Generic placeholder image

Current Organic Synthesis

Editor-in-Chief

ISSN (Print): 1570-1794
ISSN (Online): 1875-6271

Research Article

Synthesis of Misoprostol, and Intramolecular Isomerization of A-Type Misoprostol into B-Type Misoprostol using 1, 8-Diazabicyclo [5.4.0] undec- 7-ene (DBU)

Author(s): Nagarjuna Reddy Guttikonda, Rama Mohana Reddy Jaggavarapu, Muvvala Venkatanarayana*, Raja Reddy Kamatham, Akula Nagarjuna, Ravi Kumar Cheedarala* and Ravikumar Surepally

Volume 20, Issue 4, 2023

Published on: 15 November, 2022

Page: [484 - 490] Pages: 7

DOI: 10.2174/1570179419666220831100708

Price: $65

Abstract

Objective: Misoprostol is a synthetic prostaglandin that is related structurally to naturally occurring prostaglandin (PG), and it has been acknowledged as an effective inhibitor of gastric acid secretion when administered intravenously.

Methods: In the present study, the novel application of 1,8-Diazabicyclo[5.4.0]undec-7-ene, a cyclic unsaturated amine [DBU] for the conversion of A-type Misoprostol (A-MP) to B-type Misoprostol (B-MP) via intramolecular isomerization.

Results: The intramolecular isomerization process was successfully applied for the separation of enantio-pure isomers with no impurities using DBU.

Conclusion: The chemical structures of A-MP and B-MP were confirmed using spectral analyses of 1H-NMR, 13C-NMR and Mass spectroscopy.

Keywords: Misoprostol, DBU, prostaglandin, intra molecular, isomerization, inhibitor.

« Previous
Graphical Abstract
[1]
Watkinson, G.; Hopkins, A.; Akbar, F.A. The therapeutic efficacy of misoprostol in peptic ulcer disease. Postgrad. Med. J., 1988, 64(Suppl. 1), 60-77.
[PMID: 3138682]
[2]
Robert, A.; Nezamis, J.E.; Phillips, J.P. Inhibition of gastric secretion by prostaglandins. Am. J. Dig. Dis., 1967, 12(10), 1073-1076.
[http://dx.doi.org/10.1007/BF02233268] [PMID: 4859803]
[3]
Tang, O.S.; Gemzell-Danielsson, K.; Ho, P.C. Misoprostol: Pharmacokinetic profiles, effects on the uterus and side-effects. Int. J. Gynaecol. Obstet., 2007, 99(Suppl. 2), S160-S167.
[http://dx.doi.org/10.1016/j.ijgo.2007.09.004] [PMID: 17963768]
[4]
Zieman, M.; Fong, S.K.; Benowitz, N.L.; Banskter, D.; Darney, P.D. Absorption kinetics of misoprostol with oral or vaginal administration. Obstet. Gynecol., 1997, 90(1), 88-92.
[http://dx.doi.org/10.1016/S0029-7844(97)00111-7] [PMID: 9207820]
[5]
Ho, P.C.; Ngai, S.W.; Liu, K.L.; Wong, G.C.; Lee, S.W. Vaginal misoprostol compared with oral misoprostol in termination of second-trimester pregnancy. Obstet. Gynecol., 1997, 90(5), 735-738.
[http://dx.doi.org/10.1016/S0029-7844(97)00419-5] [PMID: 9351755]
[6]
Ghosh, N. DBU (1,8-diazabicyclo[5.4.0]undec-7- ene) – A nucleophillic base. Synlett, 2004, (3), 574-575.
[http://dx.doi.org/10.1055/s-2004-815436]
[7]
Oediger, H.; Moller, F.; Eiter, K. Bicyclic amidines as reagents in organic syntheses. Synthesis, 1972, 1972, 591-598.
[8]
Yeom, C-E. 1, 8-Diazabicyclo [5.4. 0] undec-7-ene (DBU)-promoted efficient and versatile aza-Michael addition. Tetrahedron, 2007, 63(4), 904-909.
[9]
Jiang, X.; Wang, X.; Huang, X.; Li, G.; Yu, C. Practical synthesis of methyl 7-(3-hydroxy-5-oxocyclopent-1-en-1-yl)-heptanoate. J. Saudi Chem. Soc., 2017, 21(5), 587-592.
[http://dx.doi.org/10.1016/j.jscs.2017.01.004]
[10]
Ivanova, N.A.; Kislitsina, K.S.; Miftakhov, M.S. Synthesis of PGB type misoprostol analog. Russ. J. Org. Chem., 2011, 47, 1474-1478.
[http://dx.doi.org/10.1134/S1070428011100034]
[11]
Cheedrala, R.K.; Sachwani, R.; Palakodety, R.K. Lipase mediated kinetic resolution of benzimidazolyl ethanols. Tetrahedron Asymmetry, 2008, 19, 901-905.
[http://dx.doi.org/10.1016/j.tetasy.2008.03.021]
[12]
Cheedarala, R.K.; Sunkara, V. Park, Joon Won Facile synthesis of second-generation dendrons with an orthogonal functional group at the focal point. Synth. Commun., 2009, 39, 1966-1980.
[http://dx.doi.org/10.1080/00397910802627076]
[13]
Dubey, P.K.; Cheedarala, R.K.; Balaji, B. Solid phase synthesis of benzimidazole ketones and benzimidazole chalcones under solvent-free conditions. Indian J. Chemistry B, 2003, 42B, 3128-3130.
[14]
Dubey, P.K.; Naidu, A.; Cheedarala, R.K. Studies on syntheses of 1-alkyl-2-substituted thiazolylbenzimidazoles. Indian J. Chemistry B, 2003, 42B, 931-934.
[15]
Ramaiah, K.; Dubey, P.K.; Ramanatham, J.; Cheedarala, R.K.; Grossert, J.S. Benzimidazolium dichromates: Efficient reagents for selective oxidation of alcohols to carbonyl compounds. Indian J. Chemistry B, 2003, 42B, 1765-1767.
[http://dx.doi.org/10.1002/chin.200344047]
[16]
Dubey, P.K.; Cheedarala, R.K.; Prasada, R.P.V.V. Syntheses of 1-alkyl -2-(substituted-2-pyridyl)benzimidazoles. Indian J. Chemistry B, 2003, 42B, 2115-2118.
[17]
Dubey, P.K.; Naidu, A.; Cheedarala, R.K.; Prasada, R.P.V.V. Preparation of 4-(1-alkyl-benzo[d]imidazole-2-yl)-2-phenyl-2,3 dihydrobenzo(b) [1,4] thiazepines. Indian J. Chemistry B, 2003, 42B, 1701-1705.
[http://dx.doi.org/10.1002/chin.200344161]
[18]
Dubey, P.K.; Kumar, R.; Cheedarala, R.K.; Hooper, D.L. Condensation of o-phenylene diamine with cinnamic acids. Synth. Commun., 2001, 31, 3439-3446.
[http://dx.doi.org/10.1081/SCC-100106202]
[19]
Park, S.J.; Cheedrala, R.K.; Diallo, M.S.; Kim, C.; Kim, I.S.; Goddard, W.A. Nanofiltration membranes based on polyvinylidene fluoride nanofibrous scaffolds and crosslinked polyethyleneimine networks. J. Nanopart. Res., 2012, 14, 884-887.
[http://dx.doi.org/10.1007/s11051-012-0884-7]
[20]
Kwon, M.S.; Kim, N.; Seo, S.H.; Park, I.S.; Cheedrala, R.K.; Park, J. Recyclable palladium catalyst for highly selective α alkylation of ketones with alcohols. Angew. Chem. Int. Ed., 2005, 44(42), 6913-6915.
[http://dx.doi.org/10.1002/anie.200502422] [PMID: 16206316]
[21]
Kwon, M. S.; Bosco, W. J.; Cheedarala, R. K.; Park, J. W. One-pot synthesis of imines and secondary amines by pd-catalyzed coupling of primary benzyl alcohols and primary amines. ChemInform, 2009, 40, 071.
[http://dx.doi.org/10.1021/jo8026609]
[22]
Jeon, J.H.; Cheedarala, R.K.; Kee, C.D.; Oh, I.K. Dry‐type artificial muscles based on pendent sulfonated chitosan and functionalized graphene oxide for greatly enhanced ionic interactions and mechanical stiffness. Adv. Funct. Mater., 2013, 23, 6007-6018.
[http://dx.doi.org/10.1002/adfm.201203550]
[23]
Cheedarala, R.K.; Jeon, J.H.; Kee, C.D.; Oh, I.K. Bio‐inspired all‐organic soft actuator based on a π–π stacked 3d ionic network membrane and ultra‐fast solution processing. Adv. Funct. Mater., 2014, 24, 6005-6015.
[http://dx.doi.org/10.1002/adfm.201401136]
[24]
Cheedarala, R.K.; Kim, G.H.; Cho, S.; Lee, J.; Kim, J.; Song, H.K.; Kim, J.Y.; Yang, C. Ladder-type heteroacene polymers bearing carbazole and thiophene ring units and their use in field-effect transistors and photovoltaic cells. J. Mater. Chem., 2011, 21, 843-850.
[http://dx.doi.org/10.1039/C0JM01897J]
[25]
Cheedarala, R.K.; Kong, K.; Park, E.J.; Park, Y.B.; Park, H.W. Experimental study on critical heat flux of highly efficient soft hydrophilic CuO-Chitosan nano fluid templates. Int. J. Heat Mass Transf., 2016, 100, 396-406.
[http://dx.doi.org/10.1016/j.ijheatmasstransfer.2016.04.096]
[26]
Woo, S.; Lee, Y.; Sunkara, V.; Cheedarala, R.K.; Shin, H.S.; Choi, H.C.; Park, J.W. “Fingertip”-guided noncovalent functionalization of carbon nanotubes by dendrons. Langmuir, 2007, 23(23), 11373-11376.
[http://dx.doi.org/10.1021/la701968y] [PMID: 17918872]
[27]
Cheedarala, R.K.; Park, E.J.; Park, Y.B.; Park, H.W. Highly wettable cuo:graphene oxide core-shell porous nanocomposites for enhanced critical heat flux. Phys. Status Solidi, 2015, 212, 1756-1766.
[http://dx.doi.org/10.1002/pssa.201431858]
[28]
Nahian, S.A.; Cheedarala, R.K.; Ahn, K.K. A study of sustainable green current generated by the fluid-based triboelectric nanogenerator (Flu-TENG) with a comparison of contact and sliding mode. Nano Energy, 2017, 38, 447-456.
[http://dx.doi.org/10.1016/j.nanoen.2017.06.012]
[29]
Cheedarala, R.K.; Parvez, A.N.; Ahn, K.K. Electric impulse spring-assisted contact separation mode triboelectric nanogenerator fabricated from polyaniline emeraldine salt and woven carbon fibers. Nano Energy, 2018, 53, 362-372.
[http://dx.doi.org/10.1016/j.nanoen.2018.08.066]
[30]
Kong, K.; Cheedarala, R.K.; Kim, M.; Roh, H.D.; Park, Y.B.; Park, H.W. Electrical thermal heating and piezoresistive characteristics of hybrid CuO–woven carbon fiber/vinyl ester composite laminates. Compos., Part A Appl. Sci. Manuf., 2016, 85, 103-112.
[http://dx.doi.org/10.1016/j.compositesa.2016.03.015]
[31]
Cheedarala, R.K.; Duy, K.K. Ahn, Double characteristic BNO-SPI-TENGs for robust contact electrification by vertical contact separation mode through ion and electron charge transfer. Nano Energy, 2018, 44, 430-437.
[http://dx.doi.org/10.1016/j.nanoen.2017.12.019]
[32]
Cheedarala, R.K.; Shahriar, M.; Ahn, J.H.; Hwang, J.Y.; Ahn, K.K. Harvesting liquid stream energy from unsteady peristaltic flow induced pulsatile Flow-TENG (PF-TENG) using slipping polymeric surface inside elastomeric tubing. Nano Energy, 2019, 65, 104017.
[http://dx.doi.org/10.1016/j.nanoen.2019.104017]
[33]
Chaitanya, S.; Cheedarala, R.K.; Song, J.I. Microwave-synthesized Mg+2 doped jute fibers and their application as a reinforcement in biocomposites. Compos., Part B Eng., 2020, 197, 108154.
[http://dx.doi.org/10.1016/j.compositesb.2020.108154]
[34]
Kwon, M.S.; Kim, N.; Seo, S.H.; Park, I.S.; Cheedrala, R.K. Cheedrala, recyclable palladium catalyst for a highly selective α-alkylation of ketones with alcohols. Chem. Inform., 2006, 350, 07-092.
[http://dx.doi.org/10.1002/chin.200607092]
[35]
Cheedarala, R.K.; Chidambaram, R.R.; Siva, A.; Song, J.I. An aerobic oxidation of alcohols into carbonyl synthons using bipyridyl-cinchona based palladium catalyst. RSC Adv., 2021, 11(52), 32942-32954.
[http://dx.doi.org/10.1039/D1RA05855J] [PMID: 35493605]
[36]
Gaikwad, S.; Cheedarala, R.K.; Gaikwad, R.; Kim, S.; Han, S. Controllable synthesis of 1, 3, 5-tris (1H-benzo[d]imidazole-2-yl) benzene-based MOFs. Appl. Sci. (Basel), 2021, 11, 9856.
[http://dx.doi.org/10.3390/app11219856]
[37]
Cheedarala, R.K.; Prabakar, M.N.; Cho, B.G.; Park, Y.B.; Song, J.I. Novel 3D-networked melamine–naphthalene–polyamic acid nanofillers doped in vinyl ester resin for higher flame retardancy. Mater. Adv., 2021, 2, 4339-4351.
[http://dx.doi.org/10.1039/D1MA00048A]
[38]
Cheedarala, R.K.; Song, J.I. In situ generated hydrophobic micro ripples via π-π stacked pop-up reduced graphene oxide nanoflakes for extended critical heat flux and thermal conductivities. RSC Adv., 2019, 9(54), 31735-31746.
[http://dx.doi.org/10.1039/C9RA04563E] [PMID: 35527973]
[39]
Cheedarala, R.K.; Song, J.I. Face-centred cubic CuO nanocrystals for enhanced pool-boiling critical heat flux and higher thermal conductivities. Int. J. Heat Mass Transf., 2020, 162, 120391.
[http://dx.doi.org/10.1016/j.ijheatmasstransfer.2020.120391]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy