Generic placeholder image

Current Drug Delivery

Editor-in-Chief

ISSN (Print): 1567-2018
ISSN (Online): 1875-5704

Review Article

Nanoformulations of Plant-Derived Compounds as Emerging Therapeutic Approach for Colorectal Cancer

Author(s): Hossein Biganeh, Sahand Mirzaei Dizaji, Yasamin Davatgaran Taghipour, Ghulam Murtaza and Roja Rahimi*

Volume 20, Issue 8, 2023

Published on: 26 September, 2022

Page: [1067 - 1094] Pages: 28

DOI: 10.2174/1567201819666220823155526

Price: $65

conference banner
Abstract

Background: Colorectal cancer (CRC) represents one of the most daunting health problems accompanied by progressive undesirable socio-economic effects. Phytochemicals, bioactive ingredients majorly found in plants, have gained momentum for their potential against CRC occurrence and regression. However, these phytoconstituents are not exempt from biopharmaceutical drawbacks; therefore, novel strategies, especially nanotechnology, are exploited to surmount the aforementioned bottlenecks. The current paper aims to comprehensively review the phytochemical-based nanoformulations and their mechanisms in the setting of CRC.

Methods: Electronic databases including Scopus, PubMed, and Web of Science were searched with the keywords "colon cancer" or "colorectal cancer", and "plant", "phytochemical", "extract", or "herb", and "nano", "nanoformulation", "Nanoencapsulation", "nanoparticle", "nanostructure", or "nanoliposome", until January 2021.

Results: Of the 1230 research hits, only 69 articles were consequently analyzed. The results indicated nanoformulations of several secondary plant metabolites such as berberine, camptothecin, colchicine, apigenin, chrysin, fisetin, quercetin, curcumin, gallic acid, resveratrol, and ursolic acid have profound effects in a broad range of preclinical models of CRC. A wide variety of nanoformulations have been utilized to deliver these phytochemicals, such as nanocomposite, nanocolloids, and mesoporous silica nanoparticles, which have consequently decreased tumor angiogenesis and mitochondrial membrane potential, increased radical scavenging activity, induced cell cycle arrest at different phases of the cancer cell cycle, and induction of apoptosis process via decreased anti-apoptotic proteins (BRAF, CD44, and Bcl-2) and increased in pro-apoptotic ones (Bax, Fas, caspase 3,8, and 9), as well as modulated biopharmaceutical properties. Chitosan and PEG and their derivatives are among the polymers exploited in the phytochemicals’ nanoformulations.

Conclusion and perspective: To conclude, nanoformulated forms of natural ingredients depicted outstanding anti-CRC activity that could hold promise for help in treating CRC. However, well-designed clinical trials are needed to build up a whole picture of the health profits of nanoformulation of natural products in CRC management.

Keywords: Colon cancer, phytochemical, chemotherapeutic, nanoformulation, nanotechnology, drug delivery.

Graphical Abstract
[1]
Kansom, T.; Sajomsang, W.; Saeeng, R.; Rojanarata, T.; Ngawhirunpat, T.; Patrojanasophon, P.; Opanasopit, P. Fabrication and characterization of andrographolide analogue (3A.1) nanosuspensions stabilized by amphiphilic chitosan derivatives for colorectal cancer therapy. J. Drug Deliv. Sci. Technol., 2019, 54, 101287.
[http://dx.doi.org/10.1016/j.jddst.2019.101287]
[2]
Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2021, 71(3), 209-249.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[3]
Johnson, C.M.; Wei, C.; Ensor, J.E.; Smolenski, D.J.; Amos, C.I.; Levin, B.; Berry, D.A. Meta-analyses of colorectal cancer risk factors. Cancer Causes Control, 2013, 24(6), 1207-1222.
[http://dx.doi.org/10.1007/s10552-013-0201-5] [PMID: 23563998]
[4]
Afrin, S.; Giampieri, F.; Gasparrini, M.; Forbes-Hernández, T.Y.; Cianciosi, D.; Reboredo-Rodriguez, P.; Zhang, J.; Manna, P.P.; Daglia, M.; Atanasov, A.G.; Battino, M. Dietary phytochemicals in colorectal cancer prevention and treatment: A focus on the molecular mechanisms involved. Biotechnol. Adv., 2020, 38, 107322.
[http://dx.doi.org/10.1016/j.biotechadv.2018.11.011] [PMID: 30476540]
[5]
Colussi, D.; Brandi, G.; Bazzoli, F.; Ricciardiello, L. Molecular pathways involved in colorectal cancer: Implications for disease behavior and prevention. Int. J. Mol. Sci., 2013, 14(8), 16365-16385.
[http://dx.doi.org/10.3390/ijms140816365] [PMID: 23965959]
[6]
Redondo-Blanco, S.; Fernández, J.; Gutiérrez-Del-Río, I.; Villar, C.J.; Lombó, F. New insights toward colorectal cancer chemotherapy using natural bioactive compounds. Front. Pharmacol., 2017, 8, 109.
[http://dx.doi.org/10.3389/fphar.2017.00109] [PMID: 28352231]
[7]
Núñez-Sánchez, M.A.; González-Sarrías, A.; Romo-Vaquero, M.; García-Villalba, R.; Selma, M.V.; Tomás-Barberán, F.A.; García-Conesa, M.T.; Espín, J.C. Dietary phenolics against colorectal cancer-From promising preclinical results to poor translation into clinical trials: Pitfalls and future needs. Mol. Nutr. Food Res., 2015, 59(7), 1274-1291.
[http://dx.doi.org/10.1002/mnfr.201400866] [PMID: 25693744]
[8]
Zhang, J.; Shen, L.; Li, X.; Song, W.; Liu, Y.; Huang, L. Nanoformulated codelivery of quercetin and alantolactone promotes an antitumor response through synergistic immunogenic cell death for microsatellite-stable colorectal cancer. ACS Nano, 2019, 13(11), 12511-12524.
[http://dx.doi.org/10.1021/acsnano.9b02875] [PMID: 31664821]
[9]
Kansom, T.; Sajomsang, W.; Saeeng, R.; Charoensuksai, P.; Opanasopit, P.; Tonglairoum, P. Apoptosis induction and antimigratory activity of andrographolide analog (3A.1)-incorporated self-assembled nanoparticles in cancer cells. AAPS PharmSciTech, 2018, 19(7), 3123-3133.
[http://dx.doi.org/10.1208/s12249-018-1139-4] [PMID: 30117042]
[10]
Azimi, H.; Khakshur, A.A.; Abdollahi, M.; Rahimi, R. Potential new pharmacological agents derived from medicinal plants for the treatment of pancreatic cancer. Pancreas, 2015, 44(1), 11-15.
[http://dx.doi.org/10.1097/MPA.0000000000000175] [PMID: 25493374]
[11]
Haghi, A.; Azimi, H.; Rahimi, R. A comprehensive review on pharmacotherapeutics of three phytochemicals, curcumin, quercetin, and allicin, in the treatment of gastric cancer. J. Gastrointest. Cancer, 2017, 48(4), 314-320.
[http://dx.doi.org/10.1007/s12029-017-9997-7] [PMID: 28828709]
[12]
Samec, M.; Liskova, A.; Koklesova, L.; Mestanova, V.; Franekova, M.; Kassayova, M.; Bojkova, B.; Uramova, S.; Zubor, P.; Janikova, K.; Danko, J.; Samuel, S.M.; Büsselberg, D.; Kubatka, P. Fluctuations of histone chemical modifications in breast, prostate, and colorectal cancer: An implication of phytochemicals as defenders of chromatin equilibrium. Biomolecules, 2019, 9(12), E829.
[http://dx.doi.org/10.3390/biom9120829] [PMID: 31817446]
[13]
Rizwanullah, M.; Amin, S.; Mir, S.R.; Fakhri, K.U.; Rizvi, M.M.A. Phytochemical based nanomedicines against cancer: Current status and future prospects. J. Drug Target., 2018, 26(9), 731-752.
[http://dx.doi.org/10.1080/1061186X.2017.1408115] [PMID: 29157022]
[14]
Gunasekaran, T.; Haile, T.; Nigusse, T.; Dhanaraju, M.D. Nanotechnology: an effective tool for enhancing bioavailability and bioactivity of phytomedicine. Asian Pac. J. Trop. Biomed., 2014, 4(Suppl. 1), S1-S7.
[http://dx.doi.org/10.12980/APJTB.4.2014C980] [PMID: 25183064]
[15]
Amin, M.B.; Greene, F.L.; Edge, S.B.; Compton, C.C.; Gershenwald, J.E.; Brookland, R.K.; Meyer, L.; Gress, D.M.; Byrd, D.R.; Winchester, D.P. The Eighth Edition AJCC cancer staging manual: Continuing to build a bridge from a population-based to a more “personalized” approach to cancer staging. CA: Cancer J. Clin., 2017, 67(2), 93-99.
[16]
Vogel, J.D.; Eskicioglu, C.; Weiser, M.R.; Feingold, D.L.; Steele, S.R. The American society of colon and rectal surgeons clinical practice guidelines for the treatment of colon cancer. Dis. Colon Rectum, 2017, 60(10), 999-1017.
[http://dx.doi.org/10.1097/DCR.0000000000000926] [PMID: 28891842]
[17]
Body, A.; Prenen, H.; Latham, S.; Lam, M.; Tipping-Smith, S.; Raghunath, A.; Segelov, E. The role of neoadjuvant chemotherapy in locally advanced colon cancer. Cancer Manag. Res., 2021, 13, 2567-2579.
[http://dx.doi.org/10.2147/CMAR.S262870] [PMID: 33762848]
[18]
Vogel, A.; Hofheinz, R.D.; Kubicka, S.; Arnold, D. Treatment decisions in metastatic colorectal cancer-beyond first and second line combination therapies. Cancer Treat. Rev., 2017, 59, 54-60.
[http://dx.doi.org/10.1016/j.ctrv.2017.04.007] [PMID: 28738235]
[19]
Zeind, C.S.; Carvalho, M.G. Applied Therapeutics: The Clinical Use of Drugs, 11th ed; Wolters Kluwer Health: Philadelphia, 2018.
[20]
Payandeh, Z.; Khalili, S.; Somi, M.H.; Mard-Soltani, M.; Baghbanzadeh, A.; Hajiasgharzadeh, K.; Samadi, N.; Baradaran, B. PD-1/PD-L1-dependent immune response in colorectal cancer. J. Cell. Physiol., 2020, 235(7-8), 5461-5475.
[http://dx.doi.org/10.1002/jcp.29494] [PMID: 31960962]
[21]
Russo, D.; Mendes, F. CTLA-4 blockade in the treatment of colorectal cancer with microsatellite instability. Iran J. Colorectal Res., 2021, 9(1), 1-6.
[22]
Vasan, N.; Baselga, J.; Hyman, D.M. A view on drug resistance in cancer. Nature, 2019, 575(7782), 299-309.
[http://dx.doi.org/10.1038/s41586-019-1730-1] [PMID: 31723286]
[23]
Goldie, J.H.; Coldman, A.J. A mathematic model for relating the drug sensitivity of tumors to their spontaneous mutation rate. Cancer Treat. Rep., 1979, 63(11-12), 1727-1733.
[PMID: 526911]
[24]
Molinari, C.; Marisi, G.; Passardi, A.; Matteucci, L.; De Maio, G.; Ulivi, P. Heterogeneity in colorectal cancer: A challenge for personalized medicine? Int. J. Mol. Sci., 2018, 19(12), E3733.
[http://dx.doi.org/10.3390/ijms19123733] [PMID: 30477151]
[25]
Sharma, P.; Hu-Lieskovan, S.; Wargo, J.A.; Ribas, A. Primary, adaptive, and acquired resistance to cancer immunotherapy. Cell, 2017, 168(4), 707-723.
[http://dx.doi.org/10.1016/j.cell.2017.01.017] [PMID: 28187290]
[26]
Wong, K.E.; Ngai, S.C.; Chan, K.G.; Lee, L.H.; Goh, B.H.; Chuah, L.H. Curcumin nanoformulations for colorectal cancer: A review. Front. Pharmacol., 2019, 10, 152.
[http://dx.doi.org/10.3389/fphar.2019.00152] [PMID: 30890933]
[27]
Anitha, A.; Maya, S.; Sivaram, A.J.; Mony, U.; Jayakumar, R. Combinatorial nanomedicines for colon cancer therapy. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2016, 8(1), 151-159.
[http://dx.doi.org/10.1002/wnan.1353] [PMID: 26061225]
[28]
Ferlay, J.; Steliarova-Foucher, E.; Lortet-Tieulent, J.; Rosso, S.; Coebergh, J.W.; Comber, H.; Forman, D.; Bray, F. Cancer incidence and mortality patterns in Europe: Estimates for 40 countries in 2012. Eur. J. Cancer, 2013, 49(6), 1374-1403.
[http://dx.doi.org/10.1016/j.ejca.2012.12.027] [PMID: 23485231]
[29]
Yallapu, M.M.; Jaggi, M.; Chauhan, S.C. Curcumin nanomedicine: A road to cancer therapeutics. Curr. Pharm. Des., 2013, 19(11), 1994-2010.
[PMID: 23116309]
[30]
Khan, F.A.; Albalawi, R.; Pottoo, F.H. Trends in targeted delivery of nanomaterials in colon cancer diagnosis and treatment. Med. Res. Rev., 2022, 42(1), 227-258.
[http://dx.doi.org/10.1002/med.21809] [PMID: 33891325]
[31]
Manzanares-Guevara, L.A.; Licea-Claverie, A.; Oroz-Parra, I.; Bernaldez-Sarabia, J.; Diaz-Castillo, F.; Licea-Navarro, A.F. Smart nanoformulation based on stimuli-responsive nanogels and curcumin: Promising therapy against colon cancer. ACS Omega, 2020, 5(16), 9171-9184.
[http://dx.doi.org/10.1021/acsomega.9b04390] [PMID: 32363269]
[32]
Taghipour, Y.D.; Bahramsoltani, R.; Marques, A.M.; Naseri, R.; Rahimi, R.; Haratipour, P.; Iranpanah, A.; Panah, A.I.; Farzaei, M.H.; Abdollahi, M. A systematic review of nano formulation of natural products for the treatment of inflammatory bowel disease: Drug delivery and pharmacological targets. Daru, 2018, 26(2), 229-239.
[http://dx.doi.org/10.1007/s40199-018-0222-4] [PMID: 30382546]
[33]
Mishra, N.; Singh, S.; Maurya, P.; Nisha, R.; Saraf, S.A. Recent developments and challenges in nanoformulations targeting various ailments of the colon In: Nanoformulations in Human Health: Challenges and Approaches; Talegaonkar, S.; Rai, M., Eds.; Springer International Publishing: Cham, 2020; pp. 133-167.
[http://dx.doi.org/10.1007/978-3-030-41858-8_7]
[34]
Anand, P.; Kunnumakkara, A.B.; Newman, R.A.; Aggarwal, B.B. Bioavailability of curcumin: Problems and promises. Mol. Pharm., 2007, 4(6), 807-818.
[http://dx.doi.org/10.1021/mp700113r] [PMID: 17999464]
[35]
Torchilin, V. Multifunctional and stimuli-sensitive pharmaceutical nanocarriers. Eur. J. Pharm. Biopharm., 2009, 71(3), 431-444.
[http://dx.doi.org/10.1016/j.ejpb.2008.09.026] [PMID: 18977297]
[36]
Ahmad, R.; Srivastava, S.; Ghosh, S.; Khare, S.K. Phytochemical delivery through nanocarriers: A review. Colloids Surf. B Biointerfaces, 2021, 197, 111389.
[http://dx.doi.org/10.1016/j.colsurfb.2020.111389] [PMID: 33075659]
[37]
García-Pinel, B.; Porras-Alcalá, C.; Ortega-Rodríguez, A.; Sarabia, F.; Prados, J.; Melguizo, C.; López-Romero, J.M. Lipid-based nanoparticles: Application and recent advances in cancer treatment. Nanomaterials (Basel), 2019, 9(4), 638.
[http://dx.doi.org/10.3390/nano9040638] [PMID: 31010180]
[38]
Paiva, I.; Mattingly, S.; Wuest, M.; Leier, S.; Vakili, M.R.; Weinfeld, M.; Lavasanifar, A.; Wuest, F. Synthesis and analysis of 64Cu-labeled GE11-modified polymeric micellar nanoparticles for EGFR-targeted molecular imaging in a colorectal cancer model. Mol. Pharm., 2020, 17(5), 1470-1481.
[http://dx.doi.org/10.1021/acs.molpharmaceut.9b01043] [PMID: 32233491]
[39]
Krajewska, J.B.; Bartoszek, A.; Fichna, J. New trends in liposome-based drug delivery in colorectal cancer. Mini Rev. Med. Chem., 2019, 19(1), 3-11.
[http://dx.doi.org/10.2174/1389557518666180903150928] [PMID: 30179131]
[40]
Bayón-Cordero, L.; Alkorta, I.; Arana, L. Application of solid lipid nanoparticles to improve the efficiency of anticancer drugs. Nanomaterials (Basel), 2019, 9(3), 474.
[http://dx.doi.org/10.3390/nano9030474] [PMID: 30909401]
[41]
Liu, C.; Yang, S.; Wang, K.; Bao, X.; Liu, Y.; Zhou, S.; Liu, H.; Qiu, Y.; Wang, T.; Yu, H. Alkaloids from traditional chinese medicine against hepatocellular carcinoma. Biomed. Pharmacother., 2019, 120, 109543.
[http://dx.doi.org/10.1016/j.biopha.2019.109543] [PMID: 31655311]
[42]
Adibah, K.Z.M.; Azzreena, M.A. Plant toxins: Alkaloids and their toxicities. GSC Biol. Pharm. Sci., 2019, 6(2), 21-29.
[43]
Imenshahidi, M.; Hosseinzadeh, H. Berberine and barberry (Berberis vulgaris): A clinical review. Phytother. Res., 2019, 33(3), 504-523.
[http://dx.doi.org/10.1002/ptr.6252] [PMID: 30637820]
[44]
Chou, C-W.; Batnyam, O.; Hung, H-S.; Harn, H-J.; Lee, W-F.; Lin, H-R.; Chung, J-G.; Shih, Y-C.; Yen, S-Y.; Kuo, Y-H.; Tsao, M-H. Highly bioavailable anticancer herbal-loaded nanocarriers for use against breast and colon cancer in vitro and in vivo systems. Polym. Chem., 2013, 4(6), 2040-2052.
[http://dx.doi.org/10.1039/c2py20972a]
[45]
Ghanbari-Movahed, M.; Kaceli, T.; Mondal, A.; Farzaei, M.H.; Bishayee, A. Recent advances in improved anticancer efficacies of camptothecin nano-formulations: A systematic review. Biomedicines, 2021, 9(5), 480.
[http://dx.doi.org/10.3390/biomedicines9050480] [PMID: 33925750]
[46]
Jeong, D.; Pal, T.; Kim, H.; Kim, T.W.; Biswas, G.; Lee, D.; Singh, T.; Murthy, A.S.N.; Kim, W.; Kim, K-T. Im, J. Preparation of a camptothecin-conjugated molecular carrier and its cytotoxic effect toward human colorectal carcinoma in vitro. Bull. Korean Chem. Soc., 2018, 39(12), 1385-1393.
[http://dx.doi.org/10.1002/bkcs.11611]
[47]
Sun, L.; Li, X.; Li, Z.; Li, Z.; Gou, M.; Qian, Z.; Peng, F. nanotechnology, improving antitumor activity with N-trimethyl chitosan entrapping camptothecin in colon cancer and lung cancer. J. Nanosci. Nanotechnol., 2015, 15(9), 6397-6404.
[http://dx.doi.org/10.1166/jnn.2015.10736] [PMID: 26716193]
[48]
Alkadi, H.; Khubeiz, M.J.; Jbeily, R. Colchicine: A Review on chemical structure and clinical usage. Infect. Disord. Drug Targets, 2018, 18(2), 105-121.
[http://dx.doi.org/10.2174/1871526517666171017114901] [PMID: 29046164]
[49]
Leung, Y.Y.; Yao, Hui L.L.; Kraus, V.B. Colchicine - Update on mechanisms of action and therapeutic uses. Semin. Arthritis Rheum., 2015, 45(3), 341-350.
[http://dx.doi.org/10.1016/j.semarthrit.2015.06.013] [PMID: 26228647]
[50]
AbouAitah, K.; Hassan, H.A.; Swiderska-Sroda, A.; Gohar, L.; Shaker, O.G.; Wojnarowicz, J.; Opalinska, A.; Smalc-Koziorowska, J.; Gierlotka, S.; Lojkowski, W. Targeted nano-drug delivery of colchicine against colon cancer cells by means of mesoporous silica nanoparticles. Cancers (Basel), 2020, 12(1), E144.
[http://dx.doi.org/10.3390/cancers12010144] [PMID: 31936103]
[51]
Wu, Y.; Xu, J.; Liu, Y.; Zeng, Y.; Wu, G. A review on anti-tumor mechanisms of coumarins. Front. Oncol., 2020, 10, 592853.
[http://dx.doi.org/10.3389/fonc.2020.592853] [PMID: 33344242]
[52]
Küpeli Akkol, E.; Genç, Y.; Karpuz, B.; Sobarzo-Sánchez, E.; Capasso, R. Coumarins and coumarin-related compounds in pharmacotherapy of cancer. Cancers (Basel), 2020, 12(7), E1959.
[http://dx.doi.org/10.3390/cancers12071959] [PMID: 32707666]
[53]
Fiorito, S.; Preziuso, F.; Sharifi-Rad, M.; Marchetti, L.; Epifano, F.; Genovese, S. Auraptene and umbelliprenin: A review on their latest literature acquisitions. Phytochem. Rev., 2020.
[54]
Genovese, S.; Epifano, F. Auraptene: A natural biologically active compound with multiple targets. Curr. Drug Targets, 2011, 12(3), 381-386.
[http://dx.doi.org/10.2174/138945011794815248] [PMID: 20955144]
[55]
Jalilzadeh, N.; Samadi, N.; Salehi, R.; Dehghan, G.; Iranshahi, M.; Dadpour, M.R.; Hamishehkar, H. Novel nano-vehicle for delivery and efficiency of anticancer auraptene against colon cancer cells. Sci. Rep., 2020, 10(1), 1606.
[http://dx.doi.org/10.1038/s41598-020-58527-0] [PMID: 32005894]
[56]
Kasaian, J.; Iranshahy, M.; Iranshahi, M. Synthesis, biosynthesis and biological activities of galbanic acid - A review. Pharm. Biol., 2014, 52(4), 524-531.
[http://dx.doi.org/10.3109/13880209.2013.846916] [PMID: 25471377]
[57]
Afsharzadeh, M.; Abnous, K.; Yazdian-Robati, R.; Ataranzadeh, A.; Ramezani, M.; Hashemi, M. Formulation and evaluation of anticancer and antiangiogenesis efficiency of PLA-PEG nanoparticles loaded with galbanic acid in C26 colon carcinoma, in vitro and in vivo. J. Cell. Physiol., 2019, 234(5), 6099-6107.
[http://dx.doi.org/10.1002/jcp.27346] [PMID: 30378118]
[58]
Shukla, S.; Gupta, S. Apigenin: A promising molecule for cancer prevention. Pharm. Res., 2010, 27(6), 962-978.
[http://dx.doi.org/10.1007/s11095-010-0089-7] [PMID: 20306120]
[59]
Banerjee, K.; Banerjee, S.; Mandal, M. Enhanced chemotherapeutic efficacy of apigenin liposomes in colorectal cancer based on flavone-membrane interactions. J. Colloid Interface Sci., 2017, 491, 98-110.
[http://dx.doi.org/10.1016/j.jcis.2016.12.025] [PMID: 28012918]
[60]
Wang, W.; Heideman, L.; Chung, C.S.; Pelling, J.C.; Koehler, K.J.; Birt, D.F. Cell-cycle arrest at G2/M and growth inhibition by apigenin in human colon carcinoma cell lines. Mol. Carcinog., 2000, 28(2), 102-110.
[http://dx.doi.org/10.1002/1098-2744(200006)28:2<102:AID-MC6>3.0.CO;2-2] [PMID: 10900467]
[61]
Tang, D.; Chen, K.; Huang, L.; Li, J. Pharmacokinetic properties and drug interactions of apigenin, a natural flavone. Expert Opin. Drug Metab. Toxicol., 2017, 13(3), 323-330.
[http://dx.doi.org/10.1080/17425255.2017.1251903] [PMID: 27766890]
[62]
Dutta, D.; Chakraborty, A.; Mukherjee, B.; Gupta, S. Aptamer-conjugated apigenin nanoparticles to target colorectal carcinoma: A promising safe alternative of colorectal cancer chemotherapy. ACS Appl. Bio Mater., 2018, 1(5), 1538-1556.
[http://dx.doi.org/10.1021/acsabm.8b00441] [PMID: 34996205]
[63]
Davatgaran-Taghipour, Y.; Masoomzadeh, S.; Farzaei, M.H.; Bahramsoltani, R.; Karimi-Soureh, Z.; Rahimi, R.; Abdollahi, M. Polyphenol nanoformulations for cancer therapy: Experimental evidence and clinical perspective. Int. J. Nanomedicine, 2017, 12, 2689-2702.
[http://dx.doi.org/10.2147/IJN.S131973] [PMID: 28435252]
[64]
Moghadam, E.R.; Ang, H.L.; Asnaf, S.E.; Zabolian, A.; Saleki, H.; Yavari, M.; Esmaeili, H.; Zarrabi, A.; Ashrafizadeh, M.; Kumar, A.P. Broad-spectrum preclinical antitumor activity of chrysin: Current trends and future perspectives. Biomolecules, 2020, 10(10), E1374.
[http://dx.doi.org/10.3390/biom10101374] [PMID: 32992587]
[65]
Zhou, Y.J.; Xu, N.; Zhang, X.C.; Zhu, Y.Y.; Liu, S.W.; Chang, Y.N. Chrysin improves glucose and lipid metabolism disorders by regulating the AMPK/PI3K/AKT signaling pathway in insulin-resistant HepG2 cells and HFD/STZ-induced C57BL/6J mice. J. Agric. Food Chem., 2021, 69(20), 5618-5627.
[http://dx.doi.org/10.1021/acs.jafc.1c01109] [PMID: 33979145]
[66]
Khaledi, S.; Jafari, S.; Hamidi, S.; Molavi, O.; Davaran, S. Preparation and characterization of PLGA-PEG-PLGA polymeric nanoparticles for co-delivery of 5-Fluorouracil and Chrysin. J. Biomater. Sci. Polym. Ed., 2020, 31(9), 1107-1126.
[http://dx.doi.org/10.1080/09205063.2020.1743946] [PMID: 32249693]
[67]
Adhami, V.M.; Syed, D.N.; Khan, N.; Mukhtar, H. Dietary flavonoid fisetin: A novel dual inhibitor of PI3K/Akt and mTOR for prostate cancer management. Biochem. Pharmacol., 2012, 84(10), 1277-1281.
[http://dx.doi.org/10.1016/j.bcp.2012.07.012] [PMID: 22842629]
[68]
Lall, R.K.; Adhami, V.M.; Mukhtar, H. Dietary flavonoid fisetin for cancer prevention and treatment. Mol. Nutr. Food Res., 2016, 60(6), 1396-1405.
[http://dx.doi.org/10.1002/mnfr.201600025] [PMID: 27059089]
[69]
Kashyap, D.; Sharma, A.; Sak, K.; Tuli, H.S.; Buttar, H.S.; Bishayee, A. Fisetin: A bioactive phytochemical with potential for cancer prevention and pharmacotherapy. Life Sci., 2018, 194, 75-87.
[http://dx.doi.org/10.1016/j.lfs.2017.12.005] [PMID: 29225112]
[70]
Feng, C.; Yuan, X.; Chu, K.; Zhang, H.; Ji, W.; Rui, M. Preparation and optimization of poly (lactic acid) nanoparticles loaded with fisetin to improve anti-cancer therapy. Int. J. Biol. Macromol., 2019, 125, 700-710.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.12.003] [PMID: 30521927]
[71]
Mehta, P.; Pawar, A.; Mahadik, K.; Bothiraja, C. Emerging novel drug delivery strategies for bioactive flavonol fisetin in biomedicine. Biomed. Pharmacother., 2018, 106, 1282-1291.
[http://dx.doi.org/10.1016/j.biopha.2018.07.079] [PMID: 30119198]
[72]
Chen, Y.; Wu, Q.; Song, L.; He, T.; Li, Y.; Li, L.; Su, W.; Liu, L.; Qian, Z.; Gong, C. Polymeric micelles encapsulating fisetin improve the therapeutic effect in colon cancer. ACS Appl. Mater. Interfaces, 2015, 7(1), 534-542.
[http://dx.doi.org/10.1021/am5066893] [PMID: 25495760]
[73]
Aziz, N.; Kim, M.Y.; Cho, J.Y. Anti-inflammatory effects of luteolin: A review of in vitro, in vivo, and in silico studies. J. Ethnopharmacol., 2018, 225, 342-358.
[http://dx.doi.org/10.1016/j.jep.2018.05.019] [PMID: 29801717]
[74]
Li, L.; Luo, W.; Qian, Y.; Zhu, W.; Qian, J.; Li, J.; Jin, Y.; Xu, X.; Liang, G. Luteolin protects against diabetic cardiomyopathy by inhibiting NF-κB-mediated inflammation and activating the Nrf2-mediated antioxidant responses. Phytomedicine, 2019, 59, 152774.
[http://dx.doi.org/10.1016/j.phymed.2018.11.034] [PMID: 31009852]
[75]
Imran, M.; Rauf, A.; Abu-Izneid, T.; Nadeem, M.; Shariati, M.A.; Khan, I.A.; Imran, A.; Orhan, I.E.; Rizwan, M.; Atif, M.; Gondal, T.A.; Mubarak, M.S. Luteolin, a flavonoid, as an anticancer agent: A review. Biomed. Pharmacother., 2019, 112, 108612.
[http://dx.doi.org/10.1016/j.biopha.2019.108612] [PMID: 30798142]
[76]
Shinde, P.; Agraval, H.; Singh, A.; Yadav, U.C.S.; Kumar, U. Synthesis of luteolin loaded zein nanoparticles for targeted cancer therapy improving bioavailability and efficacy. J. Drug Deliv. Sci. Technol., 2019, 52, 369-378.
[http://dx.doi.org/10.1016/j.jddst.2019.04.044]
[77]
Hu, Y.; Chen, X.; Li, Z.; Zheng, S.; Cheng, Y. Thermosensitive in situ gel containing luteolin micelles is a promising efficient agent for colorectal cancer peritoneal metastasis treatment. J. Biomed. Nanotechnol., 2020, 16(1), 54-64.
[http://dx.doi.org/10.1166/jbn.2020.2870] [PMID: 31996285]
[78]
Taghipour, Y.D.; Hajialyani, M.; Naseri, R.; Hesari, M.; Mohammadi, P.; Stefanucci, A.; Mollica, A.; Farzaei, M.H.; Abdollahi, M. Nanoformulations of natural products for management of metabolic syndrome. Int. J. Nanomedicine, 2019, 14, 5303-5321.
[http://dx.doi.org/10.2147/IJN.S213831] [PMID: 31406461]
[79]
Zeng, W.; Jin, L.; Zhang, F.; Zhang, C.; Liang, W. Naringenin as a potential immunomodulator in therapeutics. Pharmacol. Res., 2018, 135, 122-126.
[http://dx.doi.org/10.1016/j.phrs.2018.08.002] [PMID: 30081177]
[80]
Han, L.; Tan, J.; Li, J.; Meng, T.; Wang, Y.; Wang, S. Structurally improved reduced graphene oxide nanocluster structured assembly with Naringin for the effective photothermal therapy of colon tumour patients and nursing care management. Mol. Phys., 2020, 118(16), e1736674.
[http://dx.doi.org/10.1080/00268976.2020.1736674]
[81]
Zhou, Y.X.; Zhang, H.; Peng, C. Puerarin: A review of pharmacological effects. Phytother. Res., 2014, 28(7), 961-975.
[http://dx.doi.org/10.1002/ptr.5083] [PMID: 24339367]
[82]
Wang, Y.; Ma, Y.; Zheng, Y.; Song, J.; Yang, X.; Bi, C.; Zhang, D.; Zhang, Q. In vitro and in vivo anticancer activity of a novel puerarin nanosuspension against colon cancer, with high efficacy and low toxicity. Int. J. Pharm., 2013, 441(1-2), 728-735.
[http://dx.doi.org/10.1016/j.ijpharm.2012.10.021] [PMID: 23089583]
[83]
Rauf, A.; Imran, M.; Khan, I.A.; Ur-Rehman, M.; Gilani, S.A.; Mehmood, Z.; Mubarak, M.S. Anticancer potential of quercetin: A comprehensive review. Phytother. Res., 2018, 32(11), 2109-2130.
[http://dx.doi.org/10.1002/ptr.6155] [PMID: 30039547]
[84]
Chang, C-E.; Hsieh, C-M.; Huang, S-C.; Su, C-Y.; Sheu, M-T.; Ho, H-O. Lecithin-Stabilized Polymeric Micelles (L sb PMs) for delivering quercetin: Pharmacokinetic studies and therapeutic effects of quercetin alone and in combination with doxorubicin. Sci. Rep., 2018, 8(1), 1-11.
[http://dx.doi.org/10.1038/s41598-018-36162-0] [PMID: 29311619]
[85]
Wen, P.; Hu, T-G.; Li, L.; Zong, M-H.; Wu, H. A colon-specific delivery system for quercetin with enhanced cancer prevention based on co-axial electrospinning. Food Funct., 2018, 9(11), 5999-6009.
[http://dx.doi.org/10.1039/C8FO01216D] [PMID: 30382268]
[86]
Sunoqrot, S.; Abujamous, L. pH-sensitive polymeric nanoparticles of quercetin as a potential colon cancer-targeted nanomedicine. J. Drug Deliv. Sci. Technol., 2019, 52, 670-676.
[http://dx.doi.org/10.1016/j.jddst.2019.05.035]
[87]
Chledzik, S.; Strawa, J.; Matuszek, K.; Nazaruk, J. Pharmacological effects of scutellarin, an active component of genus Scutellaria and Erigeron: A systematic review. Am. J. Chin. Med., 2018, 46(2), 319-337.
[http://dx.doi.org/10.1142/S0192415X18500167] [PMID: 29433387]
[88]
Jiang, R-J.; Yang, B.; Liu, Z-K.; Zhao, Y-L.; Liao, X-L.; Yang, J.; Gao, C-Z.; Wang, F.; Han, B. A novel polyrotaxane-based delivery system for scutellarin: Preparation, characterization, and in vitro evaluation. Carbohydr. Res., 2013, 380, 149-155.
[http://dx.doi.org/10.1016/j.carres.2013.07.009] [PMID: 24036381]
[89]
Ashrafizadeh, M.; Ahmadi, Z.; Mohammadinejad, R.; Ghasemipour Afshar, E. Tangeretin: A mechanistic review of its pharmacological and therapeutic effects. J. Basic Clin. Physiol. Pharmacol., 2020, 31(4), 20190191.
[http://dx.doi.org/10.1515/jbcpp-2019-0191] [PMID: 32329752]
[90]
Ting, Y.; Chiou, Y-S.; Pan, M-H.; Ho, C-T.; Huang, Q. In vitro and in vivo anti-cancer activity of tangeretin against colorectal cancer was enhanced by emulsion-based delivery system. J. Funct. Foods, 2015, 15, 264-273.
[http://dx.doi.org/10.1016/j.jff.2015.03.034]
[91]
Ahmed, T.; Gilani, A.H. Therapeutic potential of turmeric in Alzheimer’s disease: Curcumin or curcuminoids? Phytother. Res., 2014, 28(4), 517-525.
[http://dx.doi.org/10.1002/ptr.5030] [PMID: 23873854]
[92]
Zoi, V.; Galani, V.; Lianos, G.D.; Voulgaris, S.; Kyritsis, A.P.; Alexiou, G.A. The role of curcumin in cancer treatment. Biomedicines, 2021, 9(9), 1086.
[http://dx.doi.org/10.3390/biomedicines9091086] [PMID: 34572272]
[93]
Hewlings, S.J.; Kalman, D.S. Curcumin: A review of its effects on human health. Foods, 2017, 6(10), 92.
[http://dx.doi.org/10.3390/foods6100092] [PMID: 29065496]
[94]
Hong, S-C.; Park, K-M.; Hong, C.R.; Kim, J-C.; Yang, S-H.; Yu, H-S.; Paik, H-D.; Pan, C-H.; Chang, P-S. Microfluidic assembly of liposomes dual-loaded with catechin and curcumin for enhancing bioavailability. Colloids Surf. A Physicochem. Eng. Asp., 2020, 594, 124670.
[http://dx.doi.org/10.1016/j.colsurfa.2020.124670]
[95]
Mohamed, J.M.; Alqahtani, A.; Ahmad, F.; Krishnaraju, V.; Kalpana, K. Pectin co-functionalized dual layered solid lipid nanoparticle made by soluble curcumin for the targeted potential treatment of colorectal cancer. Carbohydr. Polym., 2021, 252, 117180.
[http://dx.doi.org/10.1016/j.carbpol.2020.117180] [PMID: 33183627]
[96]
Abedanzadeh, M.; Salmanpour, M.; Farjadian, F.; Mohammadi, S.; Tamaddon, A. Curcumin loaded polymeric micelles of variable hydrophobic lengths by RAFT polymerization: Preparation and in vitro characterization. J. Drug Deliv. Sci. Technol., 2020, 58, 101793.
[http://dx.doi.org/10.1016/j.jddst.2020.101793]
[97]
Al-Ani, L.A.; Kadir, F.A.; Hashim, N.M.; Julkapli, N.M.; Seyfoddin, A.; Lu, J.; AlSaadi, M.A.; Yehye, W.A. The impact of curcumin-graphene based nanoformulation on cellular interaction and redox-activated apoptosis: An in vitro colon cancer study. Heliyon, 2020, 6(11), e05360.
[http://dx.doi.org/10.1016/j.heliyon.2020.e05360] [PMID: 33163675]
[98]
Hassani, A.; Mahmood, S.; Enezei, H.H.; Hussain, S.A.; Hamad, H.A.; Aldoghachi, A.F.; Hagar, A.; Doolaanea, A.A.; Ibrahim, W.N. Formulation, characterization and biological activity screening of sodium alginate-gum Arabic nanoparticles loaded with curcumin. Molecules, 2020, 25(9), 2244.
[http://dx.doi.org/10.3390/molecules25092244] [PMID: 32397633]
[99]
Kanwal, T.; Saifullah, S.; Rehman, J.; Kawish, M.; Razzak, A.; Maharjan, R.; Imran, M.; Ali, I.; Roome, T.; Simjee, S.U.; Shah, M.R. Design of absorption enhancer containing Self-Nanoemulsifying Drug Delivery System (SNEDDS) for curcumin improved anti-cancer activity and oral bioavailability. J. Mol. Liq., 2021, 324, 114774.
[http://dx.doi.org/10.1016/j.molliq.2020.114774]
[100]
Mohamed, M.; Karuppaiyan, K.; Kandasamy, R.; Seetharaman, S. Skimmed milk powder and pectin decorated solid lipid nanoparticle containing soluble curcumin used for the treatment of colorectal cancer. J. Food Process Eng., 2020, 43(3), e13246.
[101]
Mohamed, J.M.M.; Alqahtani, A.; Ahmad, F.; Krishnaraju, V.; Kalpana, K. Stoichiometrically governed curcumin solid dispersion and its cytotoxic evaluation on colorectal adenocarcinoma cells. Drug Des. Devel. Ther., 2020, 14, 4639-4658.
[http://dx.doi.org/10.2147/DDDT.S273322] [PMID: 33173275]
[102]
Slika, L.; Moubarak, A.; Borjac, J.; Baydoun, E.; Patra, D. Preparation of curcuminpoly (allyl amine) hydrochloride based nanocapsules: Piperine in nanocapsules accelerates encapsulation and release of curcumin and effectiveness against colon cancer cells. Mater. Sci. Eng. C, 2020, 109, 110550.
[http://dx.doi.org/10.1016/j.msec.2019.110550] [PMID: 32228916]
[103]
Al-Ani, L.A.; Yehye, W.A.; Kadir, F.A.; Hashim, N.M.; AlSaadi, M.A.; Julkapli, N.M.; Hsiao, V.K.S. Hybrid nanocomposite curcumin-capped gold nanoparticle-reduced graphene oxide: Anti-oxidant potency and selective cancer cytotoxicity. PLoS One, 2019, 14(5), e0216725.
[http://dx.doi.org/10.1371/journal.pone.0216725] [PMID: 31086406]
[104]
Chen, Y.; Du, Q.; Guo, Q.; Huang, J.; Liu, L.; Shen, X.; Peng, J. A W/O emulsion mediated film dispersion method for curcumin encapsulated pH-sensitive liposomes in the colon tumor treatment. Drug Dev. Ind. Pharm., 2019, 45(2), 282-291.
[http://dx.doi.org/10.1080/03639045.2018.1539099] [PMID: 30346842]
[105]
S., Kumar V.; Rijo, J.; M, S. Guargum and Eudragit ® coated curcumin liquid solid tablets for colon specific drug delivery. Int. J. Biol. Macromol., 2018, 110, 318-327.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.01.082] [PMID: 29378277]
[106]
Sauraj; Kumar, S.U.; Kumar, V.; Priyadarshi, R.; Gopinath, P.; Negi, Y.S. pH-responsive prodrug nanoparticles based on xylan-curcumin conjugate for the efficient delivery of curcumin in cancer therapy. Carbohydr. Polym., 2018, 188, 252-259.
[http://dx.doi.org/10.1016/j.carbpol.2018.02.006] [PMID: 29525163]
[107]
Jayaprakasha, G.K.; Chidambara Murthy, K.N.; Patil, B.S. Enhanced colon cancer chemoprevention of curcumin by nanoencapsulation with whey protein. Eur. J. Pharmacol., 2016, 789, 291-300.
[http://dx.doi.org/10.1016/j.ejphar.2016.07.017] [PMID: 27404761]
[108]
Jyoti, K.; Bhatia, R.K.; Martis, E.A.F.; Coutinho, E.C.; Jain, U.K.; Chandra, R.; Madan, J. Soluble curcumin amalgamated chitosan micro-spheres augmented drug delivery and cytotoxicity in colon cancer cells: In vitro and in vivo study. Colloids Surf. B Biointerfaces, 2016, 148, 674-683.
[http://dx.doi.org/10.1016/j.colsurfb.2016.09.044] [PMID: 27701049]
[109]
Dehghan Esmatabadi, M.J.; Farhangi, B.; Safari, Z.; Kazerooni, H.; Shirzad, H.; Zolghadr, F.; Sadeghizadeh, M. Dendrosomal curcumin inhibits metastatic potential of human SW480 colon cancer cells through down-regulation of claudin1, Zeb1 and Hef1-1 gene expression. Asian Pac. J. Cancer Prev., 2015, 16(6), 2473-2481.
[http://dx.doi.org/10.7314/APJCP.2015.16.6.2473] [PMID: 25824783]
[110]
Madhusudana Rao, K.; Krishna Rao, K.S.; Ramanjaneyulu, G.; Ha, C.S. Curcumin encapsulated pH sensitive gelatin based interpenetrating polymeric network nanogels for anti cancer drug delivery. Int. J. Pharm., 2015, 478(2), 788-795.
[http://dx.doi.org/10.1016/j.ijpharm.2014.12.001] [PMID: 25528297]
[111]
Chuah, L.H.; Roberts, C.J.; Billa, N.; Abdullah, S.; Rosli, R. Cellular uptake and anticancer effects of mucoadhesive curcumin-containing chitosan nanoparticles. Colloids Surf. B Biointerfaces, 2014, 116, 228-236.
[http://dx.doi.org/10.1016/j.colsurfb.2014.01.007] [PMID: 24486834]
[112]
Khatik, R.; Dwivedi, P.; Upadhyay, M.; Patel, V.; Paliwal, S.; Dwivedi, A. Toxicological evaluation and targeting tumor cells through folic acid modified guar gum nanoparticles of curcumin. J. Biomater. Tissue Eng., 2014, 4(2), 4.
[http://dx.doi.org/10.1166/jbt.2014.1147]
[113]
Khatik, R.; Mishra, R.; Verma, A.; Dwivedi, P.; Kumar, V.; Gupta, V.; Paliwal, S.; Mishra, P.; Dwivedi, A. Colon-specific delivery of curcumin by exploiting Eudragit-decorated chitosan nanoparticles in vitro and in vivo. J. Nanopart. Res., 2013, 15(9), 15.
[http://dx.doi.org/10.1007/s11051-013-1893-x]
[114]
Wang, K.; Zhang, T.; Liu, L.; Wang, X.; Wu, P.; Chen, Z.; Ni, C.; Zhang, J.; Hu, F.; Huang, J. Novel micelle formulation of curcumin for enhancing antitumor activity and inhibiting colorectal cancer stem cells. Int. J. Nanomedicine, 2012, 7, 4487-4497.
[PMID: 22927762]
[115]
Gou, M.; Men, K.; Shi, H.; Xiang, M.; Zhang, J.; Song, J.; Long, J.; Wan, Y.; Luo, F.; Zhao, X.; Qian, Z. Curcumin-loaded biodegradable polymeric micelles for colon cancer therapy in vitro and in vivo. Nanoscale, 2011, 3(4), 1558-1567.
[http://dx.doi.org/10.1039/c0nr00758g] [PMID: 21283869]
[116]
Prajakta, D.; Ratnesh, J.; Chandan, K.; Suresh, S.; Grace, S.; Meera, V.; Vandana, P. Curcumin loaded pH-sensitive nanoparticles for the treatment of colon cancer. J. Biomed. Nanotechnol., 2009, 5(5), 445-455.
[http://dx.doi.org/10.1166/jbn.2009.1038] [PMID: 20201417]
[117]
Rashmi, H.B.; Negi, P.S. Phenolic acids from vegetables: A review on processing stability and health benefits. Food Res. Int., 2020, 136, 109298.
[http://dx.doi.org/10.1016/j.foodres.2020.109298] [PMID: 32846511]
[118]
Ali, S.S.; Ahmad, W.A.N.W.; Budin, S.B.; Zainalabidin, S. Implication of dietary phenolic acids on inflammation in cardiovascular disease. Rev. Cardiovasc. Med., 2020, 21(2), 225-240.
[http://dx.doi.org/10.31083/j.rcm.2020.02.49] [PMID: 32706211]
[119]
Khan, F.A.; Maalik, A.; Murtaza, G. Inhibitory mechanism against oxidative stress of caffeic acid. J. Food Drug Anal, 2016, 24(4), 695-702.
[http://dx.doi.org/10.1016/j.jfda.2016.05.003] [PMID: 28911606]
[120]
Guan, Y.; Chen, H.; Zhong, Q. Nanoencapsulation of caffeic acid phenethyl ester in sucrose fatty acid esters to improve activities against cancer cells. J. Food Eng., 2019, 246, 125-133.
[http://dx.doi.org/10.1016/j.jfoodeng.2018.11.008]
[121]
Zduńska, K.; Dana, A.; Kolodziejczak, A.; Rotsztejn, H. Antioxidant properties of ferulic acid and its possible application. Skin Pharmacol. Physiol., 2018, 31(6), 332-336.
[http://dx.doi.org/10.1159/000491755] [PMID: 30235459]
[122]
Zheng, Y.; You, X.; Guan, S.; Huang, J.; Wang, L.; Zhang, J.; Wu, J. Poly(ferulic acid) with an anticancer effect as a drug nanocarrier for enhanced colon cancer therapy. Adv. Funct. Mater., 2019, 29(15), 1808646.
[http://dx.doi.org/10.1002/adfm.201808646]
[123]
Kahkeshani, N.; Farzaei, F.; Fotouhi, M.; Alavi, S.S.; Bahramsoltani, R.; Naseri, R.; Momtaz, S.; Abbasabadi, Z.; Rahimi, R.; Farzaei, M.H.; Bishayee, A. Pharmacological effects of gallic acid in health and diseases: A mechanistic review. Iran. J. Basic Med. Sci., 2019, 22(3), 225-237.
[PMID: 31156781]
[124]
Abotaleb, M.; Liskova, A.; Kubatka, P.; Büsselberg, D. Therapeutic potential of plant phenolic acids in the treatment of cancer. Biomolecules, 2020, 10(2), 221.
[http://dx.doi.org/10.3390/biom10020221] [PMID: 32028623]
[125]
Rosman, R.; Saifullah, B.; Maniam, S.; Dorniani, D.; Hussein, M.Z.; Fakurazi, S. Improved anticancer effect of magnetite nanocomposite formulation of gallic acid (Fe3O4-PEG-GA) against lung, breast and colon cancer cells. Nanomaterials (Basel), 2018, 8(2), 83.
[http://dx.doi.org/10.3390/nano8020083] [PMID: 29393902]
[126]
Hu, B.; Wang, Y.; Xie, M.; Hu, G.; Ma, F.; Zeng, X. Polymer nanoparticles composed with gallic acid grafted chitosan and bioactive peptides combined antioxidant, anticancer activities and improved delivery property for labile polyphenols. J. Funct. Foods, 2015, 15, 593-603.
[http://dx.doi.org/10.1016/j.jff.2015.04.009]
[127]
Song, J.; He, Y.; Luo, C.; Feng, B.; Ran, F.; Xu, H.; Ci, Z.; Xu, R.; Han, L.; Zhang, D. New progress in the pharmacology of protocatechuic acid: A compound ingested in daily foods and herbs frequently and heavily. Pharmacol. Res., 2020, 161, 105109.
[http://dx.doi.org/10.1016/j.phrs.2020.105109] [PMID: 32738494]
[128]
Semaming, Y.; Pannengpetch, P.; Chattipakorn, S.C.; Chattipakorn, N. Pharmacological properties of protocatechuic acid and its potential roles as complementary medicine. Evid. Based Complement. Alternat. Med., 2015, 2015, 593902.
[http://dx.doi.org/10.1155/2015/593902] [PMID: 25737736]
[129]
Barahuie, F.; Hussein, M.; Gani, S.; Fakurazi, S.; Zainal, Z. Synthesis of protocatechuic acid-zinc/aluminium-layered double hydroxide nanocomposite as an anticancer nanodelivery system. J. Solid State Chem., 2015, 221, 21-31.
[http://dx.doi.org/10.1016/j.jssc.2014.09.001]
[130]
Chen, C. Sinapic acid and its derivatives as medicine in oxidative stress-induced diseases and aging. Oxid. Med. Cell. Longev., 2016, 2016, 3571614.
[http://dx.doi.org/10.1155/2016/3571614] [PMID: 27069529]
[131]
Nguyen, V.P.T.; Stewart, J.D.; Ioannou, I.; Allais, F. Sinapic acid and sinapate esters in brassica: Innate accumulation, biosynthesis, accessibility via chemical synthesis or recovery from biomass, and biological activities. Front Chem., 2021, 9, 664602.
[http://dx.doi.org/10.3389/fchem.2021.664602] [PMID: 34055737]
[132]
Badr, D.A.; Amer, M.E.; Abd-Elhay, W.M.; Nasr, M.S.M.; Abuamara, T.M.M.; Ali, H.; Mohamed, A.F.; Youssef, M.A.; Awwad, N.S.; Ju, Y-H.; Fazary, A.E. Histopathological and genetic changes proved the anti-cancer potential of free and nano-capsulated sinapic acid. Appl. Biol. Chem., 2019, 62(1), 59.
[http://dx.doi.org/10.1186/s13765-019-0462-0]
[133]
De Filippis, B.; Ammazzalorso, A.; Fantacuzzi, M.; Giampietro, L.; Maccallini, C.; Amoroso, R. Anticancer activity of stilbene-based derivatives. ChemMedChem, 2017, 12(8), 558-570.
[http://dx.doi.org/10.1002/cmdc.201700045] [PMID: 28266812]
[134]
Akinwumi, B.C.; Bordun, K.M.; Anderson, H.D. Biological activities of stilbenoids. Int. J. Mol. Sci., 2018, 19(3), E792.
[http://dx.doi.org/10.3390/ijms19030792] [PMID: 29522491]
[135]
Banik, K.; Ranaware, A.M.; Harsha, C.; Nitesh, T.; Girisa, S.; Deshpande, V.; Fan, L.; Nalawade, S.P.; Sethi, G.; Kunnumakkara, A.B. Piceatannol: A natural stilbene for the prevention and treatment of cancer. Pharmacol. Res., 2020, 153, 104635.
[http://dx.doi.org/10.1016/j.phrs.2020.104635] [PMID: 31926274]
[136]
Alhakamy, N.A.; Badr-Eldin, S.M.; Ahmed, O.A.A.; Asfour, H.Z.; Aldawsari, H.M.; Algandaby, M.M.; Eid, B.G.; Abdel-Naim, A.B.; Awan, Z.A.; Alghaith, A.F.; Alaofi, A.L.; Mohamed, A.I.; Okbazghi, S.Z.; Al-Rabia, M.W.; Fahmy, U.A. Piceatannol-loaded emulsomes exhibit enhanced cytostatic and apoptotic activities in colon cancer cells. Antioxidants, 2020, 9(5), 419.
[http://dx.doi.org/10.3390/antiox9050419] [PMID: 32414040]
[137]
Repossi, G.; Das, U.N.; Eynard, A.R. Molecular basis of the beneficial actions of resveratrol. Arch. Med. Res., 2020, 51(2), 105-114.
[http://dx.doi.org/10.1016/j.arcmed.2020.01.010] [PMID: 32111491]
[138]
Kamal, R.; Chadha, V.D.; Dhawan, D.K. Physiological uptake and retention of radiolabeled resveratrol loaded gold nanoparticles (99mTc-Res-AuNP) in colon cancer tissue. Nanomedicine, 2018, 14(3), 1059-1071.
[http://dx.doi.org/10.1016/j.nano.2018.01.008] [PMID: 29391211]
[139]
Nana, A.W.; Wu, S.Y.; Yang, Y.S.; Chin, Y.T.; Cheng, T.M.; Ho, Y.; Li, W.S.; Liao, Y.M.; Chen, Y.R.; Shih, Y.J.; Liu, Y.R.; Pedersen, J.; Incerpi, S.; Hercbergs, A.; Liu, L.F.; Whang-Peng, J.; Davis, P.J.; Lin, H.Y. Nano-Diamino-Tetrac (NDAT) enhances resveratrol-induced antiproliferation by action on the RRM2 pathway in colorectal cancers. Horm. Cancer, 2018, 9(5), 349-360.
[http://dx.doi.org/10.1007/s12672-018-0334-9] [PMID: 30027502]
[140]
Summerlin, N.; Qu, Z.; Pujara, N.; Sheng, Y.; Jambhrunkar, S.; McGuckin, M.; Popat, A. Colloidal mesoporous silica nanoparticles enhance the biological activity of resveratrol. Colloids Surf. B Biointerfaces, 2016, 144, 1-7.
[http://dx.doi.org/10.1016/j.colsurfb.2016.03.076] [PMID: 27060664]
[141]
Soo, E.; Thakur, S.; Qu, Z.; Jambhrunkar, S.; Parekh, H.S.; Popat, A. Enhancing delivery and cytotoxicity of resveratrol through a dual nanoencapsulation approach. J. Colloid Interface Sci., 2016, 462, 368-374.
[http://dx.doi.org/10.1016/j.jcis.2015.10.022] [PMID: 26479200]
[142]
Yang, W.; Chen, X.; Li, Y.; Guo, S.; Wang, Z.; Yu, X. Advances in pharmacological activities of terpenoids. Nat. Prod. Commun., 2020, 15(3)
[http://dx.doi.org/10.1177/1934578X20903555]
[143]
Ikram, N.K.B.K.; Zhan, X.; Pan, X-W.; King, B.C.; Simonsen, H.T. Stable heterologous expression of biologically active terpenoids in green plant cells. Front. Plant Sci., 2015, 6, 129-129.
[http://dx.doi.org/10.3389/fpls.2015.00129] [PMID: 25852702]
[144]
Cao, P.; Xia, Y.; He, W.; Zhang, T.; Hong, L.; Zheng, P.; Shen, X.; Liang, G.; Cui, R.; Zou, P. Enhancement of oxaliplatin-induced colon cancer cell apoptosis by alantolactone, a natural product inducer of ROS. Int. J. Biol. Sci., 2019, 15(8), 1676-1684.
[http://dx.doi.org/10.7150/ijbs.35265] [PMID: 31360110]
[145]
Zhang, Y.; Bao, Y.L.; Wu, Y.; Yu, C.L.; Huang, Y.X.; Sun, Y.; Zheng, L.H.; Li, Y.X. Alantolactone induces apoptosis in RKO cells through the generation of reactive oxygen species and the mitochondrial pathway. Mol. Med. Rep., 2013, 8(4), 967-972.
[http://dx.doi.org/10.3892/mmr.2013.1640] [PMID: 23970102]
[146]
Banerjee, A.; Banerjee, V.; Czinn, S.; Blanchard, T. Increased reactive oxygen species levels cause ER stress and cytotoxicity in andro-grapholide treated colon cancer cells. Oncotarget, 2017, 8(16), 26142-26153.
[http://dx.doi.org/10.18632/oncotarget.15393] [PMID: 28412728]
[147]
Sari, R.; Setyawan, D.; Retnowati, D.; Pratiwi, R. Development of andrographolide-chitosan solid dispersion system: Physical characterization, solubility, and dissolution testing. Asian J. Pharm., 2019, 13, 5-9.
[148]
Dutta, D.; Paul, B.; Mukherjee, B.; Mondal, L.; Sen, S.; Chowdhury, C.; Debnath, M.C. Nanoencapsulated betulinic acid analogue distinctively improves colorectal carcinoma in vitro and in vivo. Sci. Rep., 2019, 9(1), 11506-11506.
[http://dx.doi.org/10.1038/s41598-019-47743-y] [PMID: 31395908]
[149]
Hordyjewska, A.; Ostapiuk, A.; Horecka, A.; Kurzepa, J. Betulin and betulinic acid: Triterpenoids derivatives with a powerful biological potential. Phytochem. Rev., 2019, 18(3), 929-951.
[http://dx.doi.org/10.1007/s11101-019-09623-1]
[150]
Wang, G.; Yu, Y.; Wang, Y.Z.; Zhu, Z.M.; Yin, P.H.; Xu, K. Effects and mechanisms of fatty acid metabolism mediated glycolysis regulated by betulinic acid loaded nanoliposomes in colorectal cancer. Oncol. Rep., 2020, 44(6), 2595-2609.
[http://dx.doi.org/10.3892/or.2020.7787] [PMID: 33125108]
[151]
Fan, K.; Li, X.; Cao, Y.; Qi, H.; Li, L.; Zhang, Q.; Sun, H. Carvacrol inhibits proliferation and induces apoptosis in human colon cancer cells. Anticancer Drugs, 2015, 26(8), 813-823.
[http://dx.doi.org/10.1097/CAD.0000000000000263] [PMID: 26214321]
[152]
Shinde, P.; Agraval, H.; Srivastav, A.K.; Yadav, U.C.S.; Kumar, U. Physico-chemical characterization of carvacrol loaded zein nanoparticles for enhanced anticancer activity and investigation of molecular interactions between them by molecular docking. Int. J. Pharm., 2020, 588, 119795.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119795] [PMID: 32853712]
[153]
Kim, K.; Shin, E.A.; Jung, J.H.; Park, J.E.; Kim, D.S.; Shim, B.S.; Kim, S-H. Ursolic acid induces apoptosis in colorectal cancer cells partially via upregulation of microRNA-4500 and inhibition of JAK2/STAT3 phosphorylation. Int. J. Mol. Sci., 2018, 20(1), 114.
[http://dx.doi.org/10.3390/ijms20010114] [PMID: 30597956]
[154]
Ou, K.; Xu, X.; Guan, S.; Zhang, R.; Zhang, X.; Kang, Y.; Wu, J. Nanodrug carrier based on poly(ursolic Acid) with self‐anticancer activity against colorectal cancer. Adv. Funct. Mater., 2020, 30(9), 30.
[http://dx.doi.org/10.1002/adfm.201907857]
[155]
Yan, Z.; Wang, Q.; Liu, X.; Peng, J.; Li, Q.; Wu, M.; Lin, J. Cationic nanomicelles derived from Pluronic F127 as delivery vehicles of Chinese herbal medicine active components of ursolic acid for colorectal cancer treatment. RSC Adv, 2018, 8(29), 15906-15914.
[http://dx.doi.org/10.1039/C8RA01071D] [PMID: 35542233]
[156]
Lee, C.H.; Kim, J-H. A review on the medicinal potentials of ginseng and ginsenosides on cardiovascular diseases. J. Ginseng Res., 2014, 38(3), 161-166.
[http://dx.doi.org/10.1016/j.jgr.2014.03.001] [PMID: 25378989]
[157]
Zhang, J.; Wang, Y.; Jiang, Y.; Liu, T.; Luo, Y.; Diao, E.; Cao, Y.; Chen, L.; Zhang, L.; Gu, Q.; Zhou, J.; Sun, F.; Zheng, W.; Liu, J.; Li, X.; Hu, W. Enhanced cytotoxic and apoptotic potential in hepatic carcinoma cells of chitosan nanoparticles loaded with ginsenoside compound K. Carbohydr. Polym., 2018, 198, 537-545.
[http://dx.doi.org/10.1016/j.carbpol.2018.06.121] [PMID: 30093032]
[158]
Singh, P.; Singh, H.; Castro-Aceituno, V.; Sungeun, A.; Kim, Y-J.; Farh, M.; Yang, D-C. Engineering of mesoporous silica nanoparticles for release of ginsenoside CK and Rh2 to enhance their anticancer and anti-inflammatory efficacy: In vitro studies. J. Nanopart. Res., 2017, 19(7), 19.
[http://dx.doi.org/10.1007/s11051-017-3949-9]
[159]
Wei, W.L.; Zeng, R.; Gu, C.M.; Qu, Y.; Huang, L.F. Angelica sinensis in China-A review of botanical profile, ethnopharmacology, phyto-chemistry and chemical analysis. J. Ethnopharmacol., 2016, 190, 116-141.
[http://dx.doi.org/10.1016/j.jep.2016.05.023] [PMID: 27211015]
[160]
Chang, K.F.; Chang, J.T.; Huang, X.F.; Lin, Y.L.; Liao, K.W.; Huang, C.W.; Tsai, N.M. Antitumor effects of n-butylidenephthalide encapsulated in lipopolyplexs in colorectal cancer cells. Molecules, 2020, 25(10), E2394.
[http://dx.doi.org/10.3390/molecules25102394] [PMID: 32455622]
[161]
Gera, M.; Sharma, N.; Ghosh, M.; Huynh, D.L.; Lee, S.J.; Min, T.; Kwon, T.; Jeong, D.K. Nanoformulations of curcumin: An emerging paradigm for improved remedial application. Oncotarget, 2017, 8(39), 66680-66698.
[http://dx.doi.org/10.18632/oncotarget.19164] [PMID: 29029547]
[162]
Benarba, B.; Pandiella, A. Colorectal cancer and medicinal plants: Principle findings from recent studies. Biomed. Pharmacother., 2018, 107, 408-423.
[http://dx.doi.org/10.1016/j.biopha.2018.08.006] [PMID: 30099345]
[163]
Wang, S-T.; Cui, W-Q.; Pan, D.; Jiang, M.; Chang, B.; Sang, L-X. Tea polyphenols and their chemopreventive and therapeutic effects on colorectal cancer. World J. Gastroenterol., 2020, 26(6), 562-597.
[http://dx.doi.org/10.3748/wjg.v26.i6.562] [PMID: 32103869]
[164]
Nie, X.; Liu, H.; Liu, L.; Wang, Y-D.; Chen, W-D. Emerging roles of WNT ligands in human colorectal cancer. Front. Oncol., 2020, 10, 1341.
[http://dx.doi.org/10.3389/fonc.2020.01341] [PMID: 32923386]
[165]
Khan, S.H.; Alhumaydhi, F.A.; Khan, M.A.; Younus, H. Therapeutic potential of polyphenols and their nanoformulations in the treatment of colorectal cancer. Anticancer. Agents Med. Chem., 2021, 21(16), 2117-2129.
[http://dx.doi.org/10.2174/1871520621666201231144007] [PMID: 33390126]
[166]
Lee, D-Y.; Song, M-Y.; Kim, E-H. Role of oxidative stress and Nrf2/KEAP1 signaling in colorectal cancer: Mechanisms and therapeutic perspectives with phytochemicals. Antioxidants (Basel),, 2021, 10(5), 743.
[167]
Mahadevappa, R.; Kwok, H.F. Phytochemicals - A novel and prominent source of anti-cancer drugs against colorectal cancer. Comb. Chem. High Throughput Screen., 2017, 20(5), 376-394.
[http://dx.doi.org/10.2174/1386207320666170112141833] [PMID: 28078982]
[168]
Galon, J.; Bruni, D. Approaches to treat immune hot, altered and cold tumours with combination immunotherapies. Nat. Rev. Drug Discov., 2019, 18(3), 197-218.
[http://dx.doi.org/10.1038/s41573-018-0007-y] [PMID: 30610226]
[169]
Ahmad, S.; Munir, S.; Zeb, N.; Ullah, A.; Khan, B.; Ali, J.; Bilal, M.; Omer, M.; Alamzeb, M.; Salman, S.M.; Ali, S. Green nanotechnology: A review on green synthesis of silver nanoparticles - an ecofriendly approach. Int. J. Nanomedicine, 2019, 14, 5087-5107.
[http://dx.doi.org/10.2147/IJN.S200254] [PMID: 31371949]
[170]
Xueqin, A.; Dan, Q.; Weiguo, S.; Min, Zh. Method for preparing nano berberine hydrochloride liposome by supercritical carbon dioxide method. C.N. Patent 101683322A, 2011. February 23,
[171]
Chen, W.; Zhang, J.; Cao, Zh. Nano- and micro-sized particles of 20-camptothecin or derivative thereof and pharmaceutical compositions containing same, and treatment of cancers therewith. W.O. Patent 2017083151A1, 2017. May 18,
[172]
Özen, OA.; Özgül, M.; Aydin, M. Nanomicelles for the treatment of cancer. W.O. Patent 2016167730A1, 2016.
[173]
Huang, L.; Zhang, J.; Shen, L. Nano co-delivery of quercetin and alantolactone promotes anti-tumor response through synergistic response through synergistic immunogenic cell death for microsatellite- stable colorectal cancer. W.O. Patent 2020219628, 2020.
[174]
Tang, J. Soybean protein-based nano curcumin suitable for research and development of functional health food for preventing intestinal cancer and production method thereof. C.N. Patent 111213880A,, 2020.
[175]
Senn, S.; Rachman, I.M. Glut-1 targeted and curcumin loaded micelles. E.P. Patent 2825198 B1,, 2020.
[176]
Sahoo, SK.; Mohanty, C. A novel water soluble curcumin loaded nanoparticulate system for cancer therapy. W.O. Patent 2011101859A1,, 2011.
[177]
Moballegh Nasery, M.; Abadi, B.; Poormoghadam, D.; Zarrabi, A.; Keyhanvar, P.; Khanbabaei, H.; Ashrafizadeh, M.; Mohammadinejad, R.; Tavakol, S.; Sethi, G. Curcumin delivery mediated by bio-based nanoparticles: A review. Molecules, 2020, 25(3), E689.
[http://dx.doi.org/10.3390/molecules25030689] [PMID: 32041140]
[178]
Ernest, U.; Chen, H.Y.; Xu, M.J.; Taghipour, Y.D.; Asad, M.H.H.B.; Rahimi, R.; Murtaza, G. Anti-cancerous potential of polyphenol-loaded polymeric nanotherapeutics. Molecules, 2018, 23(11), E2787.
[http://dx.doi.org/10.3390/molecules23112787] [PMID: 30373235]
[179]
Atanasov, A.G.; Zotchev, S.B.; Dirsch, V.M.; Supuran, C.T. Natural products in drug discovery: Advances and opportunities. Nat. Rev. Drug Discov., 2021, 20(3), 200-216.
[http://dx.doi.org/10.1038/s41573-020-00114-z] [PMID: 33510482]
[180]
Liu, Y.; Hardie, J.; Zhang, X.; Rotello, V.M. Effects of engineered nanoparticles on the innate immune system. Semin. Immunol., 2017, 34, 25-32.
[http://dx.doi.org/10.1016/j.smim.2017.09.011] [PMID: 28985993]
[181]
Ilinskaya, A.N.; Dobrovolskaia, M.A. Nanoparticles and the blood coagulation system. Part II: Safety concerns. Nanomedicine (Lond.), 2013, 8(6), 969-981.
[http://dx.doi.org/10.2217/nnm.13.49] [PMID: 23730696]
[182]
Gustafson, H.H.; Holt-Casper, D.; Grainger, D.W.; Ghandehari, H. Nanoparticle uptake: The phagocyte problem. Nano Today, 2015, 10(4), 487-510.
[http://dx.doi.org/10.1016/j.nantod.2015.06.006] [PMID: 26640510]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy