Generic placeholder image

Current Diabetes Reviews

Editor-in-Chief

ISSN (Print): 1573-3998
ISSN (Online): 1875-6417

Review Article

Molecular Insights of Plant Phytochemicals Against Diabetic Neuropathy

Author(s): Acharya Balkrishna, Rakshit Pathak*, Shalini Bhatt and Vedpriya Arya

Volume 19, Issue 9, 2023

Published on: 17 October, 2022

Article ID: e250822207994 Pages: 18

DOI: 10.2174/1573399819666220825124510

Price: $65

Abstract

Diabetes and its associated complications including diabetic neuropathy have become a menacing headache for health workers and scientists all over the world. The number of diabetic individuals has been growing exponentially every day while the entire medical fraternity feels crippled and unable to handle such an enormous and anarchical scenario. The disease also demonstrates itself in the patients in numerous ways ranging from a little discomfort to death. Diabetic neuropathy has a poor prognosis since it might go unnoticed for years after the onset of diabetes. The etiology of the disease has been linked to oxidative stress caused by increased free radical production. Hyperglycemia causes multiple metabolic pathways to be activated, as well as significant oxidative stress, which becomes the major cause of cell death, culminating in Diabetic Neuropathy. So, it is the need of the hour to find out permanent treatment for this life-threatening disease. The primary goal of this study is to emphasize the potential importance of numerous processes and pathways in the development of diabetic neuropathy as well as the possible role of plant metabolites to control the disease at a molecular level. A possible mechanism was also summarized in the study about scavenging the reactive oxygen species by a flavonoid component. The study also covered the in vivo data of various plants and some of the flavonoid compounds actively studied against Diabetic Neuropathy by inhibiting or reducing the contributing factors such as proinflammatory cytokines, ROS, RNS inhibition, and upregulating the various cellular antioxidants such as GSH, SOD, and CAT.

Keywords: Antioxidants, diabetes, diabetic neuropathy, flavonoids, hyperglycemia, pathogenesis.

[1]
Zimmet P, Alberti KG, Magliano DJ, Bennett PH. Diabetes mellitus statistics on prevalence and mortality: Facts and fallacies. Nat Rev Endocrinol 2016; 12(10): 616-22.
[http://dx.doi.org/10.1038/nrendo.2016.105] [PMID: 27388988]
[2]
Rowley WR, Bezold C, Arikan Y, Byrne E, Krohe S. Diabetes 2030: Insights from yesterday, today, and future trends. Popul Health Manag 2017; 20(1): 6-12.
[http://dx.doi.org/10.1089/pop.2015.0181] [PMID: 27124621]
[3]
International Diabetes Federation. IDF Diabetes Atlas Ninth: IDF. 2019. Available from: https://diabetesatlas.org/en/ (Accessed on August 2021).
[4]
World Health Organization. 2021. Available from: https://www.who.int/news-room/fact-sheets/detail/the-top-10-cause s-of-death (Accessed on August 2021).
[5]
Wang L, Gao P, Zhang M, et al. Prevalence and ethnic pattern of diabetes and prediabetes in China in 2013. JAMA 2017; 317(24): 2515-23.
[http://dx.doi.org/10.1001/jama.2017.7596] [PMID: 28655017]
[6]
Anjana RM, Deepa M, Pradeepa R, et al. Prevalence of diabetes and prediabetes in 15 states of India: Results from the ICMR-INDIAB population-based cross-sectional study. Lancet Diabetes Endocrinol 2017; 5(8): 585-96.
[http://dx.doi.org/10.1016/S2213-8587(17)30174-2] [PMID: 28601585]
[7]
Centers for Disease Control and Prevention. National diabetes statistics report. 2020. Available from: https://www.cdc.gov/diabetes/data/statistics-report/index.html(Accessed on August 2021)
[8]
Hosseini A, Abdollahi M. Diabetic neuropathy and oxidative stress: Therapeutic perspectives. Oxid Med Cell Longev 2013; 2013: 168039.
[http://dx.doi.org/10.1155/2013/168039] [PMID: 23738033]
[9]
Saeedi P, Petersohn I, Salpea P, et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9th edition. Diabetes Res Clin Pract 2019; p. 157: 107843.
[http://dx.doi.org/10.1016/j.diabres.2019.107843] [PMID: 31518657]
[10]
Negi G, Kumar A, Joshi RP, Ruby PK, Sharma SS. Oxidative stress and diabetic neuropathy: Current status of antioxidants. IIOAB 2011; 2(6): 71-8.
[11]
De Freitas MRG. Diabetic neuropathy. I-Epidemiology, classification, clinical and electrophysiologic aspects. A study of 210 cases. Rev Brasileira Nerurol 1992; 210: 69-73.
[12]
Martyn CN, Hughes RA. Epidemiology of peripheral neuropathy. J Neurol Neurosurg Psychiatry 1997; 62(4): 310-8.
[http://dx.doi.org/10.1136/jnnp.62.4.310] [PMID: 9120441]
[13]
Perkins AT, Morgenlander JC. Endocrinologic causes of peripheral neuropathy. Pins and needles in a stocking-and-glove pattern and other symptoms. Postgrad Med 1997; 102(3): 81-82, 90-92, 102-6.
[http://dx.doi.org/10.3810/pgm.1997.09.318] [PMID: 9300020]
[14]
Attal N, Bouhassira D. Mechanisms of pain in peripheral neuropathy. Acta Neurol Scand Suppl 1999; 173: 12-24.
[http://dx.doi.org/10.1111/j.1600-0404.1999.tb07386.x] [PMID: 10819088]
[15]
Frykberg RG, Belczyk R. Epidemiology of the Charcot foot. Clin Podiatr Med Surg 2008; 25(1): 17-28, v.
[http://dx.doi.org/10.1016/j.cpm.2007.10.001] [PMID: 18165108]
[16]
Pascoe MK, Low PA, Windebank AJ, Litchy WJ. Subacute diabetic proximal neuropathy. Mayo Clin Proc 1997; 72(12): 1123-32.
[http://dx.doi.org/10.4065/72.12.1123] [PMID: 9413291]
[17]
Morgan G, Wilbourn AJ. Cervical radiculopathy and coexisting distal entrapment neuropathies: Double-crush syndromes? Neurology 1998; 50(1): 78-83.
[http://dx.doi.org/10.1212/WNL.50.1.78] [PMID: 9443461]
[18]
Ramer MS, Bisby MA. Adrenergic innervation of rat sensory ganglia following proximal or distal painful sciatic neuropathy: Distinct mechanisms revealed by anti-NGF treatment. Eur J Neurosci 1999; 11(3): 837-46.
[http://dx.doi.org/10.1046/j.1460-9568.1999.00491.x] [PMID: 10103077]
[19]
Vinik AI, Maser RE, Mitchell BD, Freeman R. Diabetic autonomic neuropathy. Diabetes Care 2003; 26(5): 1553-79.
[http://dx.doi.org/10.2337/diacare.26.5.1553] [PMID: 12716821]
[20]
McCorry LK. Physiology of the autonomic nervous system. Am J Pharm Educ 2007; 71(4): 78.
[http://dx.doi.org/10.5688/aj710478] [PMID: 17786266]
[21]
Dimitropoulos G, Tahrani AA, Stevens MJ. Cardiac autonomic neuropathy in patients with diabetes mellitus. World J Diabetes 2014; 5(1): 17-39.
[http://dx.doi.org/10.4239/wjd.v5.i1.17] [PMID: 24567799]
[22]
Kinekawa F, Kubo F, Matsuda K, et al. Relationship between esophageal dysfunction and neuropathy in diabetic patients. Am J Gastroenterol 2001; 96(7): 2026-32.
[http://dx.doi.org/10.1111/j.1572-0241.2001.03862.x] [PMID: 11467628]
[23]
Braffett BH, Wessells H, Sarma AV. Urogenital autonomic dysfunction in diabetes. Curr Diab Rep 2016; 16(12): 119.
[http://dx.doi.org/10.1007/s11892-016-0824-5] [PMID: 27766580]
[24]
Gilchrist JM. Seventh cranial neuropathy. Semin Neurol 2009; 29(1): 5-13.
[http://dx.doi.org/10.1055/s-0028-1124018]
[25]
Dunnigan SK, Ebadi H, Breiner A, et al. Conduction slowing in diabetic sensorimotor polyneuropathy. Diabetes Care 2013; 36(11): 3684-90.
[http://dx.doi.org/10.2337/dc13-0746] [PMID: 24026550]
[26]
Gumy LF, Bampton ET, Tolkovsky AM. Hyperglycaemia inhibits Schwann cell proliferation and migration and restricts regeneration of axons and Schwann cells from adult murine DRG. Mol Cell Neurosci 2008; 37(2): 298-311.
[http://dx.doi.org/10.1016/j.mcn.2007.10.004] [PMID: 18024075]
[27]
Mizisin AP, Shelton GD, Wagner S, Rusbridge C, Powell HC. Myelin splitting, Schwann cell injury and demyelination in feline diabetic neuropathy. Acta Neuropathol 1998; 95(2): 171-4.
[http://dx.doi.org/10.1007/s004010050783] [PMID: 9498053]
[28]
Eckersley L. Role of the Schwann cell in diabetic neuropathy. Int Rev Neurobiol 2002; 50: 293-321.
[http://dx.doi.org/10.1016/S0074-7742(02)50081-7] [PMID: 12198814]
[29]
Bakker W, Eringa EC, Sipkema P, van Hinsbergh VW. Endothelial dysfunction and diabetes: Roles of hyperglycemia, impaired insulin signaling and obesity. Cell Tissue Res 2009; 335(1): 165-89.
[http://dx.doi.org/10.1007/s00441-008-0685-6] [PMID: 18941783]
[30]
Kubota T, Kubota N, Kumagai H, et al. Impaired insulin signaling in endothelial cells reduces insulin-induced glucose uptake by skeletal muscle. Cell Metab 2011; 13(3): 294-307.
[http://dx.doi.org/10.1016/j.cmet.2011.01.018] [PMID: 21356519]
[31]
Feldman EL, Callaghan BC, Pop-Busui R, et al. Diabetic neuropathy. Nat Rev Dis Primers 2019; 5(1): 41.
[http://dx.doi.org/10.1038/s41572-019-0092-1] [PMID: 31197153]
[32]
Vincent AM, Brownlee M, Russell JW. Oxidative stress and programmed cell death in diabetic neuropathy. Ann N Y Acad Sci 2002; 959: 368-83.
[http://dx.doi.org/10.1111/j.1749-6632.2002.tb02108.x]
[33]
Figueroa-Romero C, Sadidi M, Feldman EL. Mechanisms of disease: The oxidative stress theory of diabetic neuropathy. Rev Endocr Metab Disord 2008; 9(4): 301-14.
[http://dx.doi.org/10.1007/s11154-008-9104-2] [PMID: 18709457]
[34]
Lopes-Virella MF, Baker NL, Hunt KJ, Lyons TJ, Jenkins AJ, Virella G. High concentrations of AGE-LDL and oxidized LDL in circulating immune complexes are associated with progression of retinopathy in type 1 diabetes. Diabetes Care 2012; 35(6): 1333-40.
[http://dx.doi.org/10.2337/dc11-2040] [PMID: 22511260]
[35]
Kim HJ, Kim J, Yoon YS. Emerging therapy for diabetic neuropathy: Cell therapy targeting vessels and nerves. Endocr Metab Immune Disord Drug Targets 2012; 12(2): 168-78.
[http://dx.doi.org/10.2174/187153012800493486]
[36]
Thrainsdottir S, Malik RA, Dahlin LB, et al. Endoneurial capillary abnormalities presage deterioration of glucose tolerance and accompany peripheral neuropathy in man. Diabetes 2003; 52(10): 2615-22.
[http://dx.doi.org/10.2337/diabetes.52.10.2615] [PMID: 14514647]
[37]
Nowicki M, Kosacka J, Serke H, Blüher M, Spanel-Borowski K. Altered sciatic nerve fiber morphology and endoneural microvessels in mouse models relevant for obesity, peripheral diabetic polyneuropathy, and the metabolic syndrome. J Neurosci Res 2012; 90(1): 122-31.
[http://dx.doi.org/10.1002/jnr.22728] [PMID: 21919033]
[38]
Coppey LJ, Gellett JS, Davidson EP, Dunlap JA, Lund DD, Yorek MA. Effect of antioxidant treatment of streptozotocin-induced diabetic rats on endoneurial blood flow, motor nerve conduction velocity, and vascular reactivity of epineurial arterioles of the sciatic nerve. Diabetes 2001; 50(8): 1927-37.
[http://dx.doi.org/10.2337/diabetes.50.8.1927] [PMID: 11473057]
[39]
Schratzberger P, Walter DH, Rittig K, et al. Reversal of experimental diabetic neuropathy by VEGF gene transfer. J Clin Invest 2001; 107(9): 1083-92.
[http://dx.doi.org/10.1172/JCI12188] [PMID: 11342572]
[40]
Feldman EL, Nave KA, Jensen TS, Bennett DLH. New horizons in diabetic neuropathy: Mechanisms, bioenergetics, and pain. Neuron 2017; 93(6): 1296-313.
[http://dx.doi.org/10.1016/j.neuron.2017.02.005] [PMID: 28334605]
[41]
Rosenberger DC, Blechschmidt V, Timmerman H, Wolff A, Treede RD. Challenges of neuropathic pain: Focus on diabetic neuropathy. J Neural Transm (Vienna) 2020; 127(4): 589-624.
[http://dx.doi.org/10.1007/s00702-020-02145-7] [PMID: 32036431]
[42]
Pang L, Lian X, Liu H, et al. Understanding diabetic neuropathy: Focus on oxidative stress. Oxid Med Cell Longev 2020; 2020: 9524635.
[http://dx.doi.org/10.1155/2020/9524635] [PMID: 32832011]
[43]
Vincent AM, Feldman EL. New insights into the mechanisms of diabetic neuropathy. Rev Endocr Metab Disord 2004; 5(3): 227-36.
[http://dx.doi.org/10.1023/B:REMD.0000032411.11422.e0] [PMID: 15211094]
[44]
Edwards JL, Vincent AM, Cheng HT, Feldman EL. Diabetic neuropathy: Mechanisms to management. Pharmacol Ther 2008; 120(1): 1-34.
[http://dx.doi.org/10.1016/j.pharmthera.2008.05.005] [PMID: 18616962]
[45]
Brownlee M. The pathobiology of diabetic complications: A unifying mechanism. Diabetes 2005; 54(6): 1615-25.
[http://dx.doi.org/10.2337/diabetes.54.6.1615]
[46]
Yan LJ. Redox imbalance stress in diabetes mellitus: Role of the polyol pathway. Animal Model Exp Med 2018; 1(1): 7-13.
[http://dx.doi.org/10.1002/ame2.12001] [PMID: 29863179]
[47]
Li W, Chen S, Mei Z, Zhao F, Xiang Y. Polymorphisms in sorbitol-aldose reductase (polyol) pathway genes and their influence on risk of diabetic retinopathy among Han Chinese. Med Sci Monit 2019; 25: 7073-8.
[http://dx.doi.org/10.12659/MSM.917011] [PMID: 31539366]
[48]
Luevano-Contreras C, Chapman-Novakofski K. Dietary advanced glycation end products and aging. Nutrients 2010; 2(12): 1247-65.
[http://dx.doi.org/10.3390/nu2121247] [PMID: 22254007]
[49]
Shen CY, Lu CH, Wu CH, et al. The development of Maillard reaction, and Advanced Glycation End Product (AGE)-Receptor for AGE (RAGE) signaling inhibitors as novel therapeutic strategies for patients with age-related diseases. Molecules 2020; 25(23): 5591.
[http://dx.doi.org/10.3390/molecules25235591] [PMID: 33261212]
[50]
Lukic IK, Humpert PM, Nawroth PP, Bierhaus A. The RAGE pathway: Activation and perpetuation in the pathogenesis of diabetic neuropathy. Ann N Y Acad Sci 2008; 1126(1): 76-80.
[http://dx.doi.org/10.1196/annals.1433.059] [PMID: 18448798]
[51]
Ramasamy R, Vannucci SJ, Yan SSD, Herold K, Yan SF, Schmidt AM. Advanced glycation end products and RAGE: A common thread in aging, diabetes, neurodegeneration, and inflammation. Glycobiology 2005; 15(7): 16R-28R.
[http://dx.doi.org/10.1093/glycob/cwi053] [PMID: 15764591]
[52]
Vincent AM, Perrone L, Sullivan KA, et al. Receptor for advanced glycation end products activation injures primary sensory neurons via oxidative stress. Endocrinology 2007; 148(2): 548-58.
[http://dx.doi.org/10.1210/en.2006-0073] [PMID: 17095586]
[53]
Donovan K, Alekseev O, Azizkhan-Clifford J. Role of Sp1 transcription factor in the pathogenesis of diabetic retinopathy. Invest Ophthalmol Vis Sci 2013; 54(15): 5605-5.
[54]
Vizcaíno C, Mansilla S, Portugal J. Sp1 transcription factor: A long-standing target in cancer chemotherapy. Pharmacol Ther 2015; 152: 111-24.
[http://dx.doi.org/10.1016/j.pharmthera.2015.05.008] [PMID: 25960131]
[55]
Dewanjee S, Das S, Das AK, et al. Molecular mechanism of diabetic neuropathy and its pharmacotherapeutic targets. Eur J Pharmacol 2018; 833: 472-523.
[http://dx.doi.org/10.1016/j.ejphar.2018.06.034] [PMID: 29966615]
[56]
Mizukami H, Osonoi S. Collateral glucose-utilizing pathway in diabetic polyneuropathy. Int J Mol Sci 2021; 22(1): 94. (Incorrect PMID)
[http://dx.doi.org/10.3390/ijms22010094] [PMID: 35008517]
[57]
Nishizuka Y, Shearman MS, Oda T, et al. Protein kinase C family and nervous function Prog Brain Res. 1991; p. 89: 125-41.
[http://dx.doi.org/10.1016/S0079-6123(08)61719-7] [PMID: 1796138]
[58]
Tanaka C, Nishizuka Y. The protein kinase C family for neuronal signaling. Annu Rev Neurosci 1994; 17(1): 551-67.
[http://dx.doi.org/10.1146/annurev.ne.17.030194.003003] [PMID: 8210187]
[59]
Arikawa E, Ma RC, Isshiki K, et al. Effects of insulin replacements, inhibitors of angiotensin, and PKCbeta’s actions to normalize cardiac gene expression and fuel metabolism in diabetic rats. Diabetes 2007; 56(5): 1410-20.
[http://dx.doi.org/10.2337/db06-0655] [PMID: 17363743]
[60]
Naruse K, Rask-Madsen C, Takahara N, et al. Activation of vascular protein kinase C-beta inhibits Akt-dependent endothelial nitric oxide synthase function in obesity-associated insulin resistance. Diabetes 2006; 55(3): 691-8.
[http://dx.doi.org/10.2337/diabetes.55.03.06.db05-0771] [PMID: 16505232]
[61]
Morales J, Li L, Fattah FJ, Dong Y, Bey EA, Patel M, et al. Review of poly (ADP-ribose) polymerase (PARP) mechanisms of action and rationale for targeting in cancer and other diseases. Crit Rev Euka Gene Expr 2014; 24(1): 15-28.
[http://dx.doi.org/10.1615/CritRevEukaryotGeneExpr.2013006875]
[62]
Pacher P, Szabó C. Role of poly(ADP-ribose) polymerase-1 activation in the pathogenesis of diabetic complications: Endothelial dysfunction, as a common underlying theme. Antioxid Redox Signal 2005; 7(11-12): 1568-80.
[http://dx.doi.org/10.1089/ars.2005.7.1568] [PMID: 16356120]
[63]
Guo X, Li H, Xu H, Woo S, Dong H, Lu F, et al. Glycolysis in the control of blood glucose homeostasis. Acta Pharm Sin B 2012; 2(4): 358-67.
[http://dx.doi.org/10.1016/j.apsb.2012.06.002]
[64]
Tang BL. Glucose, glycolysis, and neurodegenerative diseases. J Cell Physiol 2020; 235(11): 7653-62.
[http://dx.doi.org/10.1002/jcp.29682] [PMID: 32239718]
[65]
Puglia CD, Powell SR. Inhibition of cellular antioxidants: A possible mechanism of toxic cell injury. Environ Health Perspect 1984; 57: 307-11.
[http://dx.doi.org/10.1289/ehp.8457307] [PMID: 6094175]
[66]
Nishikawa T, Edelstein D, Du XL, et al. Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature 2000; 404(6779): 787-90.
[http://dx.doi.org/10.1038/35008121] [PMID: 10783895]
[67]
Turrens JF. Mitochondrial formation of reactive oxygen species. J Physiol 2003; 552(Pt 2): 335-44.
[http://dx.doi.org/10.1113/jphysiol.2003.049478] [PMID: 14561818]
[68]
Fernyhough P, McGavock J. Mechanisms of disease: Mitochondrial dysfunction in sensory neuropathy and other complications in diabetes. Handb Clin Neurol 2014; 126: 353-77.
[http://dx.doi.org/10.1016/B978-0-444-53480-4.00027-8] [PMID: 25410234]
[69]
Rahman Mazumder MA, Hongsprabhas P. Genistein as antioxidant and antibrowning agents in in vivo and in vitro: A review. Biomed Pharmacother 2016; 82: 379-92.
[http://dx.doi.org/10.1016/j.biopha.2016.05.023] [PMID: 27470376]
[70]
Li HM, Kim JK, Jang JM, Cui CB, Lim SS. Analysis of the inhibitory activity of Abeliophyllum distichum leaf constituents against aldose reductase by using high-speed counter current chromatography. Arch Pharm Res 2013; 36(9): 1104-12.
[http://dx.doi.org/10.1007/s12272-013-0127-1] [PMID: 23645536]
[71]
Sankeshi V, Kumar PA, Naik RR, et al. Inhibition of aldose reductase by Aegle marmelos and its protective role in diabetic cataract. J Ethnopharmacol 2013; 149(1): 215-21.
[http://dx.doi.org/10.1016/j.jep.2013.06.025] [PMID: 23827758]
[72]
Guo T, Zhu L, Tan J, et al. Promoting effect of triterpenoid compound from Agrimonia pilosa Ledeb on preadipocytes differentiation via up-regulation of PPARγ expression. Pharmacogn Mag 2015; 11(41): 219-25.
[http://dx.doi.org/10.4103/0973-1296.149741] [PMID: 25709235]
[73]
Chompoo J, Upadhyay A, Kishimoto W, Makise T, Tawata S. Advanced glycation end products inhibitors from Alpinia zerumbet rhizomes. Food Chem 2011; 129(3): 709-15.
[http://dx.doi.org/10.1016/j.foodchem.2011.04.034] [PMID: 25212289]
[74]
Yu Z, Lu B, Sheng Y, Zhou L, Ji L, Wang Z. Andrographolide ameliorates diabetic retinopathy by inhibiting retinal angiogenesis and inflammation. Biochim Biophys Acta 2015; 1850(4): 824-31.
[http://dx.doi.org/10.1016/j.bbagen.2015.01.014] [PMID: 25641276]
[75]
Kim J, Jo K, Lee IS, Kim CS, Kim JS. The extract of aster koraiensis prevents retinal pericyte apoptosis in diabetic rats and its active compound, chlorogenic acid inhibits AGE formation and AGE/RAGE interaction. Nutrients 2016; 8(9): 585.
[http://dx.doi.org/10.3390/nu8090585] [PMID: 27657123]
[76]
Ding Y, Yuan S, Liu X, et al. Protective effects of astragaloside IV on db/db mice with diabetic retinopathy. PLoS One 2014; 9(11): e112207.
[http://dx.doi.org/10.1371/journal.pone.0112207] [PMID: 25411784]
[77]
Raghu G, Akileshwari C, Reddy VS, Reddy GB. Attenuation of diabetic retinopathy in rats by ellagic acid through inhibition of AGE formation. J Food Sci Technol 2017; 54(8): 2411-21.
[http://dx.doi.org/10.1007/s13197-017-2683-8] [PMID: 28740299]
[78]
Lee YM, Lee YR, Kim CS, et al. Cnidium officinale extract and butylidenephthalide inhibits retinal neovascularization in vitro and in vivo. BMC Complement Altern Med 2016; 16(1): 231.
[http://dx.doi.org/10.1186/s12906-016-1216-8] [PMID: 27435599]
[79]
Wu J, Li X, Fang H, et al. Investigation of synergistic mechanism and identification of interaction site of aldose reductase with the combination of gigantol and syringic acid for prevention of diabetic cataract. BMC Complement Altern Med 2016; 16(1): 286. a.
[http://dx.doi.org/10.1186/s12906-016-1251-5] [PMID: 27520089]
[80]
Al-Adwani DG, Renno WM, Orabi KY. Neurotherapeutic effects of Ginkgo biloba extract and its terpene trilactone, ginkgolide B, on sciatic crush injury model: A new evidence. PLoS One 2019; 14(12): e0226626.
[http://dx.doi.org/10.1371/journal.pone.0226626] [PMID: 31877172]
[81]
Nasiry D, Khalatbary AR, Ahmadvand H. Therapeutic potential of Juglans regia L. leaf extract against diabetic retinopathy in rat. Iran J Basic Med Sci 2017; 20(11): 1275-81.
[http://dx.doi.org/10.22038/IJBMS.2017.9465] [PMID: 29299206]
[82]
Kilari EK, Putta S. Delayed progression of diabetic cataractogenesis and retinopathy by Litchi chinensis in STZ-induced diabetic rats. Cutan Ocul Toxicol 2017; 36(1): 52-9.
[http://dx.doi.org/10.3109/15569527.2016.1144610] [PMID: 27160797]
[83]
Wu J, Ke X, Fu W, et al. Inhibition of hypoxia-induced retinal angiogenesis by specnuezhenide, an effective constituent of Ligustrum lucidum Ait., through suppression of the HIF-1α/VEGF signaling pathway. Molecules 2016; 21(12): 1756. b.
[http://dx.doi.org/10.3390/molecules21121756] [PMID: 28009852]
[84]
Mei X, Zhou L, Zhang T, Lu B, Sheng Y, Ji L. Chlorogenic acid attenuates diabetic retinopathy by reducing VEGF expression and inhibiting VEGF-mediated retinal neoangiogenesis. Vascul Pharmacol 2018; 101: 29-37.
[http://dx.doi.org/10.1016/j.vph.2017.11.002] [PMID: 29146180]
[85]
Khodsooz S, Moshtaghian J, Eivani M. Antihyperglycemic and antihyperlipidemic effects of hydroalcoholic extract of Melissa officinalis (Lemon Balm) in alloxan-induced diabetic rats. Physiol Pharmacol 2016; 20(1): 24-30.
[86]
Kumar Gupta S, Kumar B, Srinivasan BP, et al. Retinoprotective effects of Moringa oleifera via antioxidant, anti-inflammatory, and anti-angiogenic mechanisms in streptozotocin-induced diabetic rats. J Ocul Pharmacol Ther 2013; 29(4): 419-26.
[http://dx.doi.org/10.1089/jop.2012.0089] [PMID: 23215831]
[87]
Mahmoud AM, Abd El-Twab SM, Abdel-Reheim ES. Consumption of polyphenol-rich Morus alba leaves extract attenuates early diabetic retinopathy: The underlying mechanism. Eur J Nutr 2017; 56(4): 1671-84.
[http://dx.doi.org/10.1007/s00394-016-1214-0] [PMID: 27059477]
[88]
Sun Y, Sun X, Wang F, Liu S. [Inhibitory effects of ursolic acid on diabetic retinopathy in mice]. Zhonghua Yi Xue Za Zhi 2015; 95(32): 2589-93.
[PMID: 26711605]
[89]
Lee YM, Kim J, Kim CS, et al. Anti-glycation and anti-angiogenic activities of 5′-methoxybiphenyl-3,4,3′-triol, a novel phytochemical component of Osteomeles schwerinae. Eur J Pharmacol 2015; 760: 172-8.
[http://dx.doi.org/10.1016/j.ejphar.2015.04.022] [PMID: 25917323]
[90]
Zhu SH, Liu BQ, Hao MJ, et al. Paeoniflorin suppressed high glucose-induced retinal microglia MMP-9 expression and inflammatory response via inhibition of TLR4/NF-κB pathway through upregulation of SOCS3 in diabetic retinopathy. Inflammation 2017; 40(5): 1475-86.
[http://dx.doi.org/10.1007/s10753-017-0571-z] [PMID: 28639050]
[91]
Dong W, Shi HB, Ma H, Miao YB, Liu TJ, Wang W. Homoisoflavanones from Polygonatum odoratum rhizomes inhibit advanced glycation end product formation. Arch Pharm Res 2010; 33(5): 669-74.
[http://dx.doi.org/10.1007/s12272-010-0504-y] [PMID: 20512463]
[92]
Kim J, Kim KM, Kim CS, et al. Puerarin inhibits the retinal pericyte apoptosis induced by advanced glycation end products in vitro and in vivo by inhibiting NADPH oxidase-related oxidative stress. Free Radic Biol Med 2012; 53(2): 357-65.
[http://dx.doi.org/10.1016/j.freeradbiomed.2012.04.030] [PMID: 22609359]
[93]
Qiang G, Yang X, Shi L, et al. Antidiabetic effect of salvianolic acid A on diabetic animal models via AMPK activation and mitochondrial regulation. Cell Physiol Biochem 2015; 36(1): 395-408.
[http://dx.doi.org/10.1159/000430258] [PMID: 25967977]
[94]
Mei XY, Zhou LY, Zhang TY, Lu B, Ji LL. Scutellaria barbata attenuates diabetic retinopathy by preventing retinal inflammation and the decreased expression of tight junction protein. Int J Ophthalmol 2017; 10(6): 870-7.
[PMID: 28730076]
[95]
Valsecchi AE, Franchi S, Panerai AE, Rossi A, Sacerdote P, Colleoni M. The soy isoflavone genistein reverses oxidative and inflammatory state, neuropathic pain, neurotrophic and vasculature deficits in diabetes mouse model. Eur J Pharmacol 2011; 650(2-3): 694-702.
[http://dx.doi.org/10.1016/j.ejphar.2010.10.060] [PMID: 21050844]
[96]
Li RZ, Ding XW, Geetha T, Al-Nakkash L, Broderick TL, Babu JR. Beneficial effect of genistein on diabetes-induced brain damage in the ob/ob mouse model. Drug Des Devel Ther 2020; 14: 3325-36.
[http://dx.doi.org/10.2147/DDDT.S249608] [PMID: 32884237]
[97]
Gao W, Zan Y, Wang ZJJ, Hu XY, Huang F. Quercetin ameliorates paclitaxel-induced neuropathic pain by stabilizing mast cells, and subsequently blocking PKCε-dependent activation of TRPV1. Acta Pharmacol Sin 2016; 37(9): 1166-77.
[http://dx.doi.org/10.1038/aps.2016.58] [PMID: 27498772]
[98]
Zhang Q, Song W, Zhao B, et al. Quercetin attenuates diabetic peripheral neuropathy by correcting mitochondrial abnormality via activation of AMPK/PGC-1α pathway in vivo and in vitro. Front Neurosci 2021; 15: 636172.
[http://dx.doi.org/10.3389/fnins.2021.636172] [PMID: 33746703]
[99]
Yang ZJ, Wang HR, Wang YI, et al. Myricetin attenuated diabetes-associated kidney injuries and dysfunction via regulating nuclear factor (erythroid derived 2)-like 2 and nuclear factor-κB signaling. Front Pharmacol 2019; 10: 647.
[http://dx.doi.org/10.3389/fphar.2019.00647] [PMID: 31244660]
[100]
Bulboaca AE, Boarescu PM, Porfire AS, et al. The effect of nano-epigallocatechin-gallate on oxidative stress and matrix metalloproteinases in experimental diabetes mellitus. Antioxidants 2020; 9(2): 172.
[http://dx.doi.org/10.3390/antiox9020172] [PMID: 32093214]
[101]
Liu L, Zuo Z, Lu S, Liu A, Liu X. Naringin attenuates diabetic retinopathy by inhibiting inflammation, oxidative stress and NF-κB activation in vivo and in vitro. Iran J Basic Med Sci 2017; 20(7): 813-21.
[http://dx.doi.org/10.22038/IJBMS.2017.9017] [PMID: 28852447]
[102]
Akbar S, Subhan F, Karim N, et al. 6-Methoxyflavanone attenuates mechanical allodynia and vulvodynia in the streptozotocin-induced diabetic neuropathic pain. Biomed Pharmacother 2016; 84: 962-71.
[http://dx.doi.org/10.1016/j.biopha.2016.10.017] [PMID: 27764759]
[103]
Addepalli V, Suryavanshi SV. Catechin attenuates diabetic autonomic neuropathy in streptozotocin induced diabetic rats. Biomed Pharmacother 2018; 108: 1517-23.
[http://dx.doi.org/10.1016/j.biopha.2018.09.179] [PMID: 30372853]
[104]
Bachewal P, Gundu C, Yerra VG, Kalvala AK, Areti A, Kumar A. Morin exerts neuroprotection via attenuation of ROS induced oxidative damage and neuroinflammation in experimental diabetic neuropathy. Biofactors 2018; 44(2): 109-22.
[http://dx.doi.org/10.1002/biof.1397] [PMID: 29193444]
[105]
Kishore L, Kaur N, Singh R. Effect of Kaempferol isolated from seeds of Eruca sativa on changes of pain sensitivity in Streptozotocin-induced diabetic neuropathy. Inflammopharmacology 2018; 26(4): 993-1003.
[http://dx.doi.org/10.1007/s10787-017-0416-2] [PMID: 29159712]
[106]
Chen AY, Chen YC. A review of the dietary flavonoid, kaempferol on human health and cancer chemoprevention. Food Chem 2013; 138(4): 2099-107.
[http://dx.doi.org/10.1016/j.foodchem.2012.11.139] [PMID: 23497863]
[107]
Tian R, Yang W, Xue Q, et al. Rutin ameliorates diabetic neuropathy by lowering plasma glucose and decreasing oxidative stress via Nrf2 signaling pathway in rats. Eur J Pharmacol 2016; 771: 84-92.
[http://dx.doi.org/10.1016/j.ejphar.2015.12.021] [PMID: 26688570]
[108]
Morissette M, Litim N, Di Paolo T. Natural phytoestrogens: A class of promising neuroprotective agents for Parkinson disease. In: Brahmachari G, Ed. Discovery and Development of Neuroprotective Agents from Natural Products. Amsterdam, Netherlands: Elsevier, 2018; pp. 9-61.
[http://dx.doi.org/10.1016/B978-0-12-809593-5.00002-1]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy