Generic placeholder image

Current Chinese Science

Editor-in-Chief

ISSN (Print): 2210-2981
ISSN (Online): 2210-2914

Research Article Section: Nanotechnology

Clay-derived Synthesis of Supported α-Fe2O3 Nanoparticles: Shape, Adsorption, and Photo-catalysis

Author(s): Linrong Meng, Tao Hao, Xintai Su*, Xue Li* and Guofeng Wang

Volume 3, Issue 1, 2023

Published on: 26 September, 2022

Page: [72 - 81] Pages: 10

DOI: 10.2174/2210298102666220823152953

Price: $65

Open Access Journals Promotions 2
Abstract

Background: This paper reports a versatile bentonite clay-mediated growth method for selectively synthesizing zero-dimensional α-Fe2O3 nanoparticles and one-dimensional α-Fe2O3 nanorods.

Methods: In such a growth process without any other surfactant or additive, the bentonite clay is not only used as the supporter, but also as a shape mediator for α-Fe2O3 nanocrystals. The products were characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM).

Results: The as-prepared products were used to investigate their promising adsorptive and photocatalytic applications in water treatment. According to the Langmuir equation, the maximum adsorption capacity of the α-Fe2O3/bentonite composite for Congo red (CR) is calculated to be 96.9 mg·g-1. Furthermore, the α-Fe2O3/bentonite nanocomposites also show an excellent photocatalytic property in the degradation of methyl orange (MO).

Conclusion: This facile and novel synthesis method has the potential to be applied to prepare the low-cost α-Fe2O3/bentonite nanocomposite for the removal of CR and MO.

Keywords: α-Fe2O3/bentonite composite, water treatment, adsorption, photocatalysis, nanopartices, clay-derived synthesis.

« Previous
Graphical Abstract
[1]
Zhao, C.L.; He, M.M.; Cao, H.B.; Zheng, X.H.; Gao, W.F.; Sun, Y.; Zhao, H.; Liu, D.L.; Zhang, Y.L.; Sun, Z. Investigation of solution chemistry to enable efficient lithium recovery from low-concentration lithium-containing wastewater. Front. Chem. Sci. Eng., 2020, 14(4), 639-650.
[http://dx.doi.org/10.1007/s11705-019-1806-3]
[2]
Jiang, X.; Zhou, T.; Bai, R.; Xie, Y. Hydroxypyridinone-based iron chelators with broad-ranging biological activities. J. Med. Chem., 2020, 63(23), 14470-14501.
[http://dx.doi.org/10.1021/acs.jmedchem.0c01480] [PMID: 33023291]
[3]
Everett, J.; Brooks, J.; Collingwood, J.F.; Telling, N.D. Nanoscale chemical speciation of beta-amyloid/iron aggregates using soft X-ray spectromicroscopy. Inorg. Chem. Front., 2021, 8(6), 1439-1448.
[http://dx.doi.org/10.1039/D0QI01304H]
[4]
Benkhaya, S.; M’rabet, S.; El Harfi, A. Classifications, properties, recent synthesis and applications of azo dyes. Heliyon, 2020, 6(1)e03271
[http://dx.doi.org/10.1016/j.heliyon.2020.e03271] [PMID: 32042981]
[5]
Nho, S.W.; Cui, X.; Kweon, O.; Jin, J.; Chen, H.; Moon, M.S.; Kim, S.J.; Cerniglia, C.E. Phylogenetically diverse bacteria isolated from tattoo inks, an azo dye-rich environment, decolorize a wide range of azo dyes. Ann. Microbiol., 2021, 71(1), 35.
[http://dx.doi.org/10.1186/s13213-021-01648-2] [PMID: 34744534]
[6]
Kapoor, R.T.; Danish, M.; Singh, R.S.; Rafatullah, M.; Khalil, H.P.S.A. Exploiting microbial biomass in treating azo dyes contaminated wastewater: Mechanism of degradation and factors affecting microbial efficiency. J. Water Process Eng., 2021, 43102255
[http://dx.doi.org/10.1016/j.jwpe.2021.102255]
[7]
Bouarioua, A. High photocatalytic performance of coated TiO2 layers assisted by H2O2 oxidizing agent to remove an azo dye from water via the synergistic effect of optimum conditions. Desalination Water Treat., 2020, 184, 354-366.
[http://dx.doi.org/10.5004/dwt.2020.25340]
[8]
Peng, H.; Guo, J. Removal of chromium from wastewater by membrane filtration, chemical precipitation, ion exchange, adsorption electrocoagulation, electrochemical reduction, electrodialysis, electrodeionization, photocatalysis and nanotechnology: A review. Environ. Chem. Lett., 2020, 18(6), 2055-2068.
[http://dx.doi.org/10.1007/s10311-020-01058-x]
[9]
Rathi, B.S.; Kumar, P.S. Electrodeionization theory, mechanism and environmental applications. A review. Environ. Chem. Lett., 2020, 18(4), 1209-1227.
[http://dx.doi.org/10.1007/s10311-020-01006-9]
[10]
Li, Z.; Wang, L.; Qin, L.; Lai, C.; Wang, Z.; Zhou, M.; Xiao, L.; Liu, S.; Zhang, M. Recent advances in the application of water-stable metal-organic frameworks: Adsorption and photocatalytic reduction of heavy metal in water. Chemosphere, 2021, 285131432
[http://dx.doi.org/10.1016/j.chemosphere.2021.131432] [PMID: 34273693]
[11]
Le, A.T.; Pung, S.Y. Reusability of metals/metal oxide coupled zinc oxide nanorods in degradation of rhodamine B dye. Pigm. Resin Technol., 2021, 50(1), 10-18.
[http://dx.doi.org/10.1108/PRT-01-2020-0001]
[12]
Shao, N.; Li, S.; Yan, F.; Su, Y.; Liu, F.; Zhang, Z. An all-in-one strategy for the adsorption of heavy metal ions and photodegradation of organic pollutants using steel slag-derived calcium silicate hydrate. J. Hazard. Mater., 2020, 382121120
[http://dx.doi.org/10.1016/j.jhazmat.2019.121120] [PMID: 31487667]
[13]
Lupa, L.; Cocheci, L.; Trica, B.; Coroaba, A.; Popa, A. Photodegradation of phenolic compounds from water in the presence of a Pd-containing exhausted adsorbent. Appl. Sci. (Basel), 2020, 10(23), 8440.
[http://dx.doi.org/10.3390/app10238440]
[14]
Sharafinia, S.; Farrokhnia, A.; Lemraski, E.G. Comparative study of adsorption of safranin o by TiO2/activated carbon and chitosan/TiO2/activated carbon adsorbents. Phys. Chem. Res., 2021, 9, 605-621.
[15]
Mandal, S.; Calderon, J.; Marpu, S.B.; Omary, M.A.; Shi, S.Q. Mesoporous activated carbon as a green adsorbent for the removal of heavy metals and Congo red: Characterization, adsorption kinetics, and isotherm studies. J. Contam. Hydrol., 2021, 243103869
[http://dx.doi.org/10.1016/j.jconhyd.2021.103869] [PMID: 34418820]
[16]
Sun, Z.W.; Liu, Y.H.; Srinivasakannan, C. One-pot fabrication of rod-like magnesium silicate and its adsorption for Cd2+. J. Environ. Chem. Eng., 2020, 8(5)104380
[http://dx.doi.org/10.1016/j.jece.2020.104380]
[17]
Yang, Z.; Wei, J.; Yang, H.; Liu, L.; Liang, H.; Yang, Y. Mesoporous CeO2 hollow spheres prepared by Ostwald ripening and their environmental applications. Eur. J. Inorg. Chem., 2010, 21(21), 3354-3359.
[http://dx.doi.org/10.1002/ejic.201000030]
[18]
Wei, Z.; Xing, R.; Zhang, X.; Liu, S.; Yu, H.; Li, P. Facile template-free fabrication of hollow nestlike α-Fe2O3 nanostructures for water treatment. ACS Appl. Mater. Interfaces, 2013, 5(3), 598-604.
[http://dx.doi.org/10.1021/am301950k] [PMID: 23131138]
[19]
Yu, C.C.; Dong, X.P.; Guo, L.M.; Li, J.T.; Qin, F.; Zhang, L.X.; Shi, J.L.; Yan, D.S. Template-free preparation of mesoporous Fe2O3 and its application as absorbents. J. Phys. Chem. C, 2008, 112(35), 13378-13382.
[http://dx.doi.org/10.1021/jp8044466]
[20]
Fei, J.; Cui, Y.; Zhao, J.; Gao, L.; Yang, Y.; Li, J. Large-scale preparation of 3D self-assembled iron hydroxide and oxide hierarchical nanostructures and their applications for water treatment. J. Mater. Chem., 2011, 21(32), 11742-11746.
[http://dx.doi.org/10.1039/c1jm11950h]
[21]
Wang, L.; Li, J.; Wang, Y.; Zhao, L.; Jiang, Q. Adsorption capability for Congo red on nanocrystalline MFe2O4 (M = Mn, Fe, Co, Ni) spinel ferrites. Chem. Eng. J., 2012, 181-182, 72-79.
[http://dx.doi.org/10.1016/j.cej.2011.10.088]
[22]
Wang, B.; Wu, H.; Yu, L.; Xu, R.; Lim, T.T.; Lou, X.W. Template-free formation of uniform urchin-like α-FeOOH hollow spheres with superior capability for water treatment. Adv. Mater., 2012, 24(8), 1111-1116.
[http://dx.doi.org/10.1002/adma.201104599] [PMID: 22271299]
[23]
Cheng, B.; Le, Y.; Cai, W.; Yu, J. Synthesis of hierarchical Ni(OH)2 and NiO nanosheets and their adsorption kinetics and isotherms to Congo red in water. J. Hazard. Mater., 2011, 185(2-3), 889-897.
[http://dx.doi.org/10.1016/j.jhazmat.2010.09.104] [PMID: 21030146]
[24]
Vimonses, V.; Lei, S.; Jin, B.; Chow, C.W.K.; Saint, C. Kinetic study and equilibrium isotherm analysis of Congo Red adsorption by clay materials. Chem. Eng. J., 2009, 148(2-3), 354-364.
[http://dx.doi.org/10.1016/j.cej.2008.09.009]
[25]
Toor, M.; Jin, B. Adsorption characteristics, isotherm, kinetics, and diffusion of modified natural bentonite for removing diazo dye. Chem. Eng. J., 2012, 187, 79-88.
[http://dx.doi.org/10.1016/j.cej.2012.01.089]
[26]
Pavan, F.A.; Dias, S.L.; Lima, E.C.; Benvenutti, E.V. Removal of Congo red from aqueous solution by anilinepropylsilica xerogel. Dyes Pigments, 2008, 76(1), 64-69.
[http://dx.doi.org/10.1016/j.dyepig.2006.08.027]
[27]
Panda, G.C.; Das, S.K.; Guha, A.K. Jute stick powder as a potential biomass for the removal of congo red and rhodamine B from their aqueous solution. J. Hazard. Mater., 2009, 164(1), 374-379.
[http://dx.doi.org/10.1016/j.jhazmat.2008.08.015] [PMID: 18804326]
[28]
Mall, I.D.; Srivastava, V.C.; Agarwal, N.K.; Mishra, I.M. Removal of congo red from aqueous solution by bagasse fly ash and activated carbon: Kinetic study and equilibrium isotherm analyses. Chemosphere, 2005, 61(4), 492-501.
[http://dx.doi.org/10.1016/j.chemosphere.2005.03.065] [PMID: 15869781]
[29]
Ji, P.L.; Wang, L.L.; Chen, S.S.; Wen, Q.N.; Wu, J.N.; Meng, G.H.; Hou, J.; Liu, Z.Y.; Guo, X.H. Enhanced photo-Fenton activity of gamma-Fe2O3/Bent modified with BiVO4 under visible light. Chem. Phys. Lett., 2022, 786138987
[http://dx.doi.org/10.1016/j.cplett.2021.138987]
[30]
Mou, X.; Wei, X.; Li, Y.; Shen, W. Tuning crystal-phase and shape of Fe2O3 nanoparticles for catalytic applications. CrystEngComm, 2012, 14(16), 5107-5120.
[http://dx.doi.org/10.1039/c2ce25109d]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy