Research Article

SHR6390联合卡博赞替尼抑制肝癌小鼠模型肿瘤进展

卷 24, 期 5, 2024

发表于: 18 April, 2024

页: [453 - 464] 页: 12

弟呕挨: 10.2174/1566523222666220825110147

价格: $65

Open Access Journals Promotions 2
摘要

背景:一种新的CDK4/6抑制剂SHR6390已显示出显著的抗肿瘤作用。然而,其在肝细胞癌(HCC)中的作用尚不清楚。 目的:探讨SHR6390与卡博赞替尼联合治疗HCC的抑制作用及其抗肿瘤机制,为HCC患者提供更有效的治疗策略。 方法:通过CCK8、伤口愈合、transwell、western blotting、免疫组织化学和小鼠皮下肿瘤模型研究SHR6390单药或联用卡博赞替尼的疗效。 结果:我们的研究结果表明SHR6390对HCC表现出有效的抗增殖活性,且呈剂量依赖性。SHR6390联合cabozantinib对细胞活力、迁移和侵袭表现出更强的抑制作用。在潜在的机制方面,我们发现cabozantinib可以导致Rb的磷酸化,在SHR6390和联合组中Rb的磷酸化降低。SHR6390单药治疗可抑制肝癌皮下肿瘤的生长,SHR6390与卡博赞替尼联合治疗在体内具有协同抗肿瘤活性。 结论:SHR6390单药或联合卡博赞替尼治疗HCC有效。

关键词: SHR6390,卡博赞替尼,Rb, c-Met,联合治疗,肝细胞癌,肝癌。

[1]
Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2018; 68(6): 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[2]
Cheng AL, Kang YK, Chen Z, et al. Efficacy and safety of sorafenib in patients in the Asia-pacific region with advanced hepatocellular carcinoma: A phase III randomised, double-blind, placebo-controlled trial. Lancet Oncol 2009; 10(1): 25-34.
[http://dx.doi.org/10.1016/S1470-2045(08)70285-7] [PMID: 19095497]
[3]
Bruix J, Qin S, Merle P, et al. Regorafenib for patients with hepatocellular carcinoma who progressed on sorafenib treatment (RESORCE): A randomised, double-blind, placebo-controlled, phase 3 trial. Lancet 2017; 389(10064): 56-66.
[http://dx.doi.org/10.1016/S0140-6736(16)32453-9] [PMID: 27932229]
[4]
Bhoori S, Mazzaferro V. Combined immunotherapy and VEGF-antagonist in hepatocellular carcinoma: A step forward. Lancet Oncol 2020; 21(6): 740-1.
[http://dx.doi.org/10.1016/S1470-2045(20)30211-4] [PMID: 32502436]
[5]
Shen S, Dean DC, Yu Z, Duan Z. Role of cyclin-dependent kinases (CDKs) in hepatocellular carcinoma: Therapeutic potential of targeting the CDK signaling pathway. Hepatol Res 2019; 49(10): 1097-108.
[http://dx.doi.org/10.1111/hepr.13353] [PMID: 31009153]
[6]
Gao X, Leone GW, Wang H. Cyclin D-CDK4/6 functions in cancer. Adv Cancer Res 2020; 148: 147-69.
[http://dx.doi.org/10.1016/bs.acr.2020.02.002] [PMID: 32723562]
[7]
Goel S, DeCristo MJ, McAllister SS, Zhao JJ. CDK4/6 inhibition in cancer: Beyond cell cycle arrest. Trends Cell Biol 2018; 28(11): 911-25.
[http://dx.doi.org/10.1016/j.tcb.2018.07.002] [PMID: 30061045]
[8]
Yuan K, Wang X, Dong H, Min W, Hao H, Yang P. Selective inhibition of CDK4/6: A safe and effective strategy for developing anticancer drugs. Acta Pharm Sin B 2021; 11(1): 30-54.
[http://dx.doi.org/10.1016/j.apsb.2020.05.001] [PMID: 33532179]
[9]
Wang J, Li Q, Yuan J, et al. CDK4/6 inhibitor-SHR6390 exerts potent antitumor activity in esophageal squamous cell carcinoma by inhibiting phosphorylated Rb and inducing G1 cell cycle arrest. J Transl Med 2017; 15(1): 127.
[http://dx.doi.org/10.1186/s12967-017-1231-7] [PMID: 28578693]
[10]
Zhang P, Xu B, Gui L, et al. A phase 1 study of dalpiciclib, a cyclin-dependent kinase 4/6 inhibitor in Chinese patients with advanced breast cancer. Biomark Res 2021; 9(1): 24.
[http://dx.doi.org/10.1186/s40364-021-00271-2] [PMID: 33845905]
[11]
Chen Z, Xu Y, Gong J, et al. Pyrotinib combined with CDK4/6 inhibitor in HER2-positive metastatic gastric cancer: A promising strategy from AVATAR mouse to patients. Clin Transl Med 2020; 10(4): e148.
[http://dx.doi.org/10.1002/ctm2.148] [PMID: 32898333]
[12]
Xu XQ, Pan XH, Wang TT, et al. Intrinsic and acquired resistance to CDK4/6 inhibitors and potential overcoming strategies. Acta Pharmacol Sin 2021; 42(2): 171-8.
[http://dx.doi.org/10.1038/s41401-020-0416-4] [PMID: 32504067]
[13]
Joshi JJ, Coffey H, Corcoran E, et al. H3B-6527 Is a potent and selective inhibitor of FGFR4 in FGF19-driven hepatocellular carcinoma. Cancer Res 2017; 77(24): 6999-7013.
[http://dx.doi.org/10.1158/0008-5472.CAN-17-1865] [PMID: 29247039]
[14]
Olmez I, Zhang Y, Manigat L, et al. Combined c-Met/Trk inhibition overcomes resistance to CDK4/6 inhibitors in glioblastoma. Cancer Res 2018; 78(15): 4360-9.
[http://dx.doi.org/10.1158/0008-5472.CAN-17-3124] [PMID: 29844123]
[15]
Ohara M, Saito K, Kageyama K, et al. Dual targeting of CDK4/6 and cMET in metastatic uveal melanoma. Cancers (Basel) 2021; 13(5): 13.
[http://dx.doi.org/10.3390/cancers13051104] [PMID: 33806615]
[16]
Giordano S, Columbano A. Met as a therapeutic target in HCC: Facts and hopes. J Hepatol 2014; 60(2): 442-52.
[http://dx.doi.org/10.1016/j.jhep.2013.09.009] [PMID: 24045150]
[17]
Huang X, Gan G, Wang X, Xu T, Xie W. The HGF-MET axis coordinates liver cancer metabolism and autophagy for chemotherapeutic resistance. Autophagy 2019; 15(7): 1258-79.
[http://dx.doi.org/10.1080/15548627.2019.1580105] [PMID: 30786811]
[18]
Lu JW, Lin YM, Chang JG, et al. Clinical implications of deregulated CDK4 and Cyclin D1 expression in patients with human hepatocellular carcinoma. Med Oncol 2013; 30(1): 379.
[http://dx.doi.org/10.1007/s12032-012-0379-5] [PMID: 23292829]
[19]
Du Q, Guo X, Wang M, Li Y, Sun X, Li Q. The application and prospect of CDK4/6 inhibitors in malignant solid tumors. J Hematol Oncol 2020; 13(1): 41.
[http://dx.doi.org/10.1186/s13045-020-00880-8] [PMID: 32357912]
[20]
Clark AS, Makhlin I, DeMichele A. Setting the pick: Can PI3K inhibitors circumvent CDK4/6 inhibitor resistance? Clin Cancer Res 2021; 27(2): 371-3.
[http://dx.doi.org/10.1158/1078-0432.CCR-20-3624] [PMID: 33144339]
[21]
Anders L, Ke N, Hydbring P, et al. A systematic screen for CDK4/6 substrates links FOXM1 phosphorylation to senescence suppression in cancer cells. Cancer Cell 2011; 20(5): 620-34.
[http://dx.doi.org/10.1016/j.ccr.2011.10.001] [PMID: 22094256]
[22]
Liu G, Sun Y, Ji P, et al. MiR-506 suppresses proliferation and induces senescence by directly targeting the CDK4/6-FOXM1 axis in ovarian cancer. J Pathol 2014; 233(3): 308-18.
[http://dx.doi.org/10.1002/path.4348] [PMID: 24604117]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy