Generic placeholder image

Current Protein & Peptide Science

Editor-in-Chief

ISSN (Print): 1389-2037
ISSN (Online): 1875-5550

Review Article

Structure, Distribution, Regulation, and Function of Splice Variant Isoforms of Nitric Oxide Synthase Family in the Nervous System

Author(s): Nasrin Hosseini*, Masoumeh Kourosh-Arami*, Shabnam Nadjafi and Behnaz Ashtari

Volume 23, Issue 8, 2022

Published on: 13 September, 2022

Page: [510 - 534] Pages: 25

DOI: 10.2174/1389203723666220823151326

Price: $65

Open Access Journals Promotions 2
Abstract

Nitric oxide (NO) is a small molecule produced by nitric oxide synthase (NOS) with various physio-pathological functions in the body. There are three main NOS isoforms, including the endothelial (eNOS), inducible (iNOS), and neuronal NOS (nNOS), that exist in the peripheral organs and nervous systems of humans and rodents. Moreover, NOS includes other identified NOS isoforms, such as retinal Muller glial cells (mNOS), mitochondrial (mtNOS), penile (PnNOS), testis-specific (TnNOS), and invertebrate Drosophila NOS (dNOS), which are the lesser-known types. It is proposed that the versatile functions of NOS isoforms depend on various NOS splice variant subtypes and their expression in the neural (e.g., brain, and spinal cord) and non-neuronal tissues (e.g., lung, kidney, liver, and GI tract). Therefore, this review summarizes the NOS subtypes, splice variants, targeted splicing expression in the body, and their proposed physio-pathological functions. At last, alternative NOS subtypes and isoforms, which have previously received scant attention, will be addressed in this article.

Keywords: Nitric oxide synthase, endothelial NOS, neuronal NOS, inducible NOS, isoform subtype, nitric oxide.

Graphical Abstract
[1]
Liñares, D.; Taconis, M.; Maña, P.; Correcha, M.; Fordham, S.; Staykova, M.; Willenborg, D.O. Neuronal nitric oxide synthase plays a key role in CNS demyelination. J. Neurosci., 2006, 26(49), 12672-12681.
[http://dx.doi.org/10.1523/JNEUROSCI.0294-06.2006] [PMID: 17151270]
[2]
Wang, Y.; Goligorsky, M.S.; Lin, M.; Wilcox, J.N.; Marsden, P.A. A novel, testis-specific mRNA transcript encoding an NH2-terminal truncated nitric-oxide synthase. J. Biol. Chem., 1997, 272(17), 11392-11401.
[http://dx.doi.org/10.1074/jbc.272.17.11392] [PMID: 9111048]
[3]
Alderton, W.K.; Cooper, C.E.; Knowles, R.G. Nitric oxide synthases: Structure, function and inhibition. Biochem. J., 2001, 357(Pt 3), 593-615.
[http://dx.doi.org/10.1042/bj3570593] [PMID: 11463332]
[4]
Johnson, J.M.; Castle, J.; Garrett-Engele, P.; Kan, Z.; Loerch, P.M.; Armour, C.D.; Santos, R.; Schadt, E.E.; Stoughton, R.; Shoemaker, D.D. Genome-wide survey of human alternative pre-mRNA splicing with exon junction microarrays. Science, 2003, 302(5653), 2141-2144.
[http://dx.doi.org/10.1126/science.1090100] [PMID: 14684825]
[5]
Nicolin, V.; Ponti, C.; Narducci, P.; Grill, V.; Bortul, R.; Zweyer, M. Different levels of the neuronal nitric oxide synthase isoform modu-late the rate of osteoclastic differentiation of TIB‐71 and CRL‐2278 RAW 264.7 murine cell clones. Anat. Rec. A Discov. Mol. Cell. Evol. Biol., 2005, 286(2), 945-954.
[6]
Iadecola, C. Bright and dark sides of nitric oxide in ischemic brain injury. Trends Neurosci., 1997, 20(3), 132-139.
[http://dx.doi.org/10.1016/S0166-2236(96)10074-6] [PMID: 9061868]
[7]
Saur, D.; Paehge, H.; Schusdziarra, V.; Allescher, H.D. Distinct expression of splice variants of neuronal nitric oxide synthase in the hu-man gastrointestinal tract. Gastroenterology, 2000, 118(5), 849-858.
[http://dx.doi.org/10.1016/S0016-5085(00)70171-5] [PMID: 10784584]
[8]
Regulski, M.; Tully, T. Molecular and biochemical characterization of dNOS: A Drosophila Ca2+/calmodulin-dependent nitric oxide syn-thase. Proc. Natl. Acad. Sci. USA, 1995, 92(20), 9072-9076.
[http://dx.doi.org/10.1073/pnas.92.20.9072] [PMID: 7568075]
[9]
Hou, Y.C.; Janczuk, A.; Wang, P.G. Current trends in the development of nitric oxide donors. Curr. Pharm. Des., 1999, 5(6), 417-441.
[PMID: 10390607]
[10]
Roman, L.J.; Martásek, P.; Masters, B.S.S. Intrinsic and extrinsic modulation of nitric oxide synthase activity. Chem. Rev., 2002, 102(4), 1179-1190.
[http://dx.doi.org/10.1021/cr000661e] [PMID: 11942792]
[11]
Panda, S.P.; Li, W.; Venkatakrishnan, P.; Chen, L.; Astashkin, A.V.; Masters, B.S.S.; Feng, C.; Roman, L.J. Differential calmodulin-modulatory and electron transfer properties of neuronal nitric oxide synthase mu compared to the alpha variant. FEBS Lett., 2013, 587(24), 3973-3978.
[http://dx.doi.org/10.1016/j.febslet.2013.10.032] [PMID: 24211446]
[12]
Malakouti, S.M.; Kourosh Arami, M.; Sarihi, A.; Hajizadeh, S.; Behzadi, G.; Shahidi, S.; Komaki, A.; Heshmatian, B.; Vahabian, M. Re-versible inactivation and excitation of nucleus raphe magnus can modulate tail blood flow of male Wistar rats in response to hypothermia. Iran. Biomed. J., 2008, 12(4), 203-208.
[PMID: 19079538]
[13]
Chao, C.C.; Hu, S.; Molitor, T.W.; Shaskan, E.G.; Peterson, P.K. Activated microglia mediate neuronal cell injury via a nitric oxide mecha-nism. J. Immunol., 1992, 149(8), 2736-2741.
[PMID: 1383325]
[14]
Whittle, B.J.; Lopez-Belmonte, J.; Moncada, S. Regulation of gastric mucosal integrity by endogenous nitric oxide: Interactions with pros-tanoids and sensory neuropeptides in the rat. Br. J. Pharmacol., 1990, 99(3), 607-611.
[http://dx.doi.org/10.1111/j.1476-5381.1990.tb12977.x] [PMID: 2110019]
[15]
Bahadoran, Z.; Mirmiran, P.; Ghasemi, A. Role of nitric oxide in insulin secretion and glucose metabolism. Trends Endocrinol. Metab., 2020, 31(2), 118-130.
[http://dx.doi.org/10.1016/j.tem.2019.10.001] [PMID: 31690508]
[16]
Kourosh, A.M.; Sarihi, A.; Behzadi, G.; Amiri, I.; Malacoti, S.; Vahabian, M. The effect of nucleus tractus solitarius nitric oxidergic neu-rons on blood pressure in diabetic rats. Iran. Biomed. J., 2006, 10(1), 15-19.
[17]
Feng, C. Mechanism of nitric oxide synthase regulation: Electron transfer and interdomain interactions. Coord. Chem. Rev., 2012, 256(3-4), 393-411.
[http://dx.doi.org/10.1016/j.ccr.2011.10.011] [PMID: 22523434]
[18]
Bredt, D.S.; Snyder, S.H. Transient nitric oxide synthase neurons in embryonic cerebral cortical plate, sensory ganglia, and olfactory epi-thelium. Neuron, 1994, 13(2), 301-313.
[http://dx.doi.org/10.1016/0896-6273(94)90348-4] [PMID: 7520252]
[19]
Peunova, N.; Enikolopov, G. Nitric oxide triggers a switch to growth arrest during differentiation of neuronal cells. Nature, 1995, 375(6526), 68-73.
[http://dx.doi.org/10.1038/375068a0] [PMID: 7536899]
[20]
Knott, A.B.; Bossy-Wetzel, E. Nitric oxide in health and disease of the nervous system. Antioxid. Redox Signal., 2009, 11(3), 541-554.
[http://dx.doi.org/10.1089/ars.2008.2234] [PMID: 18715148]
[21]
Hartell, N.A. Inhibition of cGMP breakdown promotes the induction of cerebellar long-term depression. J. Neurosci., 1996, 16(9), 2881-2890.
[http://dx.doi.org/10.1523/JNEUROSCI.16-09-02881.1996] [PMID: 8622119]
[22]
Calabresi, P.; Gubellini, P.; Centonze, D.; Sancesario, G.; Morello, M.; Giorgi, M.; Pisani, A.; Bernardi, G. A critical role of the nitric ox-ide/cGMP pathway in corticostriatal long-term depression. J. Neurosci., 1999, 19(7), 2489-2499.
[http://dx.doi.org/10.1523/JNEUROSCI.19-07-02489.1999] [PMID: 10087063]
[23]
Vrankova, S.; Galandakova, Z.; Benko, J.; Cebova, M.; Riecansky, I.; Pechanova, O. Duration of social isolation affects production of nitric oxide in the rat brain. Int. J. Mol. Sci., 2021, 22(19), 10340.
[http://dx.doi.org/10.3390/ijms221910340] [PMID: 34638682]
[24]
Konturek, S.K.; Konturek, P.C. Role of nitric oxide in the digestive system. Digestion, 1995, 56(1), 1-13.
[http://dx.doi.org/10.1159/000201214] [PMID: 7895925]
[25]
Nadjafi, S.; Ebrahimi, S-A.; Rahbar-Roshandel, N. Effect of berberine on nitric oxide production during oxygen-glucose depriva-tion/reperfusion in OLN-93 oligodendrocytes. Pak. J. Biol. Sci., 2014, 17(11), 1185-1189.
[http://dx.doi.org/10.3923/pjbs.2014.1185.1189] [PMID: 26027164]
[26]
Nadjafi, S.; Ebrahimi, S.A.; Rahbar-Roshandel, N. Noscapine protects OLN-93 oligodendrocytes from ischemia-reperfusion damage: Cal-cium and nitric oxide involvement. Acta Physiol. Hung., 2015, 102(4), 351-362.
[http://dx.doi.org/10.1556/036.102.2015.4.2] [PMID: 26690027]
[27]
Grozdanovic, Z. NO message from muscle. Microsc. Res. Tech., 2001, 55(3), 148-153.
[http://dx.doi.org/10.1002/jemt.1165] [PMID: 11747089]
[28]
Capettini, L.S.; Cortes, S.F.; Silva, J.F.; Alvarez-Leite, J.I.; Lemos, V.S. Decreased production of neuronal NOS-derived hydrogen perox-ide contributes to endothelial dysfunction in atherosclerosis. Br. J. Pharmacol., 2011, 164(6), 1738-1748.
[http://dx.doi.org/10.1111/j.1476-5381.2011.01500.x] [PMID: 21615722]
[29]
Simonian, N.A.; Coyle, J.T. Oxidative stress in neurodegenerative diseases. Annu. Rev. Pharmacol. Toxicol., 1996, 36(1), 83-106.
[http://dx.doi.org/10.1146/annurev.pa.36.040196.000503] [PMID: 8725383]
[30]
Espey, M.G.; Miranda, K.M.; Thomas, D.D.; Xavier, S.; Citrin, D.; Vitek, M.P.; Wink, D.A. A chemical perspective on the interplay be-tween NO, reactive oxygen species, and reactive nitrogen oxide species. Ann. N. Y. Acad. Sci., 2002, 962(1), 195-206.
[http://dx.doi.org/10.1111/j.1749-6632.2002.tb04068.x] [PMID: 12076975]
[31]
Grider, J.R.; Jin, J-G. Vasoactive intestinal peptide release and L-citrulline production from isolated ganglia of the myenteric plexus: Evi-dence for regulation of vasoactive intestinal peptide release by nitric oxide. Neuroscience, 1993, 54(2), 521-526.
[http://dx.doi.org/10.1016/0306-4522(93)90271-G] [PMID: 8101643]
[32]
Allescher, H.D.; Kurjak, M.; Huber, A.; Trudrung, P.; Schusdziarra, V. Regulation of VIP release from rat enteric nerve terminals: Evi-dence for a stimulatory effect of NO. Am. J. Physiol., 1996, 271(4 Pt 1), G568-G574.
[PMID: 8897874]
[33]
Hebeiss, K.; Kilbinger, H. Nitric oxide-sensitive guanylyl cyclase inhibits acetylcholine release and excitatory motor transmission in the guinea-pig ileum. Neuroscience, 1998, 82(2), 623-629.
[http://dx.doi.org/10.1016/S0306-4522(97)00308-4] [PMID: 9466466]
[34]
Beltrán, B.; Mathur, A.; Duchen, M.R.; Erusalimsky, J.D.; Moncada, S. The effect of nitric oxide on cell respiration: A key to understand-ing its role in cell survival or death. Proc. Natl. Acad. Sci. USA, 2000, 97(26), 14602-14607.
[http://dx.doi.org/10.1073/pnas.97.26.14602] [PMID: 11121062]
[35]
Xu, W.; Charles, I.G.; Moncada, S. Nitric oxide: Orchestrating hypoxia regulation through mitochondrial respiration and the endoplasmic reticulum stress response. Cell Res., 2005, 15(1), 63-65.
[http://dx.doi.org/10.1038/sj.cr.7290267] [PMID: 15686630]
[36]
Ridnour, L.A.; Thomas, D.D.; Mancardi, D.; Espey, M.G.; Miranda, K.M.; Paolocci, N.; Feelisch, M.; Fukuto, J.; Wink, D.A. The chemis-try of nitrosative stress induced by nitric oxide and reactive nitrogen oxide species. Putting perspective on stressful biological situations. Biol. Chem., 2004, 385(1), 1-10.
[http://dx.doi.org/10.1515/BC.2004.001] [PMID: 14977040]
[37]
Eisenreich, A. Regulation of vascular function on posttranscriptional level. Thrombosis, 2013, 2013, 948765.
[http://dx.doi.org/10.1155/2013/948765]
[38]
Wang, G-S.; Cooper, T.A. Splicing in disease: Disruption of the splicing code and the decoding machinery. Nat. Rev. Genet., 2007, 8(10), 749-761.
[http://dx.doi.org/10.1038/nrg2164] [PMID: 17726481]
[39]
Stamm, S.; Ben-Ari, S.; Rafalska, I.; Tang, Y.; Zhang, Z.; Toiber, D.; Thanaraj, T.A.; Soreq, H. Function of alternative splicing. Gene, 2005, 344, 1-20.
[http://dx.doi.org/10.1016/j.gene.2004.10.022] [PMID: 15656968]
[40]
Leppert, U.; Henke, W.; Huang, X.; Müller, J.M.; Dubiel, W. Post-transcriptional fine-tuning of COP9 signalosome subunit biosynthesis is regulated by the c-Myc/Lin28B/let-7 pathway. J. Mol. Biol., 2011, 409(5), 710-721.
[http://dx.doi.org/10.1016/j.jmb.2011.04.041] [PMID: 21530537]
[41]
van Rooij, E.; Marshall, W.S.; Olson, E.N. Toward microRNA-based therapeutics for heart disease: The sense in antisense. Circ. Res., 2008, 103(9), 919-928.
[http://dx.doi.org/10.1161/CIRCRESAHA.108.183426] [PMID: 18948630]
[42]
Iwama, H. Coordinated networks of microRNAs and transcription factors with evolutionary perspectives. In: MicroRNA Cancer Regula-tion; Springer, 2013; pp. 169-187.
[43]
Marsden, PA Newton, DC Alternative processing: Neuronal nitric oxide synthase 2001.
[44]
Wang, Y.; Liu, J.; Huang, B.O.; Xu, Y.M.; Li, J.; Huang, L.F.; Lin, J.; Zhang, J.; Min, Q.H.; Yang, W.M.; Wang, X.Z. Mechanism of alterna-tive splicing and its regulation. Biomed. Rep., 2015, 3(2), 152-158.
[http://dx.doi.org/10.3892/br.2014.407] [PMID: 25798239]
[45]
Stamler, J.S.; Meissner, G. Physiology of nitric oxide in skeletal muscle. Physiol. Rev., 2001, 81(1), 209-237.
[http://dx.doi.org/10.1152/physrev.2001.81.1.209] [PMID: 11152758]
[46]
Gaston, B.; Stamler, J.S. Biochemistry of nitric oxide. In: Nitric Oxide and Infection; Springer, 2002; pp. 37-55.
[http://dx.doi.org/10.1007/0-306-46816-6_3]
[47]
Mungrue, I.N.; Bredt, D.S. nNOS at a glance: Implications for brain and brawn. J. Cell Sci., 2004, 117(Pt 13), 2627-2629.
[http://dx.doi.org/10.1242/jcs.01187] [PMID: 15169833]
[48]
López-Costa, J.J.; Goldstein, J.; Saavedra, J.P. Neuronal and macrophagic nitric oxide synthase isoforms distribution in normal rat retina. Neurosci. Lett., 1997, 232(3), 155-158.
[http://dx.doi.org/10.1016/S0304-3940(97)00601-0] [PMID: 9310303]
[49]
Kourosh-Arami, M.; Hosseini, N.; Mohsenzadegan, M.; Komaki, A.; Joghataei, M.T. Neurophysiologic implications of neuronal nitric oxide synthase. Rev. Neurosci., 2020, 31(6), 617-636.
[http://dx.doi.org/10.1515/revneuro-2019-0111] [PMID: 32739909]
[50]
Kusner, L.L.; Kaminski, H.J. Nitric oxide synthase is concentrated at the skeletal muscle endplate. Brain Res., 1996, 730(1-2), 238-242.
[http://dx.doi.org/10.1016/0006-8993(96)00675-0] [PMID: 8883910]
[51]
Brenman, J.E.; Chao, D.S.; Gee, S.H.; McGee, A.W.; Craven, S.E.; Santillano, D.R.; Wu, Z.; Huang, F.; Xia, H.; Peters, M.F.; Froehner, S.C.; Bredt, D.S. Interaction of nitric oxide synthase with the postsynaptic density protein PSD-95 and α1-syntrophin mediated by PDZ domains. Cell, 1996, 84(5), 757-767.
[http://dx.doi.org/10.1016/S0092-8674(00)81053-3] [PMID: 8625413]
[52]
Brenman, J.E.; Chao, D.S.; Xia, H.; Aldape, K.; Bredt, D.S. Nitric oxide synthase complexed with dystrophin and absent from skeletal muscle sarcolemma in Duchenne muscular dystrophy. Cell, 1995, 82(5), 743-752.
[http://dx.doi.org/10.1016/0092-8674(95)90471-9] [PMID: 7545544]
[53]
Eissa, N.T.; Yuan, J.W.; Haggerty, C.M.; Choo, E.K.; Palmer, C.D.; Moss, J. Cloning and characterization of human inducible nitric oxide synthase splice variants: A domain, encoded by exons 8 and 9, is critical for dimerization. Proc. Natl. Acad. Sci. USA, 1998, 95(13), 7625-7630.
[http://dx.doi.org/10.1073/pnas.95.13.7625] [PMID: 9636200]
[54]
Eissa, N.T.; Strauss, A.J.; Haggerty, C.M.; Choo, E.K.; Chu, S.C.; Moss, J. Alternative splicing of human inducible nitric-oxide synthase mRNA. tissue-specific regulation and induction by cytokines. J. Biol. Chem., 1996, 271(43), 27184-27187.
[http://dx.doi.org/10.1074/jbc.271.43.27184] [PMID: 8900212]
[55]
Türköz, Y.; Özerol, E. Nitric oxide: Actions and pathological roles. J. Turgut Özal Med. Center, 1997, 4(4), 453-461.
[56]
Palumbo, M.L.; Fosser, N.S.; Rios, H.; Zorrilla Zubilete, M.A.; Guelman, L.R.; Cremaschi, G.A.; Genaro, A.M. Loss of hippocampal neu-ronal nitric oxide synthase contributes to the stress-related deficit in learning and memory. J. Neurochem., 2007, 102(1), 261-274.
[http://dx.doi.org/10.1111/j.1471-4159.2007.04528.x] [PMID: 17419805]
[57]
Hewett, S.J.; Corbett, J.A.; McDaniel, M.L.; Choi, D.W. Interferon-γ and interleukin-1 β induce nitric oxide formation from primary mouse astrocytes. Neurosci. Lett., 1993, 164(1-2), 229-232.
[http://dx.doi.org/10.1016/0304-3940(93)90898-U] [PMID: 7512249]
[58]
Borgerding, R.A.; Murphy, S. Expression of inducible nitric oxide synthase in cerebral endothelial cells is regulated by cytokine-activated astrocytes. J. Neurochem., 1995, 65(3), 1342-1347.
[http://dx.doi.org/10.1046/j.1471-4159.1995.65031342.x] [PMID: 7543934]
[59]
Merrill, J.E.; Murphy, S.P.; Mitrovic, B.; Mackenzie-Graham, A.; Dopp, J.C.; Ding, M.; Griscavage, J.; Ignarro, L.J.; Lowenstein, C.J. In-ducible nitric oxide synthase and nitric oxide production by oligodendrocytes. J. Neurosci. Res., 1997, 48(4), 372-384.
[http://dx.doi.org/10.1002/(SICI)1097-4547(19970515)48:4<372:AID-JNR9>3.0.CO;2-8] [PMID: 9169863]
[60]
Zlatković J.; Filipović D. Chronic social isolation induces NF-κB activation and upregulation of iNOS protein expression in rat prefrontal cortex. Neurochem. Int., 2013, 63(3), 172-179.
[http://dx.doi.org/10.1016/j.neuint.2013.06.002] [PMID: 23770205]
[61]
Zlatković J.; Bernardi, R.E.; Filipović D. Protective effect of Hsp70i against chronic social isolation stress in the rat hippocampus. J. Neural Transm. (Vienna), 2014, 121(1), 3-14.
[http://dx.doi.org/10.1007/s00702-013-1066-1] [PMID: 23851625]
[62]
Cinelli, M.A.; Do, H.T.; Miley, G.P.; Silverman, R.B. Inducible nitric oxide synthase: Regulation, structure, and inhibition. Med. Res. Rev., 2020, 40(1), 158-189.
[http://dx.doi.org/10.1002/med.21599] [PMID: 31192483]
[63]
Mungrue, I.N.; Bredt, D.S.; Stewart, D.J.; Husain, M. From molecules to mammals: What’s NOS got to do with it? Acta Physiol. Scand., 2003, 179(2), 123-135.
[http://dx.doi.org/10.1046/j.1365-201X.2003.01182.x] [PMID: 14510775]
[64]
Li, D.; Shin, J-H.; Duan, D. iNOS ablation does not improve specific force of the extensor digitorum longus muscle in dystrophin-deficient mdx4cv mice. PLoS One, 2011, 6(6), e21618.
[http://dx.doi.org/10.1371/journal.pone.0021618] [PMID: 21738735]
[65]
Bolaños, J.P.; Heales, S.J.; Land, J.M.; Clark, J.B. Effect of peroxynitrite on the mitochondrial respiratory chain: Differential susceptibility of neurones and astrocytes in primary culture. J. Neurochem., 1995, 64(5), 1965-1972.
[http://dx.doi.org/10.1046/j.1471-4159.1995.64051965.x] [PMID: 7722484]
[66]
Hirsch, E.; Hunot, S.; Damier, P.; Faucheux, B. Glial cells and inflammation in Parkinson’s disease: A role in neurodegeneration? Ann. Neurol., 1998, 44(S11), S115-S120.
[http://dx.doi.org/10.1002/ana.410440717]
[67]
Hunot, S.; Dugas, N.; Faucheux, B.; Hartmann, A.; Tardieu, M.; Debré, P.; Agid, Y.; Dugas, B.; Hirsch, E.C. FcepsilonRII/CD23 is ex-pressed in Parkinson’s disease and induces, in vitro, production of nitric oxide and tumor necrosis factor-α in glial cells. J. Neurosci., 1999, 19(9), 3440-3447.
[http://dx.doi.org/10.1523/JNEUROSCI.19-09-03440.1999] [PMID: 10212304]
[68]
Xie, Q.W.; Whisnant, R.; Nathan, C. Promoter of the mouse gene encoding calcium-independent nitric oxide synthase confers inducibility by interferon gamma and bacterial lipopolysaccharide. J. Exp. Med., 1993, 177(6), 1779-1784.
[http://dx.doi.org/10.1084/jem.177.6.1779] [PMID: 7684434]
[69]
Goldring, C.E.; Reveneau, S.; Algarté, M.; Jeannin, J-F. In vivo footprinting of the mouse inducible nitric oxide synthase gene: Inducible protein occupation of numerous sites including Oct and NF-IL6. Nucleic Acids Res., 1996, 24(9), 1682-1687.
[http://dx.doi.org/10.1093/nar/24.9.1682] [PMID: 8649986]
[70]
Kim, Y-M.; Ko, C-B.; Park, Y-P.; Kim, Y.J.; Paik, S-G. Octamer motif is required for the NF-kappaB-mediated induction of the inducible nitric oxide synthase gene expression in RAW 264.7 macrophages. Mol. Cells, 1999, 9(1), 99-109.
[http://dx.doi.org/10.1007/s10059-009-0010-6] [PMID: 10102579]
[71]
Tewari, D.; Sah, A.N.; Bawari, S.; Nabavi, S.F.; Dehpour, A.R.; Shirooie, S.; Braidy, N.; Fiebich, B.L.; Vacca, R.A.; Nabavi, S.M. Role of Nitric oxide in neurodegeneration: Function, regulation, and inhibition. Curr. Neuropharmacol., 2021, 19(2), 114-126.
[http://dx.doi.org/10.2174/1570159X18666200429001549] [PMID: 32348225]
[72]
Tran, N.; Garcia, T.; Aniqa, M.; Ali, S.; Ally, A.; Nauli, S.M. Endothelial nitric oxide synthase (eNOS) and the cardiovascular system: In physiology and in disease states. Am. J. Biomed. Sci. Res., 2022, 15(2), 153-177.
[73]
Dao, V.T-V.; Elbatreek, M.H.; Fuchß, T.; Grädler, U.; Schmidt, H.H.; Shah, A.M. Nitric oxide synthase inhibitors into the clinic at last. In: Reactive Oxygen Species; Springer, 2020; pp. 169-204.
[74]
Yrjänheikki, J.; Keinänen, R.; Pellikka, M.; Hökfelt, T.; Koistinaho, J. Tetracyclines inhibit microglial activation and are neuroprotective in global brain ischemia. Proc. Natl. Acad. Sci. USA, 1998, 95(26), 15769-15774.
[http://dx.doi.org/10.1073/pnas.95.26.15769] [PMID: 9861045]
[75]
Carson, M.J. Microglia as liaisons between the immune and central nervous systems: Functional implications for multiple sclerosis. Glia, 2002, 40(2), 218-231.
[http://dx.doi.org/10.1002/glia.10145] [PMID: 12379909]
[76]
Hesslinger, C.; Strub, A.; Boer, R.; Ulrich, W-R.; Lehner, M.D.; Braun, C. Inhibition of inducible nitric oxide synthase in respiratory diseas-es; Portland Press Ltd., 2009.
[http://dx.doi.org/10.1042/BST0370886]
[77]
Singer, I.I.; Kawka, D.W.; Scott, S.; Weidner, J.R.; Mumford, R.A.; Riehl, T.E.; Stenson, W.F. Expression of inducible nitric oxide syn-thase and nitrotyrosine in colonic epithelium in inflammatory bowel disease. Gastroenterology, 1996, 111(4), 871-885.
[http://dx.doi.org/10.1016/S0016-5085(96)70055-0] [PMID: 8831582]
[78]
Liaudet, L.; Schaller, M.; Feihl, F. Selective pharmacological inhibition of inducible nitric oxide synthase in experimental septic shock. In: Yearbook of Intensive Care and Emergency Medicine 1998; Springer, 1998; pp. 161-177.
[79]
Charles, I.G.; Palmer, R.M.; Hickery, M.S.; Bayliss, M.T.; Chubb, A.P.; Hall, V.S.; Moss, D.W.; Moncada, S. Cloning, characterization, and expression of a cDNA encoding an inducible nitric oxide synthase from the human chondrocyte. Proc. Natl. Acad. Sci. USA, 1993, 90(23), 11419-11423.
[http://dx.doi.org/10.1073/pnas.90.23.11419] [PMID: 7504305]
[80]
Parathath, S.R.; Gravanis, I.; Tsirka, S.E. Nitric oxide synthase isoforms undertake unique roles during excitotoxicity. Stroke, 2007, 38(6), 1938-1945.
[http://dx.doi.org/10.1161/STROKEAHA.106.478826] [PMID: 17446423]
[81]
Law, A.; O’Donnell, J.; Gauthier, S.; Quirion, R. Neuronal and inducible nitric oxide synthase expressions and activities in the hippocampi and cortices of young adult, aged cognitively unimpaired, and impaired Long-Evans rats. Neuroscience, 2002, 112(2), 267-275.
[http://dx.doi.org/10.1016/S0306-4522(02)00082-9] [PMID: 12044445]
[82]
Blum-Degen, D.; Heinemann, T.; Lan, J.; Pedersen, V.; Leblhuber, F.; Paulus, W.; Riederer, P.; Gerlach, M. Characterization and regional distribution of nitric oxide synthase in the human brain during normal ageing. Brain Res., 1999, 834(1-2), 128-135.
[http://dx.doi.org/10.1016/S0006-8993(99)01444-4] [PMID: 10407101]
[83]
Liu, P.; Smith, P.F.; Appleton, I.; Darlington, C.L.; Bilkey, D.K. Regional variations and age-related changes in nitric oxide synthase and arginase in the sub-regions of the hippocampus. Neuroscience, 2003, 119(3), 679-687.
[http://dx.doi.org/10.1016/S0306-4522(03)00210-0] [PMID: 12809689]
[84]
Kolodziejska, K.E.; Burns, A.R.; Moore, R.H.; Stenoien, D.L.; Eissa, N.T. Regulation of inducible nitric oxide synthase by aggresome formation. Proc. Natl. Acad. Sci. USA, 2005, 102(13), 4854-4859.
[http://dx.doi.org/10.1073/pnas.0500485102] [PMID: 15781872]
[85]
Pandit, L.; Kolodziejska, K.E.; Zeng, S.; Eissa, N.T. The physiologic aggresome mediates cellular inactivation of iNOS. Proc. Natl. Acad. Sci. USA, 2009, 106(4), 1211-1215.
[http://dx.doi.org/10.1073/pnas.0810968106] [PMID: 19139419]
[86]
Chartrain, N.A.; Geller, D.A.; Koty, P.P.; Sitrin, N.F.; Nussler, A.K.; Hoffman, E.P.; Billiar, T.R.; Hutchinson, N.I.; Mudgett, J.S. Molecular cloning, structure, and chromosomal localization of the human inducible nitric oxide synthase gene. J. Biol. Chem., 1994, 269(9), 6765-6772.
[http://dx.doi.org/10.1016/S0021-9258(17)37441-0] [PMID: 7509810]
[87]
Tiscornia, A.C.; Cayota, A.; Landoni, A.I.; Brito, C.; Oppezzo, P.; Vuillier, F.; Robello, C.; Dighiero, G.; Gabús, R.; Pritsch, O. Post-transcriptional regulation of inducible nitric oxide synthase in chronic lymphocytic leukemia B cells in pro- and antiapoptotic culture con-ditions. Leukemia, 2004, 18(1), 48-56.
[http://dx.doi.org/10.1038/sj.leu.2403169] [PMID: 14574328]
[88]
Geller, D.A.; Lowenstein, C.J.; Shapiro, R.A.; Nussler, A.K.; Di Silvio, M.; Wang, S.C.; Nakayama, D.K.; Simmons, R.L.; Snyder, S.H.; Billiar, T.R. Molecular cloning and expression of inducible nitric oxide synthase from human hepatocytes. Proc. Natl. Acad. Sci. USA, 1993, 90(8), 3491-3495.
[http://dx.doi.org/10.1073/pnas.90.8.3491] [PMID: 7682706]
[89]
Medford, R.M.; Nguyen, H.T.; Destree, A.T.; Summers, E.; Nadal-Ginard, B. A novel mechanism of alternative RNA splicing for the de-velopmentally regulated generation of troponin T isoforms from a single gene. Cell, 1984, 38(2), 409-421.
[http://dx.doi.org/10.1016/0092-8674(84)90496-3] [PMID: 6205765]
[90]
Cho, H.J.; Martin, E.; Xie, Q-W.; Sassa, S.; Nathan, C. Inducible nitric oxide synthase: Identification of amino acid residues essential for dimerization and binding of tetrahydrobiopterin. Proc. Natl. Acad. Sci. USA, 1995, 92(25), 11514-11518.
[http://dx.doi.org/10.1073/pnas.92.25.11514] [PMID: 8524794]
[91]
Ghosh, D.K.; Abu-Soud, H.M.; Stuehr, D.J. Reconstitution of the second step in NO synthesis using the isolated oxygenase and reductase domains of macrophage NO synthase. Biochemistry, 1995, 34(36), 11316-11320.
[http://dx.doi.org/10.1021/bi00036a003] [PMID: 7547858]
[92]
Klatt, P.; Schmidt, K.; Lehner, D.; Glatter, O.; Bächinger, H.P.; Mayer, B. Structural analysis of porcine brain nitric oxide synthase reveals a role for tetrahydrobiopterin and L-arginine in the formation of an SDS-resistant dimer. EMBO J., 1995, 14(15), 3687-3695.
[http://dx.doi.org/10.1002/j.1460-2075.1995.tb00038.x] [PMID: 7543842]
[93]
Xie, Q-W.; Leung, M.; Fuortes, M.; Sassa, S.; Nathan, C. Complementation analysis of mutants of nitric oxide synthase reveals that the active site requires two hemes. Proc. Natl. Acad. Sci. USA, 1996, 93(10), 4891-4896.
[http://dx.doi.org/10.1073/pnas.93.10.4891] [PMID: 8643499]
[94]
Zhao, H.; Dugas, N.; Mathiot, C.; Delmer, A.; Dugas, B.; Sigaux, F.; Kolb, J.P. B-cell chronic lymphocytic leukemia cells express a func-tional inducible nitric oxide synthase displaying anti-apoptotic activity. Blood, 1998, 92(3), 1031-1043.
[http://dx.doi.org/10.1182/blood.V92.3.1031] [PMID: 9680373]
[95]
Ghosh, D.K.; Stuehr, D.J. Macrophage NO synthase: Characterization of isolated oxygenase and reductase domains reveals a head-to-head subunit interaction. Biochemistry, 1995, 34(3), 801-807.
[http://dx.doi.org/10.1021/bi00003a013] [PMID: 7530045]
[96]
Xie, Q.W.; Cho, H.J.; Calaycay, J.; Mumford, R.A.; Swiderek, K.M.; Lee, T.D.; Ding, A.; Troso, T.; Nathan, C. Cloning and characteriza-tion of inducible nitric oxide synthase from mouse macrophages. Science, 1992, 256(5054), 225-228.
[http://dx.doi.org/10.1126/science.1373522] [PMID: 1373522]
[97]
Chu, S.C.; Wu, H-P.; Banks, T.C.; Eissa, N.T.; Moss, J. Structural diversity in the 5′-untranslated region of cytokine-stimulated human inducible nitric oxide synthase mRNA. J. Biol. Chem., 1995, 270(18), 10625-10630.
[http://dx.doi.org/10.1074/jbc.270.18.10625] [PMID: 7537735]
[98]
Llewellyn-Smith, I.J.; Verberne, A.J. Central regulation of autonomic functions; Oxford University Press, 2011.
[http://dx.doi.org/10.1093/acprof:oso/9780195306637.001.0001]
[99]
Montécot, C.; Borredon, J.; Seylaz, J.; Pinard, E. Nitric oxide of neuronal origin is involved in cerebral blood flow increase during seizures induced by kainate. J. Cereb. Blood Flow Metab., 1997, 17(1), 94-99.
[http://dx.doi.org/10.1097/00004647-199701000-00012] [PMID: 8978391]
[100]
Li, H.; Wallerath, T.; Förstermann, U. Physiological mechanisms regulating the expression of endothelial-type NO synthase. Nitric Oxide, 2002, 7(2), 132-147.
[http://dx.doi.org/10.1016/S1089-8603(02)00127-1] [PMID: 12223183]
[101]
Scheen, A.J. Effect of SGLT2 inhibitors on the sympathetic nervous system and blood pressure. Curr. Cardiol. Rep., 2019, 21(8), 70.
[http://dx.doi.org/10.1007/s11886-019-1165-1] [PMID: 31227915]
[102]
Balon, T.W.; Nadler, J.L. Evidence that nitric oxide increases glucose transport in skeletal muscle. J. Appl. Physiol., 1997, 82(1), 359-363.
[http://dx.doi.org/10.1152/jappl.1997.82.1.359] [PMID: 9029239]
[103]
Tidball, J.G.; Lavergne, E.; Lau, K.S.; Spencer, M.J.; Stull, J.T.; Wehling, M. Mechanical loading regulates NOS expression and activity in developing and adult skeletal muscle. Am. J. Physiol., 1998, 275(1), C260-C266.
[http://dx.doi.org/10.1152/ajpcell.1998.275.1.C260] [PMID: 9688857]
[104]
Stamler, J. Nitric oxide in the cardiovascular system. Review in depth. Nitric Oxide in the Cardiovascular System., 1999, 10(5), 273-276.
[105]
Da Silva-Azevedo, L.; Jähne, S.; Hoffmann, C.; Stalder, D.; Heller, M.; Pries, A.R.; Zakrzewicz, A.; Baum, O. Up-regulation of the perox-iredoxin-6 related metabolism of reactive oxygen species in skeletal muscle of mice lacking neuronal nitric oxide synthase. J. Physiol., 2009, 587(3), 655-668.
[http://dx.doi.org/10.1113/jphysiol.2008.164947] [PMID: 19047200]
[106]
Eisenreich, A.; Boltzen, U.; Poller, W.; Schultheiss, H-P.; Rauch, U. Effects of the Cdc2-like kinase-family and DNA topoisomerase I on the alternative splicing of eNOS in TNF-α-stimulated human endothelial cells. Biol. Chem., 2008, 389(10), 1333-1338.
[http://dx.doi.org/10.1515/BC.2008.152] [PMID: 18713021]
[107]
Sun, H-X.; Zeng, D-Y.; Li, R-T.; Pang, R-P.; Yang, H.; Hu, Y-L.; Zhang, Q.; Jiang, Y.; Huang, L.Y.; Tang, Y.B.; Yan, G.J.; Zhou, J.G. Es-sential role of microRNA-155 in regulating endothelium-dependent vasorelaxation by targeting endothelial nitric oxide synthase. Hypertension, 2012, 60(6), 1407-1414.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.112.197301] [PMID: 23108656]
[108]
Lorenz, M.; Hewing, B.; Hui, J.; Zepp, A.; Baumann, G.; Bindereif, A.; Stangl, V.; Stangl, K. Alternative splicing in intron 13 of the human eNOS gene: A potential mechanism for regulating eNOS activity. FASEB J., 2007, 21(7), 1556-1564.
[http://dx.doi.org/10.1096/fj.06-7434com] [PMID: 17264164]
[109]
Kolluru, G.K.; Siamwala, J.H.; Chatterjee, S. eNOS phosphorylation in health and disease. Biochimie, 2010, 92(9), 1186-1198.
[http://dx.doi.org/10.1016/j.biochi.2010.03.020] [PMID: 20363286]
[110]
Raza, S.T.; Singh, S.P.; Rizvi, S.; Zaidi, A.; Srivastava, S.; Hussain, A.; Mahdi, F. Association of eNOS (G894T, rs1799983) and KCNJ11 (E23K, rs5219) gene polymorphism with coronary artery disease in North Indian population. Afr. Health Sci., 2021, 21(3), 1163-1171.
[http://dx.doi.org/10.4314/ahs.v21i3.25] [PMID: 35222579]
[111]
Nadaud, S.; Bonnardeaux, A.; Lathrop, M.; Soubrier, F. Gene structure, polymorphism and mapping of the human endothelial nitric oxide synthase gene. Biochem. Biophys. Res. Commun., 1994, 198(3), 1027-1033.
[http://dx.doi.org/10.1006/bbrc.1994.1146] [PMID: 7509596]
[112]
Cooke, G.E.; Doshi, A.; Binkley, P.F. Endothelial nitric oxide synthase gene: Prospects for treatment of heart disease. Pharmacogenomics, 2007, 8(12), 1723-1734.
[http://dx.doi.org/10.2217/14622416.8.12.1723]
[113]
Galluccio, E.; Cassina, L.; Russo, I.; Gelmini, F.; Setola, E.; Rampoldi, L.; Citterio, L.; Rossodivita, A.; Kamami, M.; Colombo, A.; Alfieri, O.; Carini, M.; Bosi, E.; Trovati, M.; Piatti, P.; Monti, L.D.; Casari, G. A novel truncated form of eNOS associates with altered vascular function. Cardiovasc. Res., 2014, 101(3), 492-502.
[http://dx.doi.org/10.1093/cvr/cvt267] [PMID: 24302629]
[114]
Park, C-S.; Krishna, G.; Ahn, M-S.; Kang, J-H.; Chung, W-G.; Kim, D-J.; Hwang, H.K.; Lee, J.N.; Paik, S.G.; Cha, Y.N. Differential and constitutive expression of neuronal, inducible, and endothelial nitric oxide synthase mRNAs and proteins in pathologically normal human tissues. Nitric Oxide, 2000, 4(5), 459-471.
[http://dx.doi.org/10.1006/niox.2000.0300] [PMID: 11020335]
[115]
Ghosh, S.; Gachhui, R.; Crooks, C.; Wu, C.; Lisanti, M.P.; Stuehr, D.J. Interaction between caveolin-1 and the reductase domain of endo-thelial nitric-oxide synthase. Consequences for catalysis. J. Biol. Chem., 1998, 273(35), 22267-22271.
[http://dx.doi.org/10.1074/jbc.273.35.22267] [PMID: 9712842]
[116]
Gusarov, I.; Starodubtseva, M.; Wang, Z-Q.; McQuade, L.; Lippard, S.J.; Stuehr, D.J.; Nudler, E. Bacterial nitric-oxide synthases operate without a dedicated redox partner. J. Biol. Chem., 2008, 283(19), 13140-13147.
[http://dx.doi.org/10.1074/jbc.M710178200] [PMID: 18316370]
[117]
Stangl, K.; Cascorbi, I.; Laule, M.; Klein, T.; Stangl, V.; Rost, S.; Wernecke, K.D.; Felix, S.B.; Bindereif, A.; Baumann, G.; Roots, I. High CA repeat numbers in intron 13 of the endothelial nitric oxide synthase gene and increased risk of coronary artery disease. Pharmacogenetics, 2000, 10(2), 133-140.
[http://dx.doi.org/10.1097/00008571-200003000-00005] [PMID: 10762001]
[118]
Zhang, M-X.; Zhang, C.; Shen, Y.H.; Wang, J.; Li, X.N.; Zhang, Y.; Coselli, J.; Wang, X.L. Biogenesis of short intronic repeat 27-nucleotide small RNA from endothelial nitric-oxide synthase gene. J. Biol. Chem., 2008, 283(21), 14685-14693.
[http://dx.doi.org/10.1074/jbc.M801933200] [PMID: 18390539]
[119]
Wang, J.; Dudley, D.; Wang, X.L. Haplotype-specific effects on endothelial NO synthase promoter efficiency: Modifiable by cigarette smoking. Arterioscler. Thromb. Vasc. Biol., 2002, 22(5), e1-e4.
[http://dx.doi.org/10.1161/01.ATV.0000016248.51577.1F] [PMID: 12006409]
[120]
Zhang, M-X.; Ou, H.; Shen, Y.H.; Wang, J.; Wang, J.; Coselli, J.; Wang, X.L. Regulation of endothelial nitric oxide synthase by small RNA. Proc. Natl. Acad. Sci. USA, 2005, 102(47), 16967-16972.
[http://dx.doi.org/10.1073/pnas.0503853102] [PMID: 16284254]
[121]
Lee, M.A.; Cai, L.; Hübner, N.; Lee, Y.A.; Lindpaintner, K. Tissue- and development-specific expression of multiple alternatively spliced transcripts of rat neuronal nitric oxide synthase. J. Clin. Invest., 1997, 100(6), 1507-1512.
[http://dx.doi.org/10.1172/JCI119673] [PMID: 9294118]
[122]
Wang, L.; Yang, N-N.; Shi, G-X.; Wang, L-Q.; Li, Q-Q. Yang, J-W Acupuncture attenuates blood pressure via inducing the expression of nNOS. Evid. Based Complement. Alternat. Med., 2021, 2021, 9945277.
[http://dx.doi.org/10.1155/2021/9945277]
[123]
García-Vitoria, M.; García-Corchón, C.; Rodríguez, J.A.; García-Amigot, F.; Burrell, M.A. Expression of neuronal nitric oxide synthase in several cell types of the rat gastric epithelium. J. Histochem. Cytochem., 2000, 48(8), 1111-1120.
[http://dx.doi.org/10.1177/002215540004800808] [PMID: 10898804]
[124]
Lauer, F.A.M. Functional impact of neuronal nitric oxide synthase (nNOS) on angiogenesis and the molecular characterization of its isoform expression pattern in skeletal muscle. PhD Thesis. Medical Faculty of the University of Bern 2011.
[125]
Dorff, G.; Meyer, G.; Krone, D.; Pozzilli, P.; Zühlke, H.; Neuronal, N.O. Neuronal NO synthase and its inhibitor PIN are present and in-fluenced by glucose in the human β-cell line CM and in rat INS-1 cells. Biol. Chem., 2002, 383(9), 1357-1361.
[http://dx.doi.org/10.1515/BC.2002.154] [PMID: 12437128]
[126]
Häuser, W.; Sassmann, A.; Qadri, F.; Jöhren, O.; Dominiak, P. Expression of nitric oxide synthase isoforms in hypothalamo-pituitary-adrenal axis during the development of spontaneous hypertension in rats. Brain Res. Mol. Brain Res., 2005, 138(2), 198-204.
[http://dx.doi.org/10.1016/j.molbrainres.2005.04.008] [PMID: 15913838]
[127]
Soinila, J.; Nuorva, K.; Soinila, S. Nitric oxide synthase in human salivary glands. Histochem. Cell Biol., 2006, 125(6), 717-723.
[http://dx.doi.org/10.1007/s00418-005-0123-8] [PMID: 16341869]
[128]
Idrizaj, E.; Traini, C.; Vannucchi, M.G.; Baccari, M.C. Nitric oxide: From gastric motility to gastric dysmotility. Int. J. Mol. Sci., 2021, 22(18), 9990.
[http://dx.doi.org/10.3390/ijms22189990] [PMID: 34576155]
[129]
Hendrickx, J.O.; De Moudt, S.; Calus, E.; De Deyn, P.P.; Van Dam, D.; De Meyer, G.R.Y. Long-Term pharmacological inhibition of the activity of all NOS isoforms rather than genetic knock-out of endothelial NOS leads to impaired spatial learning and memory in C57BL/6 mice. Biomedicines, 2021, 9(12), 1905.
[http://dx.doi.org/10.3390/biomedicines9121905] [PMID: 34944725]
[130]
Ventura, R.R.; Giusti-Paiva, A.; Gomes, D.A.; Elias, L.L.; Antunes-Rodrigues, J. Neuronal nitric oxide synthase inhibition differentially affects oxytocin and vasopressin secretion in salt loaded rats. Neurosci. Lett., 2005, 379(2), 75-80.
[http://dx.doi.org/10.1016/j.neulet.2004.12.032] [PMID: 15823420]
[131]
Schwarz, P.M.; Kleinert, H.; Förstermann, U. Potential functional significance of brain-type and muscle-type nitric oxide synthase I ex-pressed in adventitia and media of rat aorta. Arterioscler. Thromb. Vasc. Biol., 1999, 19(11), 2584-2590.
[http://dx.doi.org/10.1161/01.ATV.19.11.2584] [PMID: 10558999]
[132]
Lanas, A. Role of nitric oxide in the gastrointestinal tract. Arthritis Res. Ther., 2008, 10(2)(Suppl. 2), S4.
[http://dx.doi.org/10.1186/ar2465] [PMID: 19007429]
[133]
Bedenbaugh, M.N.; McCosh, R.B.; Lopez, J.A.; Connors, J.M.; Goodman, R.L.; Hileman, S.M. Neuroanatomical relationship of neuronal nitric oxide synthase to gonadotropin-releasing hormone and Kisspeptin neurons in adult female sheep and primates. Neuroendocrinology, 2018, 107(3), 218-227.
[http://dx.doi.org/10.1159/000491393] [PMID: 29929191]
[134]
Mezghenna, K.; Leroy, J.; Azay-Milhau, J.; Tousch, D.; Castex, F.; Gervais, S.; Delgado-Betancourt, V.; Gross, R.; Lajoix, A.D. Counter-acting neuronal nitric oxide synthase proteasomal degradation improves glucose transport in insulin-resistant skeletal muscle from Zucker fa/fa rats. Diabetologia, 2014, 57(1), 177-186.
[http://dx.doi.org/10.1007/s00125-013-3084-9] [PMID: 24186360]
[135]
Uddin, M.M.; Ibrahim, M.M.H.; Briski, K.P. Glycogen phosphorylase isoform regulation of ventromedial hypothalamic nucleus gluco-regulatory neuron 5′-AMP-activated protein kinase and transmitter marker protein expression. ASN Neuro, 2021, 13, 17590914211035020.
[http://dx.doi.org/10.1177/17590914211035020] [PMID: 34596459]
[136]
Percival, J.M. nNOS regulation of skeletal muscle fatigue and exercise performance. Biophys. Rev., 2011, 3(4), 209-217.
[http://dx.doi.org/10.1007/s12551-011-0060-9] [PMID: 28510048]
[137]
Pendharkar, A.V.; Smerin, D.; Gonzalez, L.; Wang, E.H.; Levy, S.; Wang, S.; Ishizaka, S.; Ito, M.; Uchino, H.; Chiang, T.; Cheng, M.Y.; Steinberg, G.K. Optogenetic stimulation reduces neuronal nitric oxide synthase expression after stroke. Transl. Stroke Res., 2021, 12(2), 347-356.
[http://dx.doi.org/10.1007/s12975-020-00831-y] [PMID: 32661768]
[138]
Wilcox, J.N.; Subramanian, R.R.; Sundell, C.L.; Tracey, W.R.; Pollock, J.S.; Harrison, D.G.; Marsden, P.A. Expression of multiple isoforms of nitric oxide synthase in normal and atherosclerotic vessels. Arterioscler. Thromb. Vasc. Biol., 1997, 17(11), 2479-2488.
[http://dx.doi.org/10.1161/01.ATV.17.11.2479] [PMID: 9409218]
[139]
Costa, E.D.; Rezende, B.A.; Cortes, S.F.; Lemos, V.S. Neuronal nitric oxide synthase in vascular physiology and diseases. Front. Physiol., 2016, 7, 206.
[http://dx.doi.org/10.3389/fphys.2016.00206] [PMID: 27313545]
[140]
Li, Y.; Zhao, Y.; Li, G.; Wang, J.; Li, T.; Li, W.; Lu, J. Regulation of neuronal nitric oxide synthase exon 1f gene expression by nuclear factor-kappaB acetylation in human neuroblastoma cells. J. Neurochem., 2007, 101(5), 1194-1204.
[http://dx.doi.org/10.1111/j.1471-4159.2006.04407.x] [PMID: 17250678]
[141]
Venema, V.J.; Ju, H.; Zou, R.; Venema, R.C. Interaction of neuronal nitric-oxide synthase with caveolin-3 in skeletal muscle. Identification of a novel caveolin scaffolding/inhibitory domain. J. Biol. Chem., 1997, 272(45), 28187-28190.
[http://dx.doi.org/10.1074/jbc.272.45.28187] [PMID: 9353265]
[142]
Corso-Díaz, X.; Krukoff, T.L. nNOS α and nNOS β localization to aggresome-like inclusions is dependent on HSP90 activity. J. Neurochem., 2010, 114(3), 864-872.
[http://dx.doi.org/10.1111/j.1471-4159.2010.06813.x] [PMID: 20492351]
[143]
Martínez-Ruiz, A.; Villanueva, L.; González de Orduña, C.; López-Ferrer, D.; Higueras, M.Á.; Tarín, C.; Rodríguez-Crespo, I.; Vázquez, J.; Lamas, S. S-nitrosylation of Hsp90 promotes the inhibition of its ATPase and endothelial nitric oxide synthase regulatory activities. Proc. Natl. Acad. Sci. USA, 2005, 102(24), 8525-8530.
[http://dx.doi.org/10.1073/pnas.0407294102] [PMID: 15937123]
[144]
Tews, D.S.; Goebel, H.H.; Schneider, I.; Gunkel, A.; Stennert, E.; Neiss, W.F. Expression of different isoforms of nitric oxide synthase in experimentally denervated and reinnervated skeletal muscle. J. Neuropathol. Exp. Neurol., 1997, 56(12), 1283-1289.
[http://dx.doi.org/10.1097/00005072-199712000-00003] [PMID: 9413277]
[145]
Capanni, C.; Squarzoni, S.; Petrini, S.; Villanova, M.; Muscari, C.; Maraldi, N.M.; Guarnieri, C.; Caldarera, C.M. Increase of neuronal nitric oxide synthase in rat skeletal muscle during ageing. Biochem. Biophys. Res. Commun., 1998, 245(1), 216-219.
[http://dx.doi.org/10.1006/bbrc.1998.8404] [PMID: 9535811]
[146]
Rubinstein, I.; Abassi, Z.; Coleman, R.; Milman, F.; Winaver, J.; Better, O.S. Involvement of nitric oxide system in experimental muscle crush injury. J. Clin. Invest., 1998, 101(6), 1325-1333.
[http://dx.doi.org/10.1172/JCI810] [PMID: 9502774]
[147]
Burkard, N.; Rokita, A.G.; Kaufmann, S.G.; Hallhuber, M.; Wu, R.; Hu, K.; Hofmann, U.; Bonz, A.; Frantz, S.; Cartwright, E.J.; Neyses, L.; Maier, L.S.; Maier, S.K.; Renné, T.; Schuh, K.; Ritter, O. Conditional neuronal nitric oxide synthase overexpression impairs myocardial contractility. Circ. Res., 2007, 100(3), e32-e44.
[http://dx.doi.org/10.1161/01.RES.0000259042.04576.6a] [PMID: 17272813]
[148]
Hall, A.V.; Antoniou, H.; Wang, Y.; Cheung, A.H.; Arbus, A.M.; Olson, S.L.; Lu, W.C.; Kau, C.L.; Marsden, P.A. Structural organization of the human neuronal nitric oxide synthase gene (NOS1). J. Biol. Chem., 1994, 269(52), 33082-33090.
[http://dx.doi.org/10.1016/S0021-9258(20)30099-5] [PMID: 7528745]
[149]
Deng, A.Y.; Rapp, J.P.; Kato, H.; Bihoreau, M-T. Linkage mapping of the neuronal nitric oxide synthase gene (Nos1) to rat chromosome 12. Mamm. Genome, 1995, 6(11), 824-825.
[http://dx.doi.org/10.1007/BF00539015] [PMID: 8597645]
[150]
Lee, C.G.; Gregg, A.R.; O’Brien, W.E. Localization of the neuronal form of nitric oxide synthase to mouse chromosome 5. Mamm. Genome, 1995, 6(1), 56-57.
[http://dx.doi.org/10.1007/BF00350898] [PMID: 7536496]
[151]
Iwasaki, T.; Hori, H.; Hayashi, Y.; Nishino, T.; Tamura, K.; Oue, S.; Iizuka, T.; Ogura, T.; Esumi, H. Characterization of mouse nNOS2, a natural variant of neuronal nitric-oxide synthase produced in the central nervous system by selective alternative splicing. J. Biol. Chem., 1999, 274(25), 17559-17566.
[http://dx.doi.org/10.1074/jbc.274.25.17559] [PMID: 10364190]
[152]
Ogura, T.; Yokoyama, T.; Fujisawa, H.; Kurashima, Y.; Esumi, H. Structural diversity of neuronal nitric oxide synthase mRNA in the nervous system. Biochem. Biophys. Res. Commun., 1993, 193(3), 1014-1022.
[http://dx.doi.org/10.1006/bbrc.1993.1726] [PMID: 7686743]
[153]
Kolesnikov, Y.A.; Chereshnev, I.; Criesta, M.; Pan, Y-X.; Pasternak, G.W. Opposing actions of neuronal nitric oxide synthase isoforms in formalin-induced pain in mice. Brain Res., 2009, 1289, 14-21.
[http://dx.doi.org/10.1016/j.brainres.2009.06.041] [PMID: 19545548]
[154]
Xie, J.; Roddy, P.; Rife, T.K.; Murad, F.; Young, A.P. Two closely linked but separable promoters for human neuronal nitric oxide syn-thase gene transcription. Proc. Natl. Acad. Sci. USA, 1995, 92(4), 1242-1246.
[http://dx.doi.org/10.1073/pnas.92.4.1242] [PMID: 7532307]
[155]
Wang, Y.; Newton, D.C.; Marsden, P.A. Neuronal NOS: Gene structure, mRNA diversity, and functional relevance. Crit. Rev. Neurobiol., 1999, 13(1), 21-43.
[http://dx.doi.org/10.1615/CritRevNeurobiol.v13.i1.20] [PMID: 10223522]
[156]
Newton, D.C.; Bevan, S.C.; Choi, S.; Robb, G.B.; Millar, A.; Wang, Y.; Marsden, P.A. Translational regulation of human neuronal nitric-oxide synthase by an alternatively spliced 5′-untranslated region leader exon. J. Biol. Chem., 2003, 278(1), 636-644.
[http://dx.doi.org/10.1074/jbc.M209988200] [PMID: 12403769]
[157]
Putzke, J.; Seidel, B.; Huang, P.L.; Wolf, G. Differential expression of alternatively spliced isoforms of neuronal nitric oxide synthase (nNOS) and N-methyl-D-aspartate receptors (NMDAR) in knockout mice deficient in nNOS α (nNOS α(Δ/Δ) mice). Brain Res. Mol. Brain Res., 2000, 85(1-2), 13-23.
[http://dx.doi.org/10.1016/S0169-328X(00)00220-5] [PMID: 11146102]
[158]
Lu, Y.; Wei, J.; Stec, D.E.; Roman, R.J.; Ge, Y.; Cheng, L.; Liu, E.Y.; Zhang, J.; Hansen, P.B.; Fan, F.; Juncos, L.A.; Wang, L.; Pollock, J.; Huang, P.L.; Fu, Y.; Wang, S.; Liu, R. Macula densa nitric oxide synthase 1β protects against salt-sensitive hypertension. J. Am. Soc. Nephrol., 2016, 27(8), 2346-2356.
[http://dx.doi.org/10.1681/ASN.2015050515] [PMID: 26647426]
[159]
Smith, C.; Merchant, M.; Fekete, A.; Nyugen, H-L.; Oh, P.; Tain, Y-L.; Klein, J.B.; Baylis, C. Splice variants of neuronal nitric oxide syn-thase are present in the rat kidney. Nephrol. Dial. Transplant., 2009, 24(5), 1422-1428.
[http://dx.doi.org/10.1093/ndt/gfn676] [PMID: 19073653]
[160]
Saur, D.; Neuhuber, W.L.; Gengenbach, B.; Huber, A.; Schusdziarra, V.; Allescher, H-D. Site-specific gene expression of nNOS variants in distinct functional regions of rat gastrointestinal tract. Am. J. Physiol. Gastrointest. Liver Physiol., 2002, 282(2), G349-G358.
[http://dx.doi.org/10.1152/ajpgi.00226.2001] [PMID: 11804857]
[161]
Brenman, J.E.; Xia, H.; Chao, D.S.; Black, S.M.; Bredt, D.S. Regulation of neuronal nitric oxide synthase through alternative transcripts. Dev. Neurosci., 1997, 19(3), 224-231.
[http://dx.doi.org/10.1159/000111211] [PMID: 9208206]
[162]
Catania, M.V.; Aronica, E.; Yankaya, B.; Troost, D. Increased expression of neuronal nitric oxide synthase spliced variants in reactive astrocytes of amyotrophic lateral sclerosis human spinal cord. J. Neurosci., 2001, 21(11), RC148. [-RC.]
[http://dx.doi.org/10.1523/JNEUROSCI.21-11-j0002.2001] [PMID: 11344254]
[163]
Eliasson, M.J.; Blackshaw, S.; Schell, M.J.; Snyder, S.H. Neuronal nitric oxide synthase alternatively spliced forms: Prominent functional localizations in the brain. Proc. Natl. Acad. Sci. USA, 1997, 94(7), 3396-3401.
[http://dx.doi.org/10.1073/pnas.94.7.3396] [PMID: 9096405]
[164]
Lainé, R.; de Montellano, P.R.O. Neuronal nitric oxide synthase isoforms α and μ are closely related calpain-sensitive proteins. Mol. Pharmacol., 1998, 54(2), 305-312.
[http://dx.doi.org/10.1124/mol.54.2.305] [PMID: 9687572]
[165]
Chaudhury, A.; He, X-D.; Goyal, R.K. Role of PSD95 in membrane association and catalytic activity of nNOSalpha in nitrergic varicosities in mice gut. Am. J. Physiol. Gastrointest. Liver Physiol., 2009, 297(4), G806-G813.
[http://dx.doi.org/10.1152/ajpgi.00279.2009] [PMID: 19679819]
[166]
Kerrick, W.G.L.; Xu, Y.; Percival, J.M. nNOS splice variants differentially regulate myofilament function but are dispensable for intracel-lular calcium and force transients in cardiac papillary muscles. PLoS One, 2018, 13(7), e0200834.
[http://dx.doi.org/10.1371/journal.pone.0200834] [PMID: 30028847]
[167]
Gangula, P.R.; Challagundla, K.B.; Ravella, K.; Mukhopadhyay, S.; Chinnathambi, V.; Mittal, M.K.; Sekhar, K.R.; Sampath, C. Sepiapterin alleviates impaired gastric nNOS function in spontaneous diabetic female rodents through NRF2 mRNA turnover and miRNA biogenesis pathway. Am. J. Physiol. Gastrointest. Liver Physiol., 2018, 315(6), G980-G990.
[http://dx.doi.org/10.1152/ajpgi.00152.2018] [PMID: 30285465]
[168]
Depayras, S.; Kondakova, T.; Heipieper, H.J.; Feuilloley, M.G.; Orange, N.; Duclairoir-Poc, C. The hidden face of nitrogen oxides species: From toxic effects to potential cure? Emerging Pollutants, 2018, 19-42.
[169]
Chaudhury, A.; De Miranda-Neto, M.H.; Pereira, R.V.; Zanoni, J.N.; Zanoni, J.N. Myosin Va but not nNOSα is significantly reduced in jejunal musculomotor nerve terminals in diabetes mellitus. Front. Med. (Lausanne), 2014, 1, 17.
[http://dx.doi.org/10.3389/fmed.2014.00017] [PMID: 25705628]
[170]
Kuhlencordt, P.J.; Hötten, S.; Schödel, J.; Rützel, S.; Hu, K.; Widder, J.; Marx, A.; Huang, P.L.; Ertl, G. Atheroprotective effects of neu-ronal nitric oxide synthase in apolipoprotein e knockout mice. Arterioscler. Thromb. Vasc. Biol., 2006, 26(7), 1539-1544.
[http://dx.doi.org/10.1161/01.ATV.0000223143.88128.19] [PMID: 16627802]
[171]
Song, Y.; Zweier, J.L.; Xia, Y. Heat-shock protein 90 augments neuronal nitric oxide synthase activity by enhancing Ca2+/calmodulin binding. Biochem. J., 2001, 355(Pt 2), 357-360.
[http://dx.doi.org/10.1042/bj3550357] [PMID: 11284722]
[172]
Osawa, Y.; Lowe, E.R.; Everett, A.C.; Dunbar, A.Y.; Billecke, S.S. Proteolytic degradation of nitric oxide synthase: Effect of inhibitors and role of hsp90-based chaperones. J. Pharmacol. Exp. Ther., 2003, 304(2), 493-497.
[http://dx.doi.org/10.1124/jpet.102.035055] [PMID: 12538799]
[173]
Galigniana, M.D.; Harrell, J.M.; Housley, P.R.; Patterson, C.; Fisher, S.K.; Pratt, W.B. Retrograde transport of the glucocorticoid receptor in neurites requires dynamic assembly of complexes with the protein chaperone hsp90 and is linked to the CHIP component of the machin-ery for proteasomal degradation. Brain Res. Mol. Brain Res., 2004, 123(1-2), 27-36.
[http://dx.doi.org/10.1016/j.molbrainres.2003.12.015] [PMID: 15046863]
[174]
Kornau, H-C.; Seeburg, P.H.; Kennedy, M.B. Interaction of ion channels and receptors with PDZ domain proteins. Curr. Opin. Neurobiol., 1997, 7(3), 368-373.
[http://dx.doi.org/10.1016/S0959-4388(97)80064-5] [PMID: 9232802]
[175]
Burnett, A.; Zeller, C.; Calvin, D.; Crone, J.; Huang, P. Neuronal nitric oxide synthase (nNOS) gene variants: Genitourinary localizations and functional evidence for compensatory nNOS-dependent penile erection in nNOS alpha-deficient transgenic mice. J. Urol., 1998, 63(3), 704-714.
[176]
Giove, T.J.; Deshpande, M.M.; Eldred, W.D. Identification of alternate transcripts of neuronal nitric oxide synthase in the mouse retina. J. Neurosci. Res., 2009, 87(14), 3134-3142.
[http://dx.doi.org/10.1002/jnr.22133] [PMID: 19479987]
[177]
Silvagno, F.; Xia, H.; Bredt, D.S. Neuronal nitric-oxide synthase-μ an alternatively spliced isoform expressed in differentiated skeletal muscle. J. Biol. Chem., 1996, 271(19), 11204-11208.
[http://dx.doi.org/10.1074/jbc.271.19.11204] [PMID: 8626668]
[178]
Gonzalez-Cadavid, N.F.; Ignarro, L.J.; Rajfer, J. Nitric oxide and the cyclic GMP system in the penis. Mol. Urol., 1999, 3(2), 51-59.
[PMID: 10851306]
[179]
Percival, J.M.; Anderson, K.N.; Huang, P.; Adams, M.E.; Froehner, S.C. Golgi and sarcolemmal neuronal NOS differentially regulate con-traction-induced fatigue and vasoconstriction in exercising mouse skeletal muscle. J. Clin. Invest., 2010, 120(3), 816-826.
[http://dx.doi.org/10.1172/JCI40736] [PMID: 20124730]
[180]
Secondo, A.; Sirabella, R.; Formisano, L.; D’Alessio, A.; Castaldo, P.; Amoroso, S.; Ingleton, P.; Di Renzo, G.; Annunziato, L. Involve-ment of PI3′-K, mitogen-activated protein kinase and protein kinase B in the up-regulation of the expression of nNOSalpha and nNOSbeta splicing variants induced by PRL-receptor activation in GH3 cells. J. Neurochem., 2003, 84(6), 1367-1377.
[http://dx.doi.org/10.1046/j.1471-4159.2003.01626.x] [PMID: 12614337]
[181]
Huang, P.L.; Dawson, T.M.; Bredt, D.S.; Snyder, S.H.; Fishman, M.C. Targeted disruption of the neuronal nitric oxide synthase gene. Cell, 1993, 75(7), 1273-1286.
[http://dx.doi.org/10.1016/0092-8674(93)90615-W] [PMID: 7505721]
[182]
Wang, Y.; Newton, D.C.; Miller, T.L.; Teichert, A-M.; Phillips, M.J.; Davidoff, M.S.; Marsden, P.A. An alternative promoter of the human neuronal nitric oxide synthase gene is expressed specifically in Leydig cells. Am. J. Pathol., 2002, 160(1), 369-380.
[http://dx.doi.org/10.1016/S0002-9440(10)64380-5] [PMID: 11786430]
[183]
Schödel, J.; Padmapriya, P.; Marx, A.; Huang, P.L.; Ertl, G.; Kuhlencordt, P.J. Expression of neuronal nitric oxide synthase splice variants in atherosclerotic plaques of apoE knockout mice. Atherosclerosis, 2009, 206(2), 383-389.
[http://dx.doi.org/10.1016/j.atherosclerosis.2009.02.033] [PMID: 19358992]
[184]
Xia, Y.; Dawson, V.L.; Dawson, T.M.; Snyder, S.H.; Zweier, J.L. Nitric oxide synthase generates superoxide and nitric oxide in arginine-depleted cells leading to peroxynitrite-mediated cellular injury. Proc. Natl. Acad. Sci. USA, 1996, 93(13), 6770-6774.
[http://dx.doi.org/10.1073/pnas.93.13.6770] [PMID: 8692893]
[185]
Schwarz, P.M.; Gierten, B.; Boissel, J-P.; Förstermann, U. Expressional down-regulation of neuronal-type nitric oxide synthase I by glu-cocorticoids in N1E-115 neuroblastoma cells. Mol. Pharmacol., 1998, 54(2), 258-263.
[http://dx.doi.org/10.1124/mol.54.2.258] [PMID: 9687566]
[186]
Magee, T.; Fuentes, A.M.; Garban, H.; Rajavashisth, T.; Marquez, D.; Rodriguez, J.A.; Rajfer, J.; Gonzalez-Cadavid, N.F. Cloning of a novel neuronal nitric oxide synthase expressed in penis and lower urinary tract. Biochem. Biophys. Res. Commun., 1996, 226(1), 145-151.
[http://dx.doi.org/10.1006/bbrc.1996.1324] [PMID: 8806605]
[187]
Bradley, S.J.; Kingwell, B.A.; Canny, B.J.; McConell, G.K. Skeletal muscle neuronal nitric oxide synthase micro protein is reduced in peo-ple with impaired glucose homeostasis and is not normalized by exercise training. Metabolism, 2007, 56(10), 1405-1411.
[http://dx.doi.org/10.1016/j.metabol.2007.06.003] [PMID: 17884453]
[188]
Percival, J.M.; Anderson, K.N.; Gregorevic, P.; Chamberlain, J.S.; Froehner, S.C. Functional deficits in nNOSmu-deficient skeletal muscle: Myopathy in nNOS knockout mice. PLoS One, 2008, 3(10), e3387.
[http://dx.doi.org/10.1371/journal.pone.0003387] [PMID: 18852886]
[189]
Zhang, X.; Lin, X.; McConell, G.K. Normal increases in insulin-stimulated glucose uptake after ex vivo contraction in neuronal nitric ox-ide synthase mu (nNOSμ) knockout mice. Pflugers Arch., 2019, 471(7), 961-969.
[http://dx.doi.org/10.1007/s00424-019-02268-1] [PMID: 30900045]
[190]
Griscavage, J.M.; Fukuto, J.M.; Komori, Y.; Ignarro, L.J. Nitric oxide inhibits neuronal nitric oxide synthase by interacting with the heme prosthetic group. Role of tetrahydrobiopterin in modulating the inhibitory action of nitric oxide. J. Biol. Chem., 1994, 269(34), 21644-21649.
[http://dx.doi.org/10.1016/S0021-9258(17)31854-9] [PMID: 7520440]
[191]
Kolesnikov, Y.A.; Pan, Y-X.; Babey, A-M.; Jain, S.; Wilson, R.; Pasternak, G.W. Functionally differentiating two neuronal nitric oxide synthase isoforms through antisense mapping: Evidence for opposing NO actions on morphine analgesia and tolerance. Proc. Natl. Acad. Sci. USA, 1997, 94(15), 8220-8225.
[http://dx.doi.org/10.1073/pnas.94.15.8220] [PMID: 9223342]
[192]
Madrigal, J.L.; Dello Russo, C.; Gavrilyuk, V.; Feinstein, D.L. Effects of noradrenaline on neuronal NOS2 expression and viability. Antioxid. Redox Signal., 2006, 8(5-6), 885-892.
[http://dx.doi.org/10.1089/ars.2006.8.885] [PMID: 16771678]
[193]
Madrigal, J.L.; Moro, M.A.; Lizasoain, I.; Lorenzo, P.; Fernández, A.P.; Rodrigo, J.; Boscá, L.; Leza, J.C. Induction of cyclooxygenase-2 accounts for restraint stress-induced oxidative status in rat brain. Neuropsychopharmacology, 2003, 28(9), 1579-1588.
[http://dx.doi.org/10.1038/sj.npp.1300187] [PMID: 12784118]
[194]
Moro, M.A.; Fernández-Tomé, P.; Leza, J.C.; Lorenzo, P.; Lizasoain, I. Neuronal death induced by SIN-1 in the presence of superoxide dismutase: Protection by cyclic GMP. Neuropharmacology, 1998, 37(8), 1071-1079.
[http://dx.doi.org/10.1016/S0028-3908(98)00104-X] [PMID: 9833636]
[195]
Goureau, O.; Lepoivre, M.; Courtois, Y. Lipopolysaccharide and cytokines induce a macrophage-type of nitric oxide synthase in bovine retinal pigmented epithelial cells. Biochem. Biophys. Res. Commun., 1992, 186(2), 854-859.
[http://dx.doi.org/10.1016/0006-291X(92)90824-5] [PMID: 1379808]
[196]
Goureau, O.; Hicks, D.; Courtois, Y. Human retinal pigmented epithelial cells produce nitric oxide in response to cytokines. Biochem. Biophys. Res. Commun., 1994, 198(1), 120-126.
[http://dx.doi.org/10.1006/bbrc.1994.1017] [PMID: 7507317]
[197]
Greenstreet, E.H.; Djamgoz, M.B. Nitric oxide induces light-adaptive morphological changes in retinal neurones. Neuroreport, 1994, 6(1), 109-112.
[http://dx.doi.org/10.1097/00001756-199412300-00029] [PMID: 7703396]
[198]
Kanai, A.J.; Pearce, L.L.; Clemens, P.R.; Birder, L.A.; VanBibber, M.M.; Choi, S-Y.; de Groat, W.C.; Peterson, J. Identification of a neu-ronal nitric oxide synthase in isolated cardiac mitochondria using electrochemical detection. Proc. Natl. Acad. Sci. USA, 2001, 98(24), 14126-14131.
[http://dx.doi.org/10.1073/pnas.241380298] [PMID: 11717466]
[199]
Dighiero, P.; Reux, I.; Hauw, J-J.; Fillet, A.M.; Courtois, Y.; Goureau, O. Expression of inducible nitric oxide synthase in cytomegalovi-rus-infected glial cells of retinas from AIDS patients. Neurosci. Lett., 1994, 166(1), 31-34.
[http://dx.doi.org/10.1016/0304-3940(94)90833-8] [PMID: 7514775]
[200]
Jacquemin, E.; de Kozak, Y.; Thillaye, B.; Courtois, Y.; Goureau, O. Expression of inducible nitric oxide synthase in the eye from endo-toxin-induced uveitis rats. Invest. Ophthalmol. Vis. Sci., 1996, 37(6), 1187-1196.
[PMID: 8631633]
[201]
Kurenny, D.E.; Moroz, L.L.; Turner, R.W.; Sharkey, K.A.; Barnes, S. Modulation of ion channels in rod photoreceptors by nitric oxide. Neuron, 1994, 13(2), 315-324.
[http://dx.doi.org/10.1016/0896-6273(94)90349-2] [PMID: 7520253]
[202]
Ghafourifar, P.; Schenk, U.; Klein, S.D.; Richter, C. Mitochondrial nitric-oxide synthase stimulation causes cytochrome c release from isolated mitochondria. Evidence for intramitochondrial peroxynitrite formation. J. Biol. Chem., 1999, 274(44), 31185-31188.
[http://dx.doi.org/10.1074/jbc.274.44.31185] [PMID: 10531311]
[203]
Kobzik, L.; Stringer, B.; Balligand, J-L.; Reid, M.B.; Stamler, J.S. Endothelial type nitric oxide synthase in skeletal muscle fibers: Mito-chondrial relationships. Biochem. Biophys. Res. Commun., 1995, 211(2), 375-381.
[http://dx.doi.org/10.1006/bbrc.1995.1824] [PMID: 7540837]
[204]
Bates, T.E.; Loesch, A.; Burnstock, G.; Clark, J.B. Mitochondrial nitric oxide synthase: A ubiquitous regulator of oxidative phosphoryla-tion? Biochem. Biophys. Res. Commun., 1996, 218(1), 40-44.
[http://dx.doi.org/10.1006/bbrc.1996.0008] [PMID: 8573169]
[205]
Feron, O.; Dessy, C.; Opel, D.J.; Arstall, M.A.; Kelly, R.A.; Michel, T. Modulation of the endothelial nitric-oxide synthase-caveolin inter-action in cardiac myocytes. Implications for the autonomic regulation of heart rate. J. Biol. Chem., 1998, 273(46), 30249-30254.
[http://dx.doi.org/10.1074/jbc.273.46.30249] [PMID: 9804784]
[206]
Ghafourifar, P.; Richter, C. Nitric oxide synthase activity in mitochondria. FEBS Lett., 1997, 418(3), 291-296.
[http://dx.doi.org/10.1016/S0014-5793(97)01397-5] [PMID: 9428730]
[207]
Magee, T.R.; Ferrini, M.; Garban, H.J.; Vernet, D.; Mitani, K.; Rajfer, J.; Gonzalez-Cadavid, N.F. Gene therapy of erectile dysfunction in the rat with penile neuronal nitric oxide synthase. Biol. Reprod., 2002, 67(1), 20-28.
[http://dx.doi.org/10.1093/biolreprod/67.1.20] [PMID: 12079995]
[208]
Larsson, B.; Phillips, S.C. Isolation and characterization of a novel, human neuronal nitric oxide synthase cDNA. Biochem. Biophys. Res. Commun., 1998, 251(3), 898-902.
[http://dx.doi.org/10.1006/bbrc.1998.9578] [PMID: 9791007]
[209]
Elofsson, R.; Carlberg, M.; Moroz, L.; Nezlin, L.; Sakharov, D. Is nitric oxide (NO) produced by invertebrate neurones? Neuroreport, 1993, 4(3), 279-282.
[http://dx.doi.org/10.1097/00001756-199303000-00013] [PMID: 7682853]
[210]
Gelperin, A. Nitric oxide mediates network oscillations of olfactory interneurons in a terrestrial mollusc. Nature, 1994, 369(6475), 61-63.
[http://dx.doi.org/10.1038/369061a0] [PMID: 8164740]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy