; White, D.; Sauer, M.; Sattler, M.; Tate, E.W.; Schmitz, W.; Schulze, A.; O’Donnell, V.; Proneth, B.; Popowicz, G.M.; Pratt, D.A.; Angeli, J.P.F.; Conrad, M. FSP1 is a glutathione-independent ferroptosis suppressor. Nature, 2019, 575(7784), 693-698.
[http://dx.doi.org/10.1038/s41586-019-1707-0] [PMID: 31634899]
[49]
Seiler, A.; Schneider, M.; Förster, H.; Roth, S.; Wirth, E.K.; Culmsee, C.; Plesnila, N.; Kremmer, E.; Rådmark, O.; Wurst, W.; Bornkamm, G.W.; Schweizer, U.; Conrad, M. Glutathione peroxidase 4 senses and translates oxidative stress into 12/15-lipoxygenase dependent- and AIF-mediated cell death. Cell Metab., 2008, 8(3), 237-248.
[http://dx.doi.org/10.1016/j.cmet.2008.07.005] [PMID: 18762024]
[50]
Bersuker, K.; Hendricks, J.M.; Li, Z.; Magtanong, L.; Ford, B.; Tang, P.H.; Roberts, M.A.; Tong, B.; Maimone, T.J.; Zoncu, R.; Bassik, M.C.; Nomura, D.K.; Dixon, S.J.; Olzmann, J.A. The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit ferroptosis. Nature, 2019, 575(7784), 688-692.
[http://dx.doi.org/10.1038/s41586-019-1705-2] [PMID: 31634900]
[51]
Marshall, K.R.; Gong, M.; Wodke, L.; Lamb, J.H.; Jones, D.J.L.; Farmer, P.B.; Scrutton, N.S.; Munro, A.W. The human apoptosis-inducing protein AMID is an oxidoreductase with a modified flavin cofactor and DNA binding activity. J. Biol. Chem., 2005, 280(35), 30735-30740.
[http://dx.doi.org/10.1074/jbc.M414018200] [PMID: 15958387]
[52]
Shimada, K.; Skouta, R.; Kaplan, A.; Yang, W.S.; Hayano, M.; Dixon, S.J.; Brown, L.M.; Valenzuela, C.A.; Wolpaw, A.J.; Stockwell, B.R. Global survey of cell death mechanisms reveals metabolic regulation of ferroptosis. Nat. Chem. Biol., 2016, 12(7), 497-503.
[http://dx.doi.org/10.1038/nchembio.2079] [PMID: 27159577]
[53]
Loboda, A.; Damulewicz, M.; Pyza, E.; Jozkowicz, A.; Dulak, J. Role of Nrf2/HO-1 system in development, oxidative stress response and diseases: An evolutionarily conserved mechanism. Cell. Mol. Life Sci., 2016, 73(17), 3221-3247.
[http://dx.doi.org/10.1007/s00018-016-2223-0] [PMID: 27100828]
[54]
Bauer, A.K.; Cho, H.Y.; Miller-DeGraff, L.; Walker, C.; Helms, K.; Fostel, J.; Yamamoto, M.; Kleeberger, S.R. Targeted deletion of Nrf2 reduces urethane-induced lung tumor development in mice. PLoS One, 2011, 6(10), e26590.
[http://dx.doi.org/10.1371/journal.pone.0026590] [PMID: 22039513]
[55]
Chen, D.; Shan, J.; Zhu, W.G.; Qin, J.; Gu, W. Transcription-independent ARF regulation in oncogenic stress-mediated p53 responses. Nature, 2010, 464(7288), 624-627.
[http://dx.doi.org/10.1038/nature08820] [PMID: 20208519]
[56]
Chen, D.; Tavana, O.; Chu, B.; Erber, L.; Chen, Y.; Baer, R.; Gu, W. NRF2 is a major target of ARF in p53-independent tumor suppression. Mol. Cell, 2017, 68(1), 224-232.e4.
[http://dx.doi.org/10.1016/j.molcel.2017.09.009] [PMID: 28985506]
[57]
Chio, I.I.C.; Jafarnejad, S.M.; Ponz-Sarvise, M.; Park, Y.; Rivera, K.; Palm, W.; Wilson, J.; Sangar, V.; Hao, Y.; Öhlund, D.; Wright, K.; Filippini, D.; Lee, E.J.; Da Silva, B.; Schoepfer, C.; Wilkinson, J.E.; Buscaglia, J.M.; DeNicola, G.M.; Tiriac, H.; Hammell, M.; Crawford, H.C.; Schmidt, E.E.; Thompson, C.B.; Pappin, D.J.; Sonenberg, N.; Tuveson, D.A. NRF2 promotes tumor maintenance by modulating mRNA translation in pancreatic cancer. Cell, 2016, 166(4), 963-976.
[http://dx.doi.org/10.1016/j.cell.2016.06.056] [PMID: 27477511]
[58]
Harada, N.; Kanayama, M.; Maruyama, A.; Yoshida, A.; Tazumi, K.; Hosoya, T.; Mimura, J.; Toki, T.; Maher, J.M.; Yamamoto, M.; Itoh, K. Nrf2 regulates ferroportin 1-mediated iron efflux and counteracts lipopolysaccharide-induced ferroportin 1 mRNA suppression in macrophages. Arch. Biochem. Biophys., 2011, 508(1), 101-109.
[http://dx.doi.org/10.1016/j.abb.2011.02.001] [PMID: 21303654]
[59]
Dodson, M.; Castro-Portuguez, R.; Zhang, D.D. NRF2 plays a critical role in mitigating lipid peroxidation and ferroptosis. Redox Biol., 2019, 23, 101107.
[http://dx.doi.org/10.1016/j.redox.2019.101107] [PMID: 30692038]
[60]
Liu, P.; Wu, D.; Duan, J.; Xiao, H.; Zhou, Y.; Zhao, L.; Feng, Y. NRF2 regulates the sensitivity of human NSCLC cells to cystine deprivation-induced ferroptosis via FOCAD-FAK signaling pathway. Redox Biol., 2020, 37, 101702.
[http://dx.doi.org/10.1016/j.redox.2020.101702] [PMID: 32898818]
[61]
Roh, J.L.; Kim, E.H.; Jang, H.; Shin, D. Nrf2 inhibition reverses the resistance of cisplatin-resistant head and neck cancer cells to artesunate-induced ferroptosis. Redox Biol., 2017, 11, 254-262.
[http://dx.doi.org/10.1016/j.redox.2016.12.010] [PMID: 28012440]
[62]
Gaschler, M.M.; Andia, A.A.; Liu, H.; Csuka, J.M.; Hurlocker, B.; Vaiana, C.A.; Heindel, D.W.; Zuckerman, D.S.; Bos, P.H.; Reznik, E.; Ye, L.F.; Tyurina, Y.Y.; Lin, A.J.; Shchepinov, M.S.; Chan, A.Y.; Peguero-Pereira, E.; Fomich, M.A.; Daniels, J.D.; Bekish, A.V.; Shmanai, V.V.; Kagan, V.E.; Mahal, L.K.; Woerpel, K.A.; Stockwell, B.R. FINO2 initiates ferroptosis through GPX4 inactivation and iron oxidation. Nat. Chem. Biol., 2018, 14(5), 507-515.
[http://dx.doi.org/10.1038/s41589-018-0031-6] [PMID: 29610484]
[63]
Rachel, P. Five-membered ring peroxide selectively initiates ferroptosis in cancer cells. ACS Chem. Biol., 2016, 11, 8.
[64]
Ye, F. HMGB1 regulates erastin-induced ferroptosis via RAS-JNK/p38 signaling in HL-60/NRASQ61L cells. Am. J. Cancer Res., 2019, 9, 10.
[65]
Li, C.; Zhang, Y.; Liu, J.; Kang, R.; Klionsky, D.J.; Tang, D. Mitochondrial DNA stress triggers autophagy-dependent ferroptotic death. Autophagy, 2021, 17(4), 948-960.
[http://dx.doi.org/10.1080/15548627.2020.1739447] [PMID: 32186434]
[66]
Choi, J.W.; Park, J.W.; Na, Y.; Jung, S.J.; Hwang, J.K.; Choi, D.; Lee, K.G.; Yun, C.O. Using a magnetic field to redirect an oncolytic adenovirus complexed with iron oxide augments gene therapy efficacy. Biomaterials, 2015, 65, 163-174.
[http://dx.doi.org/10.1016/j.biomaterials.2015.07.001] [PMID: 26164117]
[67]
Belyanina, I.V.; Zamay, T.N.; Zamay, G.S.; Zamay, S.S.; Kolovskaya, O.S.; Ivanchenko, T.I.; Denisenko, V.V.; Kirichenko, A.K.; Glazyrin, Y.E.; Garanzha, I.V.; Grigorieva, V.V.; Shabanov, A.V.; Veprintsev, D.V.; Sokolov, A.E.; Sadovskii, V.M.; Gargaun, A.; Berezovski, M.V.; Kichkailo, A.S. In vivo cancer cells elimination guided by aptamer-functionalized gold-coated magnetic nanoparticles and controlled with low frequency alternating magnetic field. Theranostics, 2017, 7(13), 3326-3337.
[http://dx.doi.org/10.7150/thno.17089] [PMID: 28900513]
[68]
Yu, B.; Choi, B.; Li, W.; Kim, D.H. Magnetic field boosted ferroptosis-like cell death and responsive MRI using hybrid vesicles for cancer immunotherapy. Nat. Commun., 2020, 11(1), 3637.
[http://dx.doi.org/10.1038/s41467-020-17380-5] [PMID: 32686685]
[69]
Ghibelli, L.; Cerella, C.; Cordisco, S.; Clavarino, G.; Marazzi, S.; De Nicola, M.; Nuccitelli, S.; D’Alessio, M.; Magrini, A.; Bergamaschi, A.; Guerrisi, V.; Porfiri, L.M. NMR exposure sensitizes tumor cells to apoptosis. Apoptosis, 2006, 11(3), 359-365.
[http://dx.doi.org/10.1007/s10495-006-4001-1] [PMID: 16528477]
[70]
Wydra, R.J.; Rychahou, P.G.; Evers, B.M.; Anderson, K.W.; Dziubla, T.D.; Hilt, J.Z. The role of ROS generation from magnetic nanoparticles in an alternating magnetic field on cytotoxicity. Acta Biomater., 2015, 25, 284-290.
[http://dx.doi.org/10.1016/j.actbio.2015.06.037] [PMID: 26143604]
[71]
Liang, H.; Guo, J.; Shi, Y.; Zhao, G.; Sun, S.; Sun, X. Porous yolk-shell Fe/Fe3O4 nanoparticles with controlled exposure of highly active Fe(0) for cancer therapy. Biomaterials, 2021, 268, 120530.
[http://dx.doi.org/10.1016/j.biomaterials.2020.120530] [PMID: 33296795]
[72]
Hayano, M.; Yang, W.S.; Corn, C.K.; Pagano, N.C.; Stockwell, B.R. Loss of cysteinyl-tRNA synthetase (CARS) induces the transsulfuration pathway and inhibits ferroptosis induced by cystine deprivation. Cell Death Differ., 2016, 23(2), 270-278.
[http://dx.doi.org/10.1038/cdd.2015.93] [PMID: 26184909]
[73]
Wu, J.; Feng, Z.; Chen, L.; Li, Y.; Bian, H.; Geng, J.; Zheng, Z.H.; Fu, X.; Pei, Z.; Qin, Y.; Yang, L.; Zhao, Y.; Wang, K.; Chen, R.; He, Q.; Nan, G.; Jiang, X.; Chen, Z.N.; Zhu, P. TNF antagonist sensitizes synovial fibroblasts to ferroptotic cell death in collagen-induced arthritis mouse models. Nat. Commun., 2022, 13(1), 676.
[http://dx.doi.org/10.1038/s41467-021-27948-4] [PMID: 35115492]
[74]
Hao, S.; Yu, J.; He, W.; Huang, Q.; Zhao, Y.; Liang, B.; Zhang, S.; Wen, Z.; Dong, S.; Rao, J.; Liao, W.; Shi, M. Cysteine dioxygenase 1 mediates erastin-induced ferroptosis in human gastric cancer cells. Neoplasia, 2017, 19(12), 1022-1032.
[http://dx.doi.org/10.1016/j.neo.2017.10.005] [PMID: 29144989]
[75]
Basit, F.; van Oppen, L.M.P.E.; Schöckel, L.; Bossenbroek, H.M.; van Emst-de Vries, S.E.; Hermeling, J.C.W.; Grefte, S.; Kopitz, C.; Heroult, M.; H.G.M. Willems, P.; Koopman, W.J.H. Mitochondrial complex I inhibition triggers a mitophagy-dependent ROS increase leading to necroptosis and ferroptosis in melanoma cells. Cell Death Dis., 2017, 8(3), e2716.
[http://dx.doi.org/10.1038/cddis.2017.133] [PMID: 28358377]
[76]
Lei, G.; Zhang, Y.; Koppula, P.; Liu, X.; Zhang, J.; Lin, S.H.; Ajani, J.A.; Xiao, Q.; Liao, Z.; Wang, H.; Gan, B. The role of ferroptosis in ionizing radiation-induced cell death and tumor suppression. Cell Res., 2020, 30(2), 146-162.
[http://dx.doi.org/10.1038/s41422-019-0263-3] [PMID: 31949285]
[77]
Badgley, M.A.; Kremer, D.M.; Maurer, H.C.; DelGiorno, K.E.; Lee, H.J.; Purohit, V.; Sagalovskiy, I.R.; Ma, A.; Kapilian, J.; Firl, C.E.M.; Decker, A.R.; Sastra, S.A.; Palermo, C.F.; Andrade, L.R.; Sajjakulnukit, P.; Zhang, L.; Tolstyka, Z.P.; Hirschhorn, T.; Lamb, C.; Liu, T.; Gu, W.; Seeley, E.S.; Stone, E.; Georgiou, G.; Manor, U.; Iuga, A.; Wahl, G.M.; Stockwell, B.R.; Lyssiotis, C.A.; Olive, K.P. Cysteine depletion induces pancreatic tumor ferroptosis in mice. Science, 2020, 368(6486), 85-89.
[http://dx.doi.org/10.1126/science.aaw9872] [PMID: 32241947]
[78]
Jiang, L.; Kon, N.; Li, T.; Wang, S.J.; Su, T.; Hibshoosh, H.; Baer, R.; Gu, W. Ferroptosis as a p53-mediated activity during tumour suppression. Nature, 2015, 520(7545), 57-62.
[http://dx.doi.org/10.1038/nature14344] [PMID: 25799988]
[79]
Li, L.; Sun, S.; Tan, L.; Wang, Y.; Wang, L.; Zhang, Z.; Zhang, L. Polystyrene nanoparticles reduced ros and inhibited ferroptosis by triggering lysosome stress and TFEB nucleus translocation in a size-dependent manner. Nano Lett., 2019, 19(11), 7781-7792.
[http://dx.doi.org/10.1021/acs.nanolett.9b02795] [PMID: 31558022]
[80]
Tarangelo, A.; Magtanong, L.; Bieging-Rolett, K.T.; Li, Y.; Ye, J.; Attardi, L.D.; Dixon, S.J. p53 suppresses metabolic stress-induced ferroptosis in cancer cells. Cell Rep., 2018, 22(3), 569-575.
[http://dx.doi.org/10.1016/j.celrep.2017.12.077] [PMID: 29346757]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy