Generic placeholder image

Recent Patents on Nanotechnology

Editor-in-Chief

ISSN (Print): 1872-2105
ISSN (Online): 2212-4020

Review Article

Hybrid Nanocarriers for Neurological Disorders: Diagnostic & Therapeutic Approach

Author(s): Anuradha Mishra*, Rabiya Ahsan, Anas Islam, Rohit Kumar Tiwari and Pragyandip P. Dash

Volume 18, Issue 2, 2024

Published on: 23 September, 2022

Page: [164 - 178] Pages: 15

DOI: 10.2174/1872210516666220825170125

Price: $65

Open Access Journals Promotions 2
Abstract

Background: Around 1.5 billion people in the world are affected by complex neurological disorders, and the figure is increasing alarmingly due to unsatisfactory clinical outcomes. To date, no conventional formulation can show a promising effect on the control or prevention of neurodegeneration. However, Nano delivery tools have shown better penetration and profound action on the targeted area of the brain.

Methods: Although existing Nano therapeutic approaches are abundant but would not reach the clinic due to their improper bioavailability, BBB restricts its entry and causes improper biodistribution, so it is a challenge to use certain bioactive as a potential therapy in neurodegenerative disorders. Hybrid nanocarriers are nano-vesicular transported systems which could be utilized as carriers for the delivery of both hydrophilic and hydrophobic compounds. Available patents on nanodelivery for therapeutic approaches will also include in this review.

Results: Hybrid Nano delivery system may provide good stability to polar and nonpolar compounds and improve their stability.

Conclusion: This manuscript updates the available findings on the Nano vesicular system to deliver drugs for neurodegenerative disorders.

Keywords: Nanocarriers, hybrid, bioavailability, neurodegeneration, bioactive, clinical outcomes.

Graphical Abstract
[1]
Khan J, Rudrapal M, Bhat EA, et al. Perspective insights to bio-nanomaterials for the treatment of neurological disorders. Front Bioeng Biotechnol 2021; 9: 724158.
[http://dx.doi.org/10.3389/fbioe.2021.724158] [PMID: 34712651]
[2]
Sarrouilhe D, Defamie N, Mesnil M. Is the exposome involved in brain disorders through the serotoninergic system? Biomedicines 2021; 9(10): 1351.
[http://dx.doi.org/10.3390/biomedicines9101351] [PMID: 34680468]
[3]
Siddiqi KS, Husen A, Sohrab SS, Yassin MO. Recent status of nanomaterial fabrication and their potential applications in neurological disease management. Nanoscale Res Lett 2018; 13(1): 231.
[http://dx.doi.org/10.1186/s11671-018-2638-7] [PMID: 30097809]
[4]
Kanwar JR, Sun X, Punj V, et al. Nanoparticles in the treatment and diagnosis of neurological disorders: Untamed dragon with fire power to heal. Nanomedicine 2012; 8(4): 399-414.
[http://dx.doi.org/10.1016/j.nano.2011.08.006] [PMID: 21889479]
[5]
Gadhvi V, Brijesh K, Gupta A, Roopchandani K, Patel N. Nanoparticles for brain targeting. Res J Pharm Technol 2013; 6(5): 454-8.
[6]
Smith D, Artursson P, Avdeef A, et al. Passive lipoidal diffusion and carrier-mediated cell uptake are both important mechanisms of membrane permeation in drug disposition. Mol Pharm 2014; 11(6): 1727-38.
[http://dx.doi.org/10.1021/mp400713v] [PMID: 24724562]
[7]
Bellettato CM, Scarpa M. Possible strategies to cross the blood–brain barrier. Ital J Pediatr 2018; 44(S2) (Suppl. 2): 131.
[http://dx.doi.org/10.1186/s13052-018-0563-0] [PMID: 30442184]
[8]
Kanwar J, Sriramoju B, Kanwar RK. Neurological disorders and therapeutics targeted to surmount the blood–brain barrier. Int J Nanomedicine 2012; 7: 3259-78.
[http://dx.doi.org/10.2147/IJN.S30919] [PMID: 22848160]
[9]
Usmani A, Mishra A, Ahmad M. Nanomedicines: A theranostic approach for hepatocellular carcinoma. Artif Cells Nanomed Biotechnol 2018; 46(4): 680-90.
[http://dx.doi.org/10.1080/21691401.2017.1374282] [PMID: 28884605]
[10]
Sohail S. The Future Remedy of Neurological Disorders. In: Cancer Nanotheranostics. Cham: Springer 2021.
[http://dx.doi.org/10.1007/978-3-030-76263-6_5]
[11]
Srikanth M, Kessler JA. Nanotechnology—novel therapeutics for CNS disorders. Nat Rev Neurol 2012; 8(6): 307-18.
[http://dx.doi.org/10.1038/nrneurol.2012.76] [PMID: 22526003]
[12]
Marianecci C, Carafa M. Smart nanovesicles for drug targeting and delivery. Pharmaceutics 2019; 11(4): 147.
[http://dx.doi.org/10.3390/pharmaceutics11040147] [PMID: 30934841]
[13]
Kaur IP, Bhandari R, Bhandari S, Kakkar V. Potential of solid lipid nanoparticles in brain targeting. J Control Release 2008; 127(2): 97-109.
[http://dx.doi.org/10.1016/j.jconrel.2007.12.018] [PMID: 18313785]
[14]
Rai R, Alwani S, Badea I. Polymeric nanoparticles in gene therapy: New avenues of design and optimization for delivery applications. Polymers (Basel) 2019; 11(4): 745.
[http://dx.doi.org/10.3390/polym11040745] [PMID: 31027272]
[15]
Rostami E, Kashanian S, Azandaryani AH, Faramarzi H, Dolatabadi JEN, Omidfar K. Drug targeting using solid lipid nanoparticles. Chem Phys Lipids 2014; 181: 56-61.
[http://dx.doi.org/10.1016/j.chemphyslip.2014.03.006] [PMID: 24717692]
[16]
Gastaldi L, Battaglia L, Peira E, et al. Solid lipid nanoparticles as vehicles of drugs to the brain: Current state of the art. Eur J Pharm Biopharm 2014; 87(3): 433-44.
[http://dx.doi.org/10.1016/j.ejpb.2014.05.004] [PMID: 24833004]
[17]
Tapeinos C, Battaglini M, Ciofani G. Advances in the design of solid lipid nanoparticles and nanostructured lipid carriers for targeting brain diseases. J Control Release 2017; 264: 306-32.
[http://dx.doi.org/10.1016/j.jconrel.2017.08.033] [PMID: 28844756]
[18]
Zhan SM, Hou DZ, Ping QN, Xu Y. Preparation and entrapment efficiency determination of solid lipid nanoparticles loaded levodopa. Zhongguo Yiyuan Yaoxue Zazhi 2010; 14: 1171-5.
[19]
Prabhu A, Jose J, Kumar L, Salwa S, Vijay Kumar M, Nabavi SM. Transdermal delivery of curcumin-loaded solid lipid nanoparticles as microneedle patch: An in vitro and in vivo study. AAPS PharmSciTech 2022; 23(1): 49.
[http://dx.doi.org/10.1208/s12249-021-02186-5] [PMID: 34988698]
[20]
Esposito E, Fantin M, Marti M, et al. Solid lipid nanoparticles as delivery systems for bromocriptine. Pharm Res 2008; 25(7): 1521-30.
[http://dx.doi.org/10.1007/s11095-007-9514-y] [PMID: 18172580]
[21]
Bondì ML, Craparo EF, Giammona G, Drago F. Brain-targeted solid lipid nanoparticles containing riluzole: Preparation, characterization and biodistribution. Nanomedicine (Lond) 2010; 5(1): 25-32.
[http://dx.doi.org/10.2217/nnm.09.67] [PMID: 20025461]
[22]
Amidi M, Romeijn SG, Borchard G, Junginger HE, Hennink WE, Jiskoot W. Preparation and characterization of protein-loaded N-trimethyl chitosan nanoparticles as nasal delivery system. J Control Release 2006; 111(1-2): 107-16.
[http://dx.doi.org/10.1016/j.jconrel.2005.11.014] [PMID: 16380189]
[23]
Tamilselvan N, Raghavan CV. Formulation and characterization of Anti alzheimer’s drug loaded chitosan nanoparticles and its in vitro biological evaluation. J Young Pharm 2014; 7(1): 28-35.
[http://dx.doi.org/10.5530/jyp.2015.1.6]
[24]
Rahiminejad A, Dinarvand R, Johari B, et al. Preparation and investigation of indirubin-loaded SLN nanoparticles and their anti-cancer effects on human glioblastoma U87MG cells. Cell Biol Int 2019; 43(1): 2-11.
[http://dx.doi.org/10.1002/cbin.11037] [PMID: 30080277]
[25]
Sandhir R, Yadav A, Mehrotra A, Sunkaria A, Singh A, Sharma S. Curcumin nanoparticles attenuate neurochemical and neurobehavioral deficits in experimental model of Huntington’s disease. Neuromolecular Med 2014; 16(1): 106-18.
[http://dx.doi.org/10.1007/s12017-013-8261-y] [PMID: 24008671]
[26]
Frézard F, Schettini DA, Rocha OGF, Demicheli C. Liposomes: Physicochemical and pharmacological properties, applications in antimony-based chemotherapy. Quim Nova 2005; 8: 511-8.
[http://dx.doi.org/10.1590/S0100-40422005000300025]
[27]
Fontes MAP, Vaz GC, Cardoso TZD, et al. GABA-containing liposomes: Neuroscience applications and translational perspectives for targeting neurological diseases. Nanomedicine 2018; 14(3): 781-8.
[http://dx.doi.org/10.1016/j.nano.2017.12.007] [PMID: 29278747]
[28]
Zasadzinski JA, Wong B, Forbes N, Braun G, Wu G. Novel methods of enhanced retention in and rapid, targeted release from liposomes. Curr Opin Colloid Interface Sci 2011; 16(3): 203-14.
[http://dx.doi.org/10.1016/j.cocis.2010.12.004] [PMID: 21603081]
[29]
Kahana M, Weizman A, Gabay M, et al. Liposome-based targeting of dopamine to the brain: A novel approach for the treatment of Parkinson’s disease. Mol Psychiatry 2021; 26(6): 2626-32.
[http://dx.doi.org/10.1038/s41380-020-0742-4] [PMID: 32372010]
[30]
Hsu S-H. PEGylated liposomes incorporated with nonionic surfactants as an apomorphine delivery system targeting the brain: In vitro release and in vivo real-time imaging. Curr Nanosci 2011; 7(2): 191-9.
[http://dx.doi.org/10.2174/157341311794653686]
[31]
Pujol-Autonell I, Mansilla MJ, Rodriguez-Fernandez S, et al. Liposome-based immunotherapy against autoimmune diseases: Therapeutic effect on multiple sclerosis. Nanomedicine (Lond) 2017; 12(11): 1231-42.
[http://dx.doi.org/10.2217/nnm-2016-0410] [PMID: 28593827]
[32]
Waltl I, Käufer C, Bröer S. et al. Macrophage depletion by liposome-encapsulated clodronate suppresses seizures but not hippocampal damage after acute viral encephalitis. Neurobiol Dis 2018; 110: 192-205.
[http://dx.doi.org/10.1016/j.nbd.2017.12.001] [PMID: 29208406]
[33]
Mutlu NB, Değim Z, Yılmaz Ş, Eşsiz D, Nacar A. New perspective for the treatment of Alzheimer diseases: Liposomal rivastigmine formulations. Drug Dev Ind Pharm 2011; 37(7): 775-89.
[http://dx.doi.org/10.3109/03639045.2010.541262] [PMID: 21231901]
[34]
Olusanya T, Haj Ahmad R, Ibegbu D, Smith J, Elkordy A. Liposomal drug delivery systems and anticancer drugs. Molecules 2018; 23(4): 907.
[http://dx.doi.org/10.3390/molecules23040907] [PMID: 29662019]
[35]
Li M, Yasumura D, Ma AAK, et al. Intravitreal administration of HA-1077, a ROCK inhibitor, improves retinal function in a mouse model of huntington disease. PLoS One 2013; 8(2): e56026.
[http://dx.doi.org/10.1371/journal.pone.0056026] [PMID: 23409115]
[36]
El-Say KM, El-Sawy HS. Polymeric nanoparticles: Promising platform for drug delivery. Int J Pharm 2017; 528(1-2): 675-91.
[http://dx.doi.org/10.1016/j.ijpharm.2017.06.052] [PMID: 28629982]
[37]
Sim TM, Tarini D, Dheen ST, Bay BH, Srinivasan DK. Nanoparticle-based technology approaches to the management of neurological disorders. Int J Mol Sci 2020; 21(17): 6070.
[http://dx.doi.org/10.3390/ijms21176070] [PMID: 32842530]
[38]
Fattal E, Hillaireau H, Mura S, Nicolas J, Tsapis N. Targeted delivery using biodegradable polymeric nanoparticles. In: Fundamentals and applications of controlled release drug delivery. Boston, MA: Springer 2012.
[http://dx.doi.org/10.1007/978-1-4614-0881-9_10]
[39]
Saganuwan SA. Biomedical application of polymers: A case study of non-CNS drugs becoming CNS acting drugs. Cent Nerv Syst Agents Med Chem 2018; 18(1): 32-8.
[http://dx.doi.org/10.2174/1871524917666170821115748] [PMID: 28828968]
[40]
Patel T, Zhou J, Piepmeier JM, Saltzman WM. Polymeric nanoparticles for drug delivery to the central nervous system. Adv Drug Deliv Rev 2012; 64(7): 701-5.
[http://dx.doi.org/10.1016/j.addr.2011.12.006] [PMID: 22210134]
[41]
Moreadith RW, Viegas TX, Bentley MD, et al. Clinical development of a poly(2-oxazoline) (POZ) polymer therapeutic for the treatment of Parkinson’s disease – Proof of concept of POZ as a versatile polymer platform for drug development in multiple therapeutic indications. Eur Polym J 2017; 88: 524-52.
[http://dx.doi.org/10.1016/j.eurpolymj.2016.09.052]
[42]
Rekas A, Lo V, Gadd GE, Cappai R, Yun SI. PAMAM dendrimers as potential agents against fibrillation of α-synuclein, a Parkinson’s disease-related protein. Macromol Biosci 2009; 9(3): 230-8.
[http://dx.doi.org/10.1002/mabi.200800242] [PMID: 19116892]
[43]
Brod SA, Lindsey JW, Wolinsky JS. Multiple sclerosis: Clinical presentation, diagnosis and treatment. Am Fam Physician 1996; 54(4): 1301-1306, 1309-1311.
[PMID: 8816574]
[44]
Bonilla L, Esteruelas G, Ettcheto M, et al. Biodegradable nanoparticles for the treatment of epilepsy: From current advances to future challenges. Epilepsia Open 2021; epi4.12567.
[http://dx.doi.org/10.1002/epi4.12567] [PMID: 34862851]
[45]
Sarvaiya J, Agrawal YK. Chitosan as a suitable nanocarrier material for anti-Alzheimer drug delivery. Int J Biol Macromol 2015; 72: 454-65.
[http://dx.doi.org/10.1016/j.ijbiomac.2014.08.052] [PMID: 25199867]
[46]
Liechty WB, Kryscio DR, Slaughter BV, Peppas NA. Polymers for drug delivery systems. Annu Rev Chem Biomol Eng 2010; 1(1): 149-73.
[http://dx.doi.org/10.1146/annurev-chembioeng-073009-100847] [PMID: 22432577]
[47]
Li X, Zhou L, Wei Y, El-Toni AM, Zhang F, Zhao D. Anisotropic growth-induced synthesis of dual-compartment Janus mesoporous silica nanoparticles for bimodal triggered drugs delivery. J Am Chem Soc 2014; 136(42): 15086-92.
[http://dx.doi.org/10.1021/ja508733r] [PMID: 25251874]
[48]
Zhang L, Zhang M, Zhou L, et al. Dual drug delivery and sequential release by amphiphilic Janus nanoparticles for liver cancer theranostics. Biomaterials 2018; 181: 113-25.
[http://dx.doi.org/10.1016/j.biomaterials.2018.07.060] [PMID: 30081302]
[49]
Le TC, Zhai J, Chiu WH, Tran PA, Tran N. Janus particles: Recent advances in the biomedical applications. Int J Nanomedicine 2019; 14: 6749-77.
[http://dx.doi.org/10.2147/IJN.S169030] [PMID: 31692550]
[50]
Srivastava R, Choudhury PK, Dev SK, Rathore V. Molecular simulation studies of alpha pinene, an alkene in search for oxidative stress targeted therapeutic paradigms for the treatment of Parkinson’s disease: A computational approach and its in vitro antioxidant validation. Lett Drug Des Discov 2021; 18(12): 1117-35.
[http://dx.doi.org/10.2174/1570180818666210702170301]
[51]
Soni S, Ruhela RK, Medhi B. Nanomedicine in central nervous system (CNS) disorders: A present and future prospective. Adv Pharm Bull 2016; 6(3): 319-35.
[http://dx.doi.org/10.15171/apb.2016.044] [PMID: 27766216]
[52]
Zhang L, Yang S, Huang L, Ho PCL. Poly (ethylene glycol)-block-poly (D, L-lactide) (PEG-PLA) micelles for brain delivery of baicalein through nasal route for potential treatment of neurodegenerative diseases due to oxidative stress and inflammation: An in vitro and in vivo study. Int J Pharm 2020; 591(119981): 119981.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119981] [PMID: 33069896]
[53]
Jaganathan S, John AA, Vellayappan MV, Balaji A, Mohandas H, Subramanian AP. Carbon nanotubes and graphene as emerging candidates in neuroregeneration and neurodrug delivery. Int J Nanomedicine 2015; 10: 4267-77.
[http://dx.doi.org/10.2147/IJN.S83777] [PMID: 26170663]
[54]
Silva Adaya D, Aguirre-Cruz L, Guevara J, Ortiz-Islas E. Nanobiomaterials’ applications in neurodegenerative diseases. J Biomater Appl 2017; 31(7): 953-84.
[http://dx.doi.org/10.1177/0885328216659032] [PMID: 28178902]
[55]
Zeng X-P, Zhou J. Asymmetric assisted catalysis by multicatalyst system. In:Multicatalyst system in asymmetric catalysis. Hoboken, NJ, USA: John Wiley & Sons, Inc. 2014; pp. 411-74.
[56]
Skaat H, Belfort G, Margel S. Synthesis and characterization of fluorinated magnetic core–shell nanoparticles for inhibition of insulin amyloid fibril formation. Nanotechnology 2009; 20(22): 225106.
[http://dx.doi.org/10.1088/0957-4484/20/22/225106] [PMID: 19433878]
[57]
Cheng KK, Chan PS, Fan S, et al. Curcumin-conjugated magnetic nanoparticles for detecting amyloid plaques in Alzheimer’s disease mice using magnetic resonance imaging (MRI). Biomaterials 2015; 44: 155-72.
[http://dx.doi.org/10.1016/j.biomaterials.2014.12.005] [PMID: 25617135]
[58]
Qin J, Jo DG, Cho M, Lee Y. Monitoring of early diagnosis of Alzheimer’s disease using the cellular prion protein and poly(pyrrole-2-carboxylic acid) modified electrode. Biosens Bioelectron 2018; 113: 82-7.
[http://dx.doi.org/10.1016/j.bios.2018.04.061] [PMID: 29734034]
[59]
Yu Y, Wang P, Zhu X, et al. Combined determination of copper ions and β-amyloid peptide by a single ratiometric electrochemical biosensor. Analyst (Lond) 2018; 143(1): 323-31.
[http://dx.doi.org/10.1039/C7AN01683B] [PMID: 29192910]
[60]
Zeng J, Wu J, Li M, Wang P. A novel magnetic nanoparticle for early detection of amyloid plaques in Alzheimer’s disease. Arch Med Res 2018; 49(4): 282-5.
[http://dx.doi.org/10.1016/j.arcmed.2018.09.005] [PMID: 30266531]
[61]
Kim H, Lee JU, Song S, Kim S, Sim SJ. A shape-code nanoplasmonic biosensor for multiplex detection of Alzheimer’s disease biomarkers. Biosens Bioelectron 2018; 101: 96-102.
[http://dx.doi.org/10.1016/j.bios.2017.10.018] [PMID: 29054022]
[62]
Sun L, Liu D, Fu D, Yue T, Scharre D, Zhang L. Fluorescent peptide nanoparticles to detect amyloid-beta aggregation in cerebrospinal fluid and serum for Alzheimer’s disease diagnosis and progression monitoring. Chem Eng J 2021; 405(126733): 126733.
[http://dx.doi.org/10.1016/j.cej.2020.126733]
[63]
Zhang X, Zhang YC, Ma LX. One-pot facile fabrication of graphene-zinc oxide composite and its enhanced sensitivity for simultaneous electrochemical detection of ascorbic acid, dopamine and uric acid. Sens Actuators B Chem 2016; 227: 488-96.
[http://dx.doi.org/10.1016/j.snb.2015.12.073]
[64]
An Y, Tang L, Jiang X, et al. A photoelectrochemical immunosensor based on Au-doped TiO2 nanotube arrays for the detection of α-synuclein. Chemistry 2010; 16(48): 14439-46.
[http://dx.doi.org/10.1002/chem.201001654] [PMID: 21038326]
[65]
Tisch U, Schlesinger I, Ionescu R, et al. Detection of Alzheimer’s and Parkinson’s disease from exhaled breath using nanomaterial-based sensors. Nanomedicine (Lond) 2013; 8(1): 43-56.
[http://dx.doi.org/10.2217/nnm.12.105] [PMID: 23067372]
[66]
Kim H, Lee JU, Kim S, Song S, Sim SJ. A nanoplasmonic biosensor for ultrasensitive detection of Alzheimer’s disease biomarker using a chaotropic agent. ACS Sens 2019; 4(3): 595-602.
[http://dx.doi.org/10.1021/acssensors.8b01242] [PMID: 30747516]
[67]
Kim DS, Kang ES, Baek S, et al. Electrochemical detection of dopamine using periodic cylindrical gold nanoelectrode arrays. Sci Rep 2018; 8(1): 14049.
[http://dx.doi.org/10.1038/s41598-018-32477-0] [PMID: 30232374]
[68]
Piazzini V, Landucci E, Graverini G, Pellegrini-Giampietro D, Bilia A, Bergonzi M. Stealth and cationic nanoliposomes as drug delivery systems to increase andrographolide BBB permeability. Pharmaceutics 2018; 10(3): 128.
[http://dx.doi.org/10.3390/pharmaceutics10030128] [PMID: 30104484]
[69]
Aalinkeel R, Kutscher HL, Singh A, et al. Neuroprotective effects of a biodegradable poly(lactic-co-glycolic acid)-ginsenoside Rg3 nanoformulation: A potential nanotherapy for Alzheimer’s disease? J Drug Target 2018; 26(2): 182-93.
[http://dx.doi.org/10.1080/1061186X.2017.1354002] [PMID: 28697660]
[70]
Huo X, Zhang Y, Jin X, Li Y, Zhang L. A novel synthesis of selenium nanoparticles encapsulated PLGA nanospheres with curcumin molecules for the inhibition of amyloid β aggregation in Alzheimer’s disease. J Photochem Photobiol B 2019; 190: 98-102.
[http://dx.doi.org/10.1016/j.jphotobiol.2018.11.008] [PMID: 30504054]
[71]
Naeimi R, Safarpour F, Hashemian M, et al. Curcumin-loaded nanoparticles ameliorate glial activation and improve myelin repair in lyolecithin-induced focal demyelination model of rat corpus callosum. Neurosci Lett 2018; 674: 1-10.
[http://dx.doi.org/10.1016/j.neulet.2018.03.018] [PMID: 29530814]
[72]
Hassanzadeh P, Arbabi E, Atyabi F, Dinarvand R. Ferulic acid-loaded nanostructured lipid carriers: A promising nanoformulation against the ischemic neural injuries. Life Sci 2018; 193: 64-76.
[http://dx.doi.org/10.1016/j.lfs.2017.11.046] [PMID: 29196052]
[73]
Mohammad-Beigi H, Zanganeh M, Scavenius C, et al. A protein corona modulates interactions of α-Synuclein with nanoparticles and alters the rates of the microscopic steps of amyloid formation. ACS Nano 2022; 16(1): 1102-18.
[http://dx.doi.org/10.1021/acsnano.1c08825] [PMID: 34982538]
[74]
Dahiya S, Rani R, Dhingra D, Kumar S, Dilbaghi N. Potentiation of nootropic activity of EGCG loaded nanosuspension by piperine in swiss male albino mice. Future J Pharm Sci 2018; 4(2): 296-302.
[http://dx.doi.org/10.1016/j.fjps.2018.10.005]
[75]
Gabizon R, Binyamin O, Larush L, et al. Treatment of a multiple sclerosis animal model by a novel nanodrop formulation of a natural antioxidant. Int J Nanomedicine 2015; 7165: 7165.
[http://dx.doi.org/10.2147/IJN.S92704]
[76]
Kuo YC, Tsao CW. Neuroprotection against apoptosis of SK-N-MC cells using RMP-7- and lactoferrin-grafted liposomes carrying quercetin. Int J Nanomedicine 2017; 12: 2857-69.
[http://dx.doi.org/10.2147/IJN.S132472]
[77]
Ghaffari F, Hajizadeh Moghaddam A, Zare M. Neuroprotective effect of quercetin nanocrystal in a 6-hydroxydopamine model of Parkinson Disease: Biochemical and behavioral evidence. Basic Clin Neurosci 2018; 9(5): 317-24.
[http://dx.doi.org/10.32598/bcn.9.5.317] [PMID: 30719246]
[78]
Sun AY, Wang Q, Simonyi A, Sun GY. Resveratrol as a therapeutic agent for neurodegenerative diseases. Mol Neurobiol 2010; 41(2-3): 375-83.
[http://dx.doi.org/10.1007/s12035-010-8111-y] [PMID: 20306310]
[79]
Sun Y, Liou B, Chu Z, et al. Systemic enzyme delivery by blood-brain barrier-penetrating SapC-DOPS nanovesicles for treatment of neuronopathic Gaucher disease. EBioMedicine 2020; 55(102735): 102735.
[http://dx.doi.org/10.1016/j.ebiom.2020.102735] [PMID: 32279952]
[80]
Ismail N, Ismail M, Azmi NH, et al. Thymoquinone-rich fraction nanoemulsion (TQRFNE) decreases Aβ40 and Aβ42 levels by modulating APP processing, up-regulating IDE and LRP1, and down-regulating BACE1 and RAGE in response to high fat/cholesterol diet-induced rats. Biomed Pharmacother 2017; 95: 780-8.
[http://dx.doi.org/10.1016/j.biopha.2017.08.074] [PMID: 28892789]
[81]
Mani M, Balasubramanian S, Manikandan KR, Kulandaivel B. Neuroprotective potential of Naringenin-loaded solid-lipid nanoparticles against rotenone-induced Parkinson’s disease model. J Appl Pharm Sci 2021; 11: 19-28.
[82]
Gang L, Liu J, Fu W, Zhang J. Intra nasal nano inducer for preventing and treating neurodegenerative diseases and method thereof. US Patent 17/372,403, 2021.
[83]
Wu B. Nanoparticles of indirubin, derivatives thereof and methods of making and using same. US Patent 16/675,350, 2020.
[84]
Self WT, Bossy-Wetzel E, Seal S, Dowding J. Neuronal protection by cerium oxide nanoparticles. US20160038537A1, 2015.
[85]
Blanco AR, Bondi ML, Cavallaro G, Consoli GM, Craparo EF, Giammona G. Nanostructured formulations for the delivery of silibinin and other active ingredients for treating ocular diseases. US Patent 16/983,273, 2022.
[86]
Wen J, Thomas GB, Bickerdike MJ. Formulaciones orales de glicil-2-metilprolil-glutamato. 2014.
[87]
Sutariya VB, Jinwal UK. Glutathione-coated nanoparticles for delivery of MKT-077 across the blood-brain barrier. US10758520B1, 2021.
[88]
Fu J, An D, Song Y, Wang C, Qiu M, Zhang H. Janus nanoparticles for cellular delivery chemotherapy: Recent advances and challenges. Coord Chem Rev 2020; 422: 213467.
[http://dx.doi.org/10.1016/j.ccr.2020.213467]
[89]
Kumari M, Rajak S, Singh SP, et al. Repeated oral dose toxicity of iron oxide nanoparticles: Biochemical and histopathological alterations in different tissues of rats. J Nanosci Nanotechnol 2012; 12(3): 2149-59.
[http://dx.doi.org/10.1166/jnn.2012.5796] [PMID: 22755032]
[90]
Ewins EJ, Han K, Bharti B, Robinson T, Velev OD, Dimova R. Controlled adhesion, membrane pinning and vesicle transport by Janus particles bioRxiv 2022.
[http://dx.doi.org/10.1101/2022.01.19.474912]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy