Generic placeholder image

Current Diabetes Reviews

Editor-in-Chief

ISSN (Print): 1573-3998
ISSN (Online): 1875-6417

Review Article

Diabetic Patients with COVID-19 Complications: Insights into Prevalence, Prognosis, Combination Medications, and Underlying Mechanisms

Author(s): Pranay Wal*, Jyotsana Dwivedi, Ankita Wal and Shivangi Kushwaha

Volume 19, Issue 7, 2023

Published on: 12 October, 2022

Article ID: e250822208008 Pages: 17

DOI: 10.2174/1573399819666220825164056

Price: $65

Abstract

Background: COVID-19 may have an impact on diabetes pathogenesis. For people with COVID-19 infection as well as for healthy individuals, blood glucose control is essential. Nowadays, innovations like telemedicine are helpful in treating diabetic patients.

Objectives: We examined the data on the link between diabetes and COVID-19, the pathogenesis of diabetes, and treatment of COVID-19 infection in diabetic patients.

Methods: Up until October 2, 2021, the key terms 'COVID-19,' 'SARSCoV2,' 'diabetes,' and 'antidiabetic therapy' were searched in the PubMed database and Google Scholar. The full texts of the articles were accessed.

Results: Some diseases, for instance, diabetes, are continuously suggested as risk factor which result in the severity and mortality of COVID-19. However, to date, there are no comprehensive studies aiming to explain the exact relationship between diabetes and COVID-19. COVID-19 has been linked to an increased incidence and severity in diabetic patients. COVID-19 may have an impact on diabetes pathogenesis. Blood glucose control is critical not only for COVID-19-infected patients but also for those who do not have the condition. In today's world, innovations like telemedicine are helpful in treating diabetic patients.

Conclusion: Thus, this study aims to summarize the evidence about diabetes and COVID-19 outbreak through a systematic review and meta-analysis approach. COVID-19 has been linked to an increased incidence and severity in diabetic patients.

Keywords: COVID-19, diabetes mellitus, SARS-CoV, prognosis, respiratory infection, spike protien.

[1]
Lippi G, Sanchis-Gomar F, Henry BM. Response to: Is newly diagnosed diabetes a stronger risk factor than pre-existing diabetes for COVID-19 severity? J Diabetes 2021; 13(2): 179-80.
[http://dx.doi.org/10.1111/1753-0407.13127] [PMID: 33128349]
[2]
Scheen AJ, Marre M, Thivolet C. Prognostic factors in patients with diabetes hospitalized for COVID-19: Findings from the CORONADO study and other recent reports. Diabetes Metab 2020; 46(4): 265-71.
[http://dx.doi.org/10.1016/j.diabet.2020.05.008] [PMID: 32447101]
[3]
Alvarado-Vasquez N. Could a family history of type 2 diabetes be a risk factor to the endothelial damage in the patient with COVID-19? Med Hypotheses 2021; 146: 110378.
[http://dx.doi.org/10.1016/j.mehy.2020.110378] [PMID: 33189452]
[4]
Bogoch II, Alexander W, Andrea T-B, Carmen H, Kraemer MUG, Kamran K. Pneumonia of unknown etiology in Wuhan, China: Potential for international spread via commercial air travel. J Travel Med 2020; 27(2): taaa008.
[5]
Muniyappa R, Gubbi S. COVID-19 pandemic, coronaviruses, and diabetes mellitus. Am J Physiol Endocrinol Metab 2020; 318(5): E736-41.
[http://dx.doi.org/10.1152/ajpendo.00124.2020] [PMID: 32228322]
[6]
Lu H, Stratton CW, Tang YW. Outbreak of pneumonia of unknown etiology in Wuhan, China: The mystery and the miracle. J Med Virol 2020; 92(4): 401-2.
[http://dx.doi.org/10.1002/jmv.25678] [PMID: 31950516]
[7]
Ministry of Health and Family Welfare Government of India. COVID-19 India. 2020. Available from: https://www.mohfw.gov.in/ (Accessed on: 2020 Apr 29).
[8]
Gorbalenya AE, Enjuanes L, Ziebuhr J, Snijder EJ. Nidovirales: Evolving the largest RNA virus genome. Virus Res 2006; 117(1): 17-37.
[http://dx.doi.org/10.1016/j.virusres.2006.01.017] [PMID: 16503362]
[9]
Lu R, Zhao X, Li J, et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: Implications for virus origins and receptor binding. Lancet 2020; 395(10224): 565-74.
[http://dx.doi.org/10.1016/S0140-6736(20)30251-8] [PMID: 7159086]
[10]
Chen N, Zhou M, Dong X,, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: A descriptive study. Lancet 2020; 395(507): e13.
[11]
Burke RM, Midgley CM, Dratch A, et al. Active monitoring of persons exposed to patients with confirmed COVID-19 - United States, January- February 2020. MMWR Morb Mortal Wkly Rep 2020; 69(245): e6.
[12]
Hassan SA, Sheikh FN, Jamal S, Ezeh JK, Akhtar A. Coronavirus (COVID-19): A review of clinical features, diagnosis, and treatment. Cureus 2020; 12(3): e7355.
[http://dx.doi.org/10.7759/cureus.7355] [PMID: 32328367]
[13]
Tortorici MA, Veesler D. Structural insights into coronavirus entry. Adv Virus Res 2019; 105: 93-116.
[http://dx.doi.org/10.1016/bs.aivir.2019.08.002] [PMID: 31522710]
[14]
Song W, Gui M, Wang X, Xiang Y. Cryo-EM structure of the SARS coronavirus spike glycoprotein in complex with its host cell receptor ACE2. PLoS Pathog 2018; 14(8): e1007236.
[http://dx.doi.org/10.1371/journal.ppat.1007236] [PMID: 30102747]
[15]
Millet JK, Whittaker GR. Host cell proteases: Critical determinants of coronavirus tropism and pathogenesis. Virus Res 2015; 202: 120-34.
[http://dx.doi.org/10.1016/j.virusres.2014.11.021] [PMID: 25445340]
[16]
de Wilde AH, Snijder EJ, Kikkert M, van Hemert MJ. Host factors in coronavirus replication. Curr Top Microbiol Immunol 2018; 419: 1-42.
[PMID: 28643204]
[17]
Perrier A, Bonnin A, Desmarets L, et al. The C-terminal domain of the MERS coronavirus M protein contains a trans-Golgi network localization signal. J Biol Chem 2019; 294(39): 14406-21.
[http://dx.doi.org/10.1074/jbc.RA119.008964] [PMID: 31399512]
[18]
Finelli C. Metabolic syndrome, Alzheimer’s disease, and COVID-19: A possible correlation. Curr Alzheimer Res 2021; 18(12): 915-24.
[http://dx.doi.org/10.2174/1567205018666211209095652] [PMID: 34886772]
[19]
Khursheed R, Singh SK, Wadhwa S, et al. Treatment strategies against diabetes: Success so far and challenges ahead. Eur J Pharmacol 2019; 862: 172625.
[http://dx.doi.org/10.1016/j.ejphar.2019.172625] [PMID: 31449807]
[20]
Wesam K, Maryam F, Zahra A, et al. The role of medicinal plants in the treatment of diabetes: A systematic review. Electron Physician 2016; 8(1): 1832-42.
[21]
American Diabetes Association. 2 Classification and diagnosis of diabetes. Diabetes Care 2015; 38: 58.
[22]
Kawser Hossain M, Abdal Dayem A, Han J, et al. Recent advances in disease modeling and drug discovery for diabetes mellitus using induced pluripotent stem cells. Int J Mol Sci 2016; 17(2): 256.
[http://dx.doi.org/10.3390/ijms17020256] [PMID: 26907255]
[23]
National Diabetes Data Group. Classification and diagnosis of diabetes mellitus and other categories of glucose intolerance. Diabetes 1979; 28(12): 1039-57.
[24]
Dabelea D, Snell-Bergeon JK, Hartsfield CL, Bischoff KJ, Hamman RF, McDuffie RS. Increasing prevalence of Gestational Diabetes Mellitus (GDM) over time and by birth cohort: Kaiser Permanente of Colorado GDM Screening Program. Diabetes Care 2005; 28(3): 579-84.
[http://dx.doi.org/10.2337/diacare.28.3.579] [PMID: 15735191]
[25]
Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020; 395(10223): 497-506.
[http://dx.doi.org/10.1016/S0140-6736(20)30183-5] [PMID: 31986264]
[26]
Akbar DH. Bacterial pneumonia: Comparison between diabetics and non-diabetics. Acta Diabetol 2001; 38(2): 77-82.
[http://dx.doi.org/10.1007/s005920170017] [PMID: 11757805]
[27]
Yang JK, Feng Y, Yuan MY, et al. Plasma glucose levels and diabetes are independent predictors for mortality and morbidity in patients with SARS. Diabet Med 2006; 23(6): 623-8.
[http://dx.doi.org/10.1111/j.1464-5491.2006.01861.x] [PMID: 16759303]
[28]
Badawi A, Ryoo SG. Prevalence of comorbidities in the Middle East respiratory syndrome coronavirus (MERS-CoV): A systematic review and meta-analysis. Int J Infect Dis 2016; 49: 129-33.
[http://dx.doi.org/10.1016/j.ijid.2016.06.015] [PMID: 27352628]
[29]
Peimani M, Bandarian F, Namazi N, Nasli-Esfahani E. COVID-19-specific worries among people with type 2 diabetes following the continuation of the pandemic and occurrence of multiple waves of COVID-19 in Iran. J Diabetes Metab Disord 2022; 21(1): 61-8.
[http://dx.doi.org/10.1007/s40200-021-00935-8] [PMID: 35036383]
[30]
Liu T, Gong D, Xiao J, et al. Cluster infections play important roles in the rapid evolution of COVID-19 transmission: A systematic review. Int J Infect Dis 2020; 99: 374-80.
[http://dx.doi.org/10.1016/j.ijid.2020.07.073] [PMID: 32768702]
[31]
Selvin E, Juraschek SP. Diabetes epidemiology in the COVID-19 pandemic. Diabetes Care 2020; 43(8): 1690-4.
[http://dx.doi.org/10.2337/dc20-1295] [PMID: 32540920]
[32]
Bhatraju PK, Ghassemieh BJ, Nichols M, et al. COVID-19 IN CRITICALLY ILL PATIENTS IN THE SEATTLE REGION - CASE SERIES. N Engl J Med 2020; 382(21): 2012-22.
[http://dx.doi.org/10.1056/NEJMoa2004500]
[33]
Joensen LE, Madsen KP, Holm L, et al. Diabetes and COVID-19: Psychosocial consequences of the COVID-19 pandemic in people with diabetes in Denmark-what characterizes people with high levels of COVID-19-related worries? Diabet Med 2020; 37(7): 1146-54.
[http://dx.doi.org/10.1111/dme.14319] [PMID: 32392380]
[34]
Tol A, Baghbanian A, Sharifirad G, et al. Assessment of diabetic distress and disease related factors in patients with type 2 diabetes in Isfahan: A way to tailor an effective intervention planning in Isfahan-Iran. J Diabetes Metab Disord 2012; 11(1): 20.
[http://dx.doi.org/10.1186/2251-6581-11-20] [PMID: 23497508]
[35]
Badawi A, Ryoo SG. Prevalence of diabetes in the 2009 influenza A (H1N1) and the Middle East respiratory syndrome coronavirus: A systematic review and meta-analysis. J Public Health Res 2016; 5(3): 733-9.
[http://dx.doi.org/10.4081/jphr.2016.733] [PMID: 28083520]
[36]
Guan WJ, Ni ZY, Hu Y, et al. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med 2020; 382(18): 1708-20.
[http://dx.doi.org/10.1056/NEJMoa2002032] [PMID: 32109013]
[37]
Caruso I, Giorgino F. The diabetic lung: An easy target for SARS-CoV-2? Diabetes Metab Res Rev 2020; 36(8): e3346.
[http://dx.doi.org/10.1002/dmrr.3346] [PMID: 32426928]
[38]
American Diabetes Association. Joint statement outlines guidance on diabetes self-management education, support. 2015. Available from: www.diabetes.org/newsroom/press-releases/2015/joint-state mentoutlines- guidance-on-diabetes-self-management-education-support. html
[39]
Watson RR. Nutrition, Disease Resistance and Immune Function. New York: Marcel Dekker 1984.
[40]
Yang F, Zhang Y, Tariq A, et al. Food as medicine: A possible preventive measure against coronavirus disease (COVID-19). Phytother Res 2020; 34(12): 3124-36.
[http://dx.doi.org/10.1002/ptr.6770] [PMID: 32468635]
[41]
Wintergerst ES, Maggini S, Hornig DH. Contribution of selected vitamins and trace elements to immune function. Ann Nutr Metab 2007; 51(4): 301-23.
[http://dx.doi.org/10.1159/000107673] [PMID: 17726308]
[42]
Martineau AR, Jolliffe DA, Hooper RL, et al. Vitamin D supplementation to prevent acute respiratory tract infections: Systematic review and meta-analysis of individual participant data. BMJ 2017; 356: i6583.
[http://dx.doi.org/10.1136/bmj.i6583] [PMID: 28202713]
[43]
Lange KW. Food science and COVID-19 Available from: https://www.sciencedirect.com/science/article/pii/S2213453020301890. (Accessed on: October 15, 2020).
[http://dx.doi.org/10.1016/j.fshw.2020.08.005]
[44]
Melo LC, Silva MA, Calles AC. Obesity and lung function: A systematic review. Einstein (Sao Paulo) 2014; 12(1): 120-5.
[http://dx.doi.org/10.1590/S1679-45082014RW2691] [PMID: 24728258]
[45]
Salas-Salvadó J, Martinez-González MÁ, Bulló M, Ros E. The role of diet in the prevention of type 2 diabetes. Nutr Metab Cardiovasc Dis 2011; 21 (Suppl. 2): B32-48.
[http://dx.doi.org/10.1016/j.numecd.2011.03.009] [PMID: 21745730]
[46]
Moore SA, Faulkner G, Rhodes RE, et al. Impact of the COVID-19 virus outbreak on movement and play behaviours of Canadian children and youth: A national survey. Int J Behav Nutr Phys Act 2020; 17(1): 85.
[http://dx.doi.org/10.1186/s12966-020-00987-8] [PMID: 32631350]
[47]
Indonesian Society for Endocrinology. Position statement on how to manage patients with diabetes and COVID-19. J ASEAN Fed Endocr Soc 2020; 35(1): 49-51.
[48]
Grande AJ, Keogh J, Hoffmann TC, Beller EM, Del Mar CB. Exercise versus no exercise for the occurrence, severity and duration of acute respiratory infections. Cochrane Database Syst Rev 2015; 6(6): CD010596.
[http://dx.doi.org/10.1002/14651858.CD010596.pub2] [PMID: 26077724]
[49]
Simpson RJ, Lowder TW, Spielmann G, Bigley AB, LaVoy EC, Kunz H. Exercise and the aging immune system. Ageing Res Rev 2012; 11(3): 404-20.
[http://dx.doi.org/10.1016/j.arr.2012.03.003] [PMID: 22465452]
[50]
Cox AJ, Pyne DB, Saunders PU, Callister R, Gleeson M. Cytokine responses to treadmill running in healthy and illness-prone athletes. Med Sci Sports Exerc 2007; 39(11): 1918-26.
[http://dx.doi.org/10.1249/mss.0b013e318149f2aa] [PMID: 17986898]
[51]
Aylett E, Small N, Bower P. Exercise in the treatment of clinical anxiety in general practice - a systematic review and meta-analysis. BMC Health Serv Res 2018; 18(1): 559.
[http://dx.doi.org/10.1186/s12913-018-3313-5] [PMID: 30012142]
[52]
Bor J, Basu S, Coutts A, McKee M, Stuckler D. Alcohol use during the great recession of 2008-2009. Alcohol Alcohol 2013; 48(3): 343-8.
[http://dx.doi.org/10.1093/alcalc/agt002] [PMID: 23360873]
[53]
Jernigan DH. America is drinking its way through the coronavirus crisis-that means more health woes ahead. Available from: https://theconversation.com/america-is-drinking-its-way-ugh-the-coronaviruscrisis-that-means-more-health-woes-ahead-135532 (Accessed on: 26 April 2020).
[54]
Dávalos ME, Fang H, French MT. Easing the pain of an economic downturn: Macroeconomic conditions and excessive alcohol consumption. Health Econ 2012; 21(11): 1318-35.
[http://dx.doi.org/10.1002/hec.1788] [PMID: 21913282]
[55]
Liang Y, Harris FL, Brown LA. Alcohol induced mitochondrial oxidative stress and alveolar macrophage dysfunction. BioMed Res Int 2014; 2014: 371593.
[http://dx.doi.org/10.1155/2014/371593] [PMID: 24701574]
[56]
Simou E, Leonardi-Bee J, Britton J. The effect of alcohol consumption on the risk of ARDS: A systematic review and meta-analysis. Chest 2018; 154(1): 58-68.
[http://dx.doi.org/10.1016/j.chest.2017.11.041] [PMID: 29288645]
[57]
Romeo J, Wärnberg J, Nova E, Díaz LE, Gómez-Martinez S, Marcos A. Moderate alcohol consumption and the immune system: A review. Br J Nutr 2007; 98(S1) (Suppl. 1): S111-5.
[http://dx.doi.org/10.1017/S0007114507838049] [PMID: 17922947]
[58]
Shalbafan M, Khademoreza N. What we can learn from COVID-19 outbreak in Iran about the importance of alcohol use education. Am J Drug Alcohol Abuse 2020; 46(3): 385-6.
[http://dx.doi.org/10.1080/00952990.2020.1753759] [PMID: 32310677]
[59]
Arcavi L, Benowitz NL. Cigarette smoking and infection. Arch Intern Med 2004; 164(20): 2206-16.
[http://dx.doi.org/10.1001/archinte.164.20.2206] [PMID: 15534156]
[60]
Royal College of Physicians. Hiding in plain sight: Treating tobacco dependency in the NHS. 2018. Available from: https://www. rcplondon.ac
[61]
Kuba K, Imai Y, Rao S, et al. A crucial role of Angiotensin Converting Enzyme 2 (ACE2) in SARS coronavirus-induced lung injury. Nat Med 2005; 11(8): 875-9.
[http://dx.doi.org/10.1038/nm1267] [PMID: 16007097]
[62]
van Zyl-Smit RN, Brunet L, Pai M, Yew WW. The convergence of the global smoking, COPD, tuberculosis, HIV, and respiratory infection epidemics. Infect Dis Clin North Am 2010; 24(3): 693-703.
[http://dx.doi.org/10.1016/j.idc.2010.04.012] [PMID: 20674799]
[63]
Lawrence H, Hunter A, Murray R, Lim WS, McKeever T. Cigarette smoking and the occurrence of influenza - Systematic review. J Infect 2019; 79(5): 401-6.
[http://dx.doi.org/10.1016/j.jinf.2019.08.014] [PMID: 31465780]
[64]
Bornstein SR, Rubino F, Khunti K, et al. Practical recommendations for the management of diabetes in patients with COVID-19. Lancet Diabetes Endocrinol 2020; 8(6): 546-50.
[http://dx.doi.org/10.1016/S2213-8587(20)30152-2] [PMID: 32334646]
[65]
Drucker DJ, Nauck MA. The incretin system: Glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors in type 2 diabetes. Lancet 2006; 368(9548): 1696-705.
[http://dx.doi.org/10.1016/S0140-6736(06)69705-5]
[66]
An H, He L. Current understanding of metformin effect on the control of hyperglycemia in diabetes. J Endocrinol 2016; 228: R97-eR106.
[67]
Gale Edwin AM. European Nicotinamide Diabetes Intervention Trial (ENDIT): A randomised controlled trial of intervention before the onset of type 1 diabetes. Lancet 2004; 363(9413): 925-31.
[http://dx.doi.org/10.1016/S0140-6736(04)15786-3]
[68]
Perez-Matute P, Perez-Echarri N, Martínez JA, Marti A. Eicosapentaenoic acid actions on adiposity and insulin resistance in control and high-fat-fed rats: Role of apoptosis, adiponectin and tumour necrosis factor-alpha. Moreno-Aliaga MJ Br J Nutr 2007; 97(2): 389e98.
[http://dx.doi.org/10.1017/S0007114507207627]
[69]
Neschen S, Morino K, Dong J, et al. n-3 Fatty acids preserve insulin sensitivity in vivo in a peroxisome proliferator-activated receptor-alpha-dependent manner. Diabetes 2007; 56: 1034-41.
[70]
Norris JM, Yin X, Lamb MM, et al. Omega-3 polyunsaturated fatty acid intake and islet autoimmunity in children at increased risk for type 1 diabetes. Jama 2007; 298(12): 1420-8.
[http://dx.doi.org/10.1001/jama.298.12.1420]
[71]
Eisenberg DM, Davis RB, Ettner SL, et al. Trends in alternative medicine use in the United States, 1990-1997. Results of a follow-up national survey. JAMA 1998; 280: 1569-75.
[72]
Cefalu WT, Wang ZQ, Zhang XH, Baldor LC, Russell Oral JC. Chromium picolinate improves carbohydrate and lipid metabolism and enhances skeletal muscle Glut-4 translocation in obese. hyperinsulinemic (JRC-LA corpulent) rats. J Nutr 2002; 132: 1107-4.
[73]
Paolisso G, Scheen A, D’Onofrio F, Lefebvre P. Magnesium and glucose homeostasis. Diabetologia 1990; 33: 511-4.
[74]
Mooren FC, Krüger K, Völker K, et al. Oral magnesium supplementation reduces insulin resistance in non-diabetic subjects - a double-blind, placebocontrolled, randomized trial. Diabetes Obes Metab 2011; 13: 281-4.
[75]
Prince RL, Glendenning P. 8: Disorders of bone and mineral other than osteoporosis. Med J Aust 2004; 180: 354-9.
[76]
U.S. Department of Agriculture, Agricultural Research Service. Usda National Nutrient Database For Standard Reference, Release 24 Nutrient Data Laboratory Home. 2011. Available from: www.ars.usda.gov/ba/bhnrc/
[77]
Palomer X, Gonzalez-Clemente JM, Blanco-Vaca F, Mauricio D. Role of vitamin D in the pathogenesis of type 2 diabetes mellitus. Diabetes Obes Metab 2008; 10: 185-97.
[http://dx.doi.org/10.1111/j.1463-1326.2007.00710.x]
[78]
Gupta A, Gupta R, Lal B. Effect of Trigonella foenum-graecum (fenugreek) seeds on glycaemic control and insulin resistance in type 2 diabetes mellitus: A double blind placebo controlled study. J Assoc Phys India 2001; 49: 1057-61.
[PMID: 11868855]
[79]
Sharma RD, Raghuram TC, Rao NS. Effect of fenugreek seeds on blood glucose and serum lipids in type I diabetes. Eur J Clin Nutr 1990; 44: 301-6.
[80]
Sharma RD, Sarkar A, Hazra DK, et al. Toxicological evaluation of fenugreek seeds: A long term feeding experiment in diabetic patients. Phytother Res 1996; 10(6): 519-20.
[http://dx.doi.org/10.1002/(SICI)1099-1573(199609)10:6<519:AID-PTR873>3.0.CO;2-T]
[81]
Han X, Fan Y, Wan Y-L, Shi H. A diabetic patient with 2019- nCoV (COVID-19) infection who recovered and was discharged from hospital. J Thorac Imaging 2020; 35(3): W94-5.
[http://dx.doi.org/10.1097/RTI.0000000000000506] [PMID: 32168162]
[82]
Gupta R, Ghosh A, Singh AK, Misra A. Clinical considerations for patients with diabetes in times of COVID-19 epidemic. Diabetes Metab Syndr 2020; 14(3): 211-2.
[http://dx.doi.org/10.1016/j.dsx.2020.03.002] [PMID: 32172175]
[83]
Wang A, Zhao W, Xu Z, Gu J. Timely blood glucose management for the outbreak of 2019 novel coronavirus disease (COVID-19) is urgently needed. Diabetes Res Clin Pract 2020; 162: 108118.
[http://dx.doi.org/10.1016/j.diabres.2020.108118] [PMID: 32179126]
[84]
Singh AK, Singh A, Shaikh A, Singh R, Misra A. Chloroquine and hydroxychloroquine in the treatment of COVID-19 with or without diabetes: A systematic search and a narrative review with a special reference to India and other developing countries. Diabetes Metab Syndr 2020; 14(3): 241-6.
[http://dx.doi.org/10.1016/j.dsx.2020.03.011] [PMID: 32247211]
[85]
Rhee SY, Kim HJ, Ko SH, et al. Monotherapy in patients with type 2 diabetes mellitus. Diabetes Metab J 2017; 41(5): 349-56.
[http://dx.doi.org/10.4093/dmj.2017.41.5.349] [PMID: 29086532]
[86]
Monnier L, Lapinski H, Colette C. Contributions of fasting and postprandial plasma glucose increments to the overall diurnal hyperglycemia of type 2 diabetic patients: Variations with increasing levels of HbA(1c). Diabetes Care 2003; 26(3): 881-5.
[http://dx.doi.org/10.2337/diacare.26.3.881] [PMID: 12610053]
[87]
Bloomgarden ZT, Dodis R, Viscoli CM, Holmboe ES, Inzucchi SE. Lower baseline glycemia reduces apparent oral agent glucose-lowering efficacy: A meta-regression analysis. Diabetes Care 2006; 29(9): 2137-9.
[http://dx.doi.org/10.2337/dc06-1120] [PMID: 16936168]
[88]
Pattanaik S, Shah P, Baker A, Sinha N, Kumar N, Swami O. Implications of postprandial hyperglycaemia and role of voglibose in type 2 diabetes mellitus. J Clin Diagn Res 2018; 12: OE08-12.
[http://dx.doi.org/10.7860/JCDR/2018/32803.11399]
[89]
Dabhi AS, Bhatt NR, Shah MJ. Voglibose: An alpha glucosidase inhibitor. J Clin Diagn Res 2013; 7(12): 3023-7.
[http://dx.doi.org/10.7860/JCDR/2013/6373.3838] [PMID: 24551718]
[90]
Fukaya N, Mochizuki K, Shimada M, Goda T. The α-glucosidase inhibitor miglitol decreases glucose fluctuations and gene expression of inflammatory cytokines induced by hyperglycemia in peripheral leukocytes. Nutrition 2009; 25(6): 657-67.
[http://dx.doi.org/10.1016/j.nut.2008.11.015] [PMID: 19216056]
[91]
Edelman S, Maier H, Wilhelm K. Pramlintide in the treatment of diabetes mellitus. BioDrugs 2008; 22(6): 375-86.
[http://dx.doi.org/10.2165/0063030-200822060-00004] [PMID: 18998755]
[92]
Sharma D, Verma S, Vaidya S, Kalia K, Tiwari V. Recent updates on GLP-1 agonists: Current advancements & challenges. Biomed Pharmacother 2018; 108: 952-62.
[http://dx.doi.org/10.1016/j.biopha.2018.08.088] [PMID: 30372907]
[93]
Li C, Cai X, Dai Y, et al. Novel lipid side chain modified exenatide analogs emerged prolonged glucoregulatory activity and potential body weight management properties. Bioorg Med Chem 2019; 27(20): 115070.
[http://dx.doi.org/10.1016/j.bmc.2019.115070] [PMID: 31471103]
[94]
Patti AM, Nikolic D, Magan-Fernandez A, et al. Exenatide once-weekly improves metabolic parameters, endothelial dysfunction and carotid intima-media thickness in patients with type-2 diabetes: An 8-month prospective study. Diabetes Res Clin Pract 2019; 149: 163-9.
[http://dx.doi.org/10.1016/j.diabres.2019.02.006] [PMID: 30759365]
[95]
Philis-Tsimikas A, Wysham CH, Hardy E, Han J, Iqbal N. Efficacy and tolerability of exenatide once weekly over 7 years in patients with type 2 diabetes: An open-label extension of the DU RATION-1 study. J Diabetes Complications 2019; 33(3): 223-30.
[http://dx.doi.org/10.1016/j.jdiacomp.2018.11.012] [PMID: 30600137]
[96]
Rosenstock J, Hanefeld M, Shamanna P, et al. Beneficial effects of once-daily lixisenatide on overall and postprandial glycemic levels without significant excess of hypoglycemia in type 2 diabetes inadequately controlled on a sulfonylurea with or without metformin (GetGoal-S). J Diabetes Complicat 2014; 28(3): 386-92.
[97]
Grimshaw CE, Jennings A, Kamran R, et al. Trelagliptin (SYR-472, Zafatek), novel once-weekly treatment for type 2 diabetes, inhibits dipeptidyl Peptidase-4 (DPP-4) via a non-covalent mechanism. PLoS One 2016; 11(6): e0157509.
[http://dx.doi.org/10.1371/journal.pone.0157509] [PMID: 27328054]
[98]
Nakagawa T, Nagai Y, Yamamoto Y, et al. Effects of anagliptin on plasma glucagon levels and gastric emptying in patients with type 2 diabetes: An exploratory randomized controlled trial versus metformin. Diabetes Res Clin Pract 2019; 158: 107892.
[http://dx.doi.org/10.1016/j.diabres.2019.107892] [PMID: 31669625]
[99]
Wada N, Mori K, Nakagawa C, et al. Improved glycemic control with teneligliptin in patients with type 2 diabetes mellitus on hemodialysis: Evaluation of continuous glucose monitoring. J Diabetes Complications 2015; 29(8): 1310-3.
[http://dx.doi.org/10.1016/j.jdiacomp.2015.07.002] [PMID: 26298521]
[100]
Aneja P, Bhalla G, Parvesh N, Aneja K, Aneja K. Efficacy and safety of canagliflozin 300 mg in overweight and obese type 2 diabetes mellitus patients in a real-world setting: COLOR study. Indian J Endocrinol Metab 2019; 23(3): 307-11.
[http://dx.doi.org/10.4103/ijem.IJEM_55_19] [PMID: 31641632]
[101]
Alam F, Islam MA, Mohamed M, et al. Efficacy and safety of pioglitazone monotherapy in type 2 diabetes mellitus: A systematic review and meta-analysis of randomised controlled trials. Sci Rep 2019; 9(1): 5389.
[http://dx.doi.org/10.1038/s41598-019-41854-2] [PMID: 30926892]
[102]
Jain N, Bhansali S, Kurpad AV, et al. Effect of a dual PPAR α/γ agonist on insulin sensitivity in patients of type 2 diabetes with hypertriglyceridemia- randomized double-blind placebo-controlled trial. Sci Rep 2019; 9(1): 19017.
[http://dx.doi.org/10.1038/s41598-019-55466-3] [PMID: 31831868]
[103]
Cahn A, Cefalu WT. Clinical considerations for use of initial combination therapy in type 2 diabetes. Diabetes Care 2016; 39 (Suppl. 2): S137-45.
[http://dx.doi.org/10.2337/dcS15-3007] [PMID: 27440826]
[104]
Khazrai Y, Buzzetti R, Del Prato S, Cahn A, Raz I, Pozzilli P. The addition of E (Empowerment and Economics) to the ABCD algorithm in diabetes care. J Diabetes Complications 2015; 29(4): 599-606.
[http://dx.doi.org/10.1016/j.jdiacomp.2015.03.004] [PMID: 25795559]
[105]
Abdul-Ghani MA, Puckett C, Triplitt C, et al. Initial combination therapy with metformin, pioglitazone and exenatide is more effective than sequential add-on therapy in subjects with new-onset diabetes. Results from the Efficacy and Durability of Initial Combination Therapy for Type 2 Diabetes (EDICT): A randomized trial. Diabetes Obes Metab 2015; 17(3): 268-75.
[http://dx.doi.org/10.1111/dom.12417] [PMID: 25425451]
[106]
Wang J, Hung Y, Lu Y, et al. Differences between observed and predicted glycated hemoglobin at baseline and treatment response to vildagliptin-based dual oral therapy in patients with type 2 diabetes. Diabetes Res Clin Pract 2018; 138: 119-27.
[http://dx.doi.org/10.1016/j.diabres.2018.02.002] [PMID: 29444447]
[107]
Ou HT, Chen YT, Liu YM, Wu JS. Comparative cost-effectiveness of metformin-based dual therapies associated with risk of cardiovascular diseases among Chinese patients with type 2 diabetes: Evidence from a population-based national cohort in Taiwan. Res Clin Pract 2016; 116: 14-25.
[http://dx.doi.org/10.1016/j.diabres.2016.03.013] [PMID: 27321311]
[108]
Chang T, Lin H, Lin F. Comparative outcomes of basal insulin and oral anti-diabetic agent as an add-on to dual therapy in patients with type 2 diabetes mellitus, health. Value in Health 2018; 21 (suppl. 2): S36.
[http://dx.doi.org/10.1016/j.jval.2018.07.274]
[109]
Vijayakumar T, Jayram J, Meghana CV, Himaja D, Dharma TY, Narayanasamy D. Safety, efficacy, and bioavailability of fixed-dose combinations in type 2 diabetes mellitus: A systematic updated review. Curr Ther Res Clin Exp 2017; 84: 4-9.
[http://dx.doi.org/10.1016/j.curtheres.2017.01.005] [PMID: 5522976]
[110]
Wang H, Ni Y, Yang S, Li H, Li X, Feng B. The effects of gliclazide, metformin, and acarbose on body composition in patients with newly diagnosed type 2 diabetes mellitus. Curr Ther Res Clin Exp 2013; 75: 88-92.
[http://dx.doi.org/10.1016/j.curtheres.2013.10.002] [PMID: 3898190]
[111]
Jones RB, Vickers SP, Cheetham SC, Headland KR, Mark M, Klein T. Effect of linagliptin, alone and in combination with voglibose or exendin-4, on glucose control in male ZDF rats. Eur J Pharmacol 2014; 729: 59-66.
[http://dx.doi.org/10.1016/j.ejphar.2014.02.004] [PMID: 24530555]
[112]
Kothai R, Veenah G, Sooraj S, Surya S, Arul B. Comparative assessment of the efficacy of voglibose and metformin combined with insulin in patients with type 2 diabetes mellitus. Int J Pharm Sci Res 2017; 10(3): 2255-8.
[http://dx.doi.org/10.26452/ijrps.v10i3.1462]
[113]
Nascimento CVMF, Sinezia C, Sisnande T, Lima LMTR, Lacativa PGS. BZ043, a novel long-acting amylin analog, reduces gastric emptying, food intake, glycemia and insulin requirement in streptozotocin-induced diabetic rats. Peptides 2019; 114: 44-9.
[http://dx.doi.org/10.1016/j.peptides.2019.04.004] [PMID: 30995454]
[114]
Zinman B, Harris SB, Neuman J, et al. Low-dose combination therapy with rosiglitazone and metformin to prevent type 2 diabetes mellitus (CANOE trial): A double-blind randomised controlled study. Lancet 2010; 376(9735): 103-11.
[http://dx.doi.org/10.1016/S0140-6736(10)60746-5] [PMID: 20605202]
[115]
Sacks DB, Arnold M, Bakris GL, et al. Executive summary: Guidelines and recommendations for laboratory analysis in the diagnosis and management of diabetes mellitus. Clin Chem 2011; 57(6): 793-8.
[http://dx.doi.org/10.1373/clinchem.2011.163634] [PMID: 21617153]
[116]
American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care 2012; 35 (Suppl. 1): S64-71.
[http://dx.doi.org/10.2337/dc12-s064] [PMID: 22187472]
[117]
Sacks DB. A1C versus glucose testing: A comparison. Diabetes Care 2011; 34(2): 518-23.
[http://dx.doi.org/10.2337/dc10-1546] [PMID: 21270207]
[118]
Atri D, Siddiqi HK, Lang J, Nauffal V, Morrow DA, Bohula EA. COVID-19 for the cardiologist: A current review of the virology, clinical epidemiology, cardiac and other clinical manifestations and potential therapeutic strategies. JACC Basic Transl Sci 2020; 5(5): 518-36.
[http://dx.doi.org/10.1016/j.jacbts.2020.04.002] [PMID: 32292848]
[119]
Gatopoulou A, Papanas N, Maltezos E. Diabetic gastrointestinal autonomic neuropathy: Current status and new achievements for everyday clinical practice. Eur J Intern Med 2012; 23(6): 499-505.
[http://dx.doi.org/10.1016/j.ejim.2012.03.001] [PMID: 22863425]
[120]
Fong DS, Aiello LP, Ferris FL III, Klein R. Diabetic retinopathy. Diabetes Care 2004; 27(10): 2540-53.
[http://dx.doi.org/10.2337/diacare.27.10.2540] [PMID: 15451934]
[121]
Soma J. Minimal change nephrotic syndrome superimposed on type 2 diabetic glomerulosclerosis. J Nephrol Ther 2011; 1(2): e101.
[http://dx.doi.org/10.4172/2161-0959.1000e101]
[122]
Sayin N, Kara N, Pekel G. Ocular complications of diabetes mellitus. World J Diabetes 2015; 6(1): 92-108.
[http://dx.doi.org/10.4239/wjd.v6.i1.92] [PMID: 25685281]
[123]
Armstrong DG, Jude EB. The role of matrix metalloproteinases in wound healing. J Am Podiatr Med Assoc 2002; 92(1): 12-8.
[http://dx.doi.org/10.7547/87507315-92-1-12] [PMID: 11796794]
[124]
Elamari S, Motaib I, Zbiri S, Elaidaoui K, Chadli A, Elkettani C. Characteristics and outcomes of diabetic patients infected by the SARS-CoV-2. Pan Afr Med J 2020; 37: 32.
[http://dx.doi.org/10.11604/pamj.2020.37.32.25192] [PMID: 33209159]
[125]
Chatterjee S, Ghosh R, Biswas P, et al. COVID-19: The endocrine opportunity in a pandemic. Minerva Endocrinol 2020; 45(3): 204-27.
[http://dx.doi.org/10.23736/S0391-1977.20.03216-2] [PMID: 32548995]
[126]
Ceriello A. Hyperglycemia and COVID-19: What was known and what is really new? Diabetes Res Clin Pract 2020; 167: 108383.
[http://dx.doi.org/10.1016/j.diabres.2020.108383] [PMID: 32853690]
[127]
Schoen K, Horvat N, Guerreiro NFC, de Castro I, de Giassi KS. Spectrum of clinical and radiographic findings in patients with diagnosis of H1N1 and correlation with clinical severity. BMC Infect Dis 2019; 19(1): 964.
[http://dx.doi.org/10.1186/s12879-019-4592-0] [PMID: 31718571]
[128]
Song Z, Xu Y, Bao L, et al. From SARS to MERS, thrusting coronaviruses into the spotlight. Viruses 2019; 11(1): 59.
[http://dx.doi.org/10.3390/v11010059]
[129]
Sun ML, Yang JM, Sun YP, Su GH. Inhibitors of Ras might be a good choice for the therapy of COVID-19 pneumonia. Zhonghua Jiehe He Huxi Zazhi 2020; 43: E014.
[http://dx.doi.org/10.3760/cma.j.issn.1001-0939.2020.0014]
[130]
Phadke M, Saunik S. Use of angiotensin receptor blockers such as Telmisartan, Losartsan in nCoV Wuhan Corona Virus infections -novel mode of treatment. BMJ 2020; 368: m406.
[131]
Ghaffari H, Tavakoli A, Moradi A, et al. Inhibition of H1N1 influenza virus infection by zinc oxide nanoparticles: Another emerging application of nanomedicine. J Biomed Sci 2019; 26(1): 70.
[http://dx.doi.org/10.1186/s12929-019-0563-4] [PMID: 31500628]
[132]
Singh A, Singh Y, Pangasa N, Khanna P, Trikha A. Risk factors, clinical characteristics, and outcome of air leak syndrome in COVID-19: A systematic review. Indian J Crit Care Med 2021; 25(12): 1434-45.
[http://dx.doi.org/10.5005/jp-journals-10071-24053] [PMID: 35027806]
[133]
Hemilä H. Vitamin C intake and susceptibility to pneumonia. Pediatr Infect Dis J 1997; 16(9): 836-7.
[http://dx.doi.org/10.1097/00006454-199709000-00003] [PMID: 9306475]
[134]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy