Review Article

基质金属蛋白酶抑制剂在炎症介导的人类疾病中的生理特性、功能和趋势

卷 30, 期 18, 2023

发表于: 21 October, 2022

页: [2075 - 2112] 页: 38

弟呕挨: 10.2174/0929867329666220823112731

价格: $65

conference banner
摘要

背景:基质金属蛋白酶(MMPs),也称为金属蛋白酶,是一种降解蛋白质的酶,需要活性金属原子的存在。有20多种类型的MMP,它们通过细胞外基质的蛋白水解降解促进细胞迁移。MMPs在癌症和炎症区域上调。MMPs有三个保护区:亲MMP、催化和血友病。通过这些结构域,MMPs切割基质和细胞-细胞屏障。因此,MMPs切割整个细胞外基质(ECM)。换句话说,它们分解大部分与ECM相关的成分,在体内细胞和病理生理事件中扮演关键酶的角色。 简介:在各种疾病的进展中,含Zn2+的内型肽酶直接降解和重塑ECM区域。MMPs常见于炎症反应、牙周病变、炎症性肺损伤、动脉硬化性平滑肌、关节炎以及肿瘤转移和侵袭的异常疾病状态。众所周知,它们还通过破坏真皮中的胶原蛋白参与衰老过程,如皱纹形成。特别是,通过MMP依赖性炎症反应的疾病的发生是由ECM和基底膜区域(细胞的支撑结构)中的蛋白质分解引起的。 方法:本文综述了过去20年来,在结构重塑、底物识别特异性和药理学适用性方面,对与各种人类疾病相关的MMP的通用和选择性抑制剂的研究进展。 结果:在两种类似类型的MMP中,MMP-2被称为明胶酶A,具有72kDa,而MMP-9被称为明胶酶B,具有92kDa。这两者在这一行动中都起着关键作用。因此,两种酶的表达水平在疾病的发病和发展过程中一致。基质金属蛋白酶的内源性组织抑制剂(TIMPs)对每种MMP抑制剂类型都具有高度特异性。内在因素通过抑制MMP依赖性或独立性炎症反应介导的各种疾病的发作来调节各种MMP类型。TIMP1和TIMP2分别选择性地抑制与炎症反应相关的疾病预后相关的MMP-9和MMP-2酶活性。MMP介导的疾病的主要发病机制与各种人体组织中炎性细胞的增殖有关,这表明其诊断或治疗这些疾病的潜力。发现一种抑制MMPs的物质对于预防和治疗各种MMP依赖性疾病非常重要。 结论:大量研究已经对MMP抑制剂进行了研究,但其中大多数是合成化合物。使用天然产物作为MMP抑制剂的研究最近才成为人们感兴趣的主题。本文就基质金属蛋白酶的生理特性、功能和治疗药物的研究进展进行综述。

关键词: 基质金属蛋白酶(MMP),MMP-9,MMP介导的发病机制,炎症,MMP抑制剂,ECM区域。

[1]
Dimas, G.G.; Didangelos, T.P.; Grekas, D.M. Matrix gelatinases in atherosclerosis and diabetic nephropathy: Progress and challenges. Curr. Vasc. Pharmacol., 2017, 15(6), 557-565.
[http://dx.doi.org/10.2174/1570161115666170202162345] [PMID: 28155628]
[2]
Page-McCaw, A.; Ewald, A.J.; Werb, Z. Matrix metalloproteinases and the regulation of tissue remodelling. Nat. Rev. Mol. Cell Biol., 2007, 8(3), 221-233.
[http://dx.doi.org/10.1038/nrm2125] [PMID: 17318226]
[3]
Khokha, R.; Murthy, A.; Weiss, A. Metalloproteinases and their natural inhibitors in inflammation and immunity. Nat. Rev. Immunol., 2013, 13(9), 649-665.
[http://dx.doi.org/10.1038/nri3499] [PMID: 23969736]
[4]
Li, T.; Li, X.; Feng, Y.; Dong, G.; Wang, Y.; Yang, J. The role of matrix metalloproteinase-9 in atherosclerotic plaque instability. Mediators Inflamm., 2020, 2020, 1-13.
[http://dx.doi.org/10.1155/2020/3872367] [PMID: 33082709]
[5]
Park, J.; Choi, H.; Abekura, F.; Lim, H.S.; Im, J.H.; Yang, W.S.; Hwang, C.W.; Chang, Y.C.; Lee, Y.C.; Park, N.G.; Kim, C.H. Avenanthramide C suppresses matrix metalloproteinase-9 expression and migration through the MAPK/NF-kappaB signaling pathway in TNF-alpha-activated HASMC cells. Front. Pharmacol., 2021, 12, 621854.
[http://dx.doi.org/10.3389/fphar.2021.621854] [PMID: 33841150]
[6]
Lenci, E.; Cosottini, L.; Trabocchi, A. Novel matrix metalloproteinase inhibitors: An updated patent review (2014 - 2020). Expert Opin. Ther. Pat., 2021, 31(6), 509-523.
[http://dx.doi.org/10.1080/13543776.2021.1881481] [PMID: 33487088]
[7]
Mondal, S.; Adhikari, N.; Banerjee, S.; Amin, S.A.; Jha, T. Matrix metalloproteinase-9 (MMP-9) and its inhibitors in cancer: A minireview. Eur. J. Med. Chem., 2020, 194, 112260.
[http://dx.doi.org/10.1016/j.ejmech.2020.112260] [PMID: 32224379]
[8]
Visse, R.; Nagase, H. Matrix metalloproteinases and tissue inhibitors of metalloproteinases: Structure, function, and biochemistry. Circ. Res., 2003, 92(8), 827-839.
[http://dx.doi.org/10.1161/01.RES.0000070112.80711.3D] [PMID: 12730128]
[9]
Yue, L.; Shi, Y.; Su, X.; Ouyang, L.; Wang, G.; Ye, T. Matrix metalloproteinases inhibitors in idiopathic pulmonary fibrosis: Medicinal chemistry perspectives. Eur. J. Med. Chem., 2021, 224, 113714.
[http://dx.doi.org/10.1016/j.ejmech.2021.113714] [PMID: 34315043]
[10]
McGeehan, G.; Burkhart, W.; Anderegg, R.; Becherer, J.D.; Gillikin, J.W.; Graham, J.S. Sequencing and characterization of the soybean leaf metalloproteinase : Structural and functional similarity to the matrix metalloproteinase family. Plant Physiol., 1992, 99(3), 1179-1183.
[http://dx.doi.org/10.1104/pp.99.3.1179] [PMID: 16668986]
[11]
Delorme, V.G.R.; McCabe, P.F.; Kim, D.J.; Leaver, C.J. A matrix metalloproteinase gene is expressed at the boundary of senescence and programmed cell death in cucumber. Plant Physiol., 2000, 123(3), 917-928.
[http://dx.doi.org/10.1104/pp.123.3.917] [PMID: 10889240]
[12]
Liu, Y.; Dammann, C.; Bhattacharyya, M.K. The matrix metalloproteinase gene GmMMP2 is activated in response to pathogenic infections in soybean. Plant Physiol., 2001, 127(4), 1788-1797.
[http://dx.doi.org/10.1104/pp.010593] [PMID: 11743122]
[13]
Zhao, P.; Zhang, F.; Liu, D.; Imani, J.; Langen, G.; Kogel, K.H. Matrix metalloproteinases operate redundantly in Arabidopsis immunity against necrotrophic and biotrophic fungal pathogens. PLoS One, 2017, 12(8), e0183577.
[http://dx.doi.org/10.1371/journal.pone.0183577] [PMID: 28832648]
[14]
Cui, N.; Hu, M.; Khalil, R.A. Biochemical and biological attributes of matrix metalloproteinases. Prog. Mol. Biol. Transl. Sci., 2017, 147, 1-73.
[http://dx.doi.org/10.1016/bs.pmbts.2017.02.005] [PMID: 28413025]
[15]
Kessenbrock, K.; Plaks, V.; Werb, Z. Matrix metalloproteinases: Regulators of the tumor microenvironment. Cell, 2010, 141(1), 52-67.
[http://dx.doi.org/10.1016/j.cell.2010.03.015] [PMID: 20371345]
[16]
Glasheen, B.M.; Kabra, A.T.; Page-McCaw, A. Distinct functions for the catalytic and hemopexin domains of a Drosophila matrix metalloproteinase. Proc. Natl. Acad. Sci. USA, 2009, 106(8), 2659-2664.
[http://dx.doi.org/10.1073/pnas.0804171106] [PMID: 19196956]
[17]
Chen, X.; Li, Y. Role of matrix metalloproteinases in skeletal muscle. Cell Adhes. Migr., 2009, 3(4), 337-341.
[http://dx.doi.org/10.4161/cam.3.4.9338] [PMID: 19667757]
[18]
Lu, P.; Takai, K.; Weaver, V.M.; Werb, Z. Extracellular matrix degradation and remodeling in development and disease. Cold Spring Harb. Perspect. Biol., 2011, 3(12), a005058.
[http://dx.doi.org/10.1101/cshperspect.a005058] [PMID: 21917992]
[19]
Benjamin, M.M.; Khalil, R.A. Matrix metalloproteinase inhibitors as investigative tools in the pathogenesis and management of vascular disease. EXS, 2012, 103, 209-279.
[http://dx.doi.org/10.1007/978-3-0348-0364-9_7] [PMID: 22642194]
[20]
Cabral-Pacheco, G.A.; Garza-Veloz, I.; Castruita-De la Rosa, C.; Ramirez-Acuña, J.M.; Perez-Romero, B.A.; Guerrero-Rodriguez, J.F.; Martinez-Avila, N.; Martinez-Fierro, M.L. The roles of matrix metalloproteinases and their inhibitors in human diseases. Int. J. Mol. Sci., 2020, 21(24), 9739.
[http://dx.doi.org/10.3390/ijms21249739] [PMID: 33419373]
[21]
Raeeszadeh-Sarmazdeh, M.; Do, L.; Hritz, B. Metalloproteinases and their inhibitors: Potential for the development of new therapeutics. Cells, 2020, 9(5), 1313.
[http://dx.doi.org/10.3390/cells9051313] [PMID: 32466129]
[22]
Radisky, E.S.; Raeeszadeh-Sarmazdeh, M.; Radisky, D.C. Therapeutic potential of matrix metalloproteinase inhibition in breast cancer. J. Cell. Biochem., 2017, 118(11), 3531-3548.
[http://dx.doi.org/10.1002/jcb.26185] [PMID: 28585723]
[23]
Fields, G.B. The rebirth of matrix metalloproteinase inhibitors: Moving beyond the dogma. Cells, 2019, 8(9), 984.
[http://dx.doi.org/10.3390/cells8090984] [PMID: 31461880]
[24]
Walker, C.; Mojares, E.; del Río Hernández, A. Role of extracellular matrix in development and cancer progression. Int. J. Mol. Sci., 2018, 19(10), 3028.
[http://dx.doi.org/10.3390/ijms19103028] [PMID: 30287763]
[25]
Poltavets, V.; Kochetkova, M.; Pitson, S.M.; Samuel, M.S. The role of the extracellular matrix and its molecular and cellular regulators in cancer cell plasticity. Front. Oncol., 2018, 8, 431.
[http://dx.doi.org/10.3389/fonc.2018.00431] [PMID: 30356678]
[26]
Winer, A.; Adams, S.; Mignatti, P. Matrix metalloproteinase inhibitors in cancer therapy: Turning past failures into future successes. Mol. Cancer Ther., 2018, 17(6), 1147-1155.
[http://dx.doi.org/10.1158/1535-7163.MCT-17-0646] [PMID: 29735645]
[27]
Jablonska-Trypuc, A.; Matejczyk, M.; Rosochacki, S. Matrix metalloproteinases (MMPs), the main extracellular matrix (ECM) enzymes in collagen degradation, as a target for anticancer drugs. J. Enzyme Inhib. Med. Chem., 2016, (31)(sup1), 177-183.
[http://dx.doi.org/10.3109/14756366.2016.1161620] [PMID: 27028474]
[28]
Quintero-Fabián, S.; Arreola, R.; Becerril-Villanueva, E.; Torres-Romero, J.C.; Arana-Argáez, V.; Lara-Riegos, J.; Ramírez-Camacho, M.A.; Alvarez-Sánchez, M.E. Role of matrix metalloproteinases in angiogenesis and cancer. Front. Oncol., 2019, 9, 1370.
[http://dx.doi.org/10.3389/fonc.2019.01370] [PMID: 31921634]
[29]
Laronha, H.; Caldeira, J. Structure and function of human matrix metalloproteinases. Cells, 2020, 9(5), 1076.
[http://dx.doi.org/10.3390/cells9051076] [PMID: 32357580]
[30]
Nagase, H.; Visse, R.; Murphy, G. Structure and function of matrix metalloproteinases and TIMPs. Cardiovasc. Res., 2006, 69(3), 562-573.
[http://dx.doi.org/10.1016/j.cardiores.2005.12.002] [PMID: 16405877]
[31]
Dufour, A.; Sampson, N.S.; Zucker, S.; Cao, J. Role of the hemopexin domain of matrix metalloproteinases in cell migration. J. Cell. Physiol., 2008, 217(3), 643-651.
[http://dx.doi.org/10.1002/jcp.21535] [PMID: 18636552]
[32]
Nikolov, A.; Popovski, N. Role of gelatinases MMP-2 and MMP-9 in healthy and complicated pregnancy and their future potential as preeclampsia biomarkers. Diagnostics (Basel), 2021, 11(3), 480.
[http://dx.doi.org/10.3390/diagnostics11030480] [PMID: 33803206]
[33]
Löffek, S.; Schilling, O.; Franzke, C.W. Biological role of matrix metalloproteinases: A critical balance. Eur. Respir. J., 2011, 38(1), 191-208.
[http://dx.doi.org/10.1183/09031936.00146510] [PMID: 21177845]
[34]
Engsig, M.T.; Chen, Q.J.; Vu, T.H.; Pedersen, A.C.; Therkidsen, B.; Lund, L.R.; Henriksen, K.; Lenhard, T.; Foged, N.T.; Werb, Z.; Delaissé, J.M. Matrix metalloproteinase 9 and vascular endothelial growth factor are essential for osteoclast recruitment into developing long bones. J. Cell Biol., 2000, 151(4), 879-890.
[http://dx.doi.org/10.1083/jcb.151.4.879] [PMID: 11076971]
[35]
Klein, T.; Bischoff, R. Physiology and pathophysiology of matrix metalloproteases. Amino Acids, 2011, 41(2), 271-290.
[http://dx.doi.org/10.1007/s00726-010-0689-x] [PMID: 20640864]
[36]
Buache, E.; Thai, R.; Wendling, C.; Alpy, F.; Page, A.; Chenard, M.P.; Dive, V.; Ruff, M.; Dejaegere, A.; Tomasetto, C.; Rio, M.C. Functional relationship between matrix metalloproteinase-11 and matrix metalloproteinase-14. Cancer Med., 2014, 3(5), 1197-1210.
[http://dx.doi.org/10.1002/cam4.290] [PMID: 25081520]
[37]
Murphy, G.; Nagase, H. Progress in matrix metalloproteinase research. Mol. Aspects Med., 2008, 29(5), 290-308.
[http://dx.doi.org/10.1016/j.mam.2008.05.002] [PMID: 18619669]
[38]
Piskór, B.M.; Przylipiak, A.; Dąbrowska, E.; Niczyporuk, M.; Ławicki, S. Matrilysins and stromelysins in pathogenesis and diagnostics of cancers. Cancer Manag. Res., 2020, 12, 10949-10964.
[http://dx.doi.org/10.2147/CMAR.S235776] [PMID: 33154674]
[39]
Ke, B.; Fan, C.; Yang, L.; Fang, X. Matrix metalloproteinases-7 and kidney fibrosis. Front. Physiol., 2017, 8, 21.
[PMID: 28239354]
[40]
Jobin, P.G.; Butler, G.S.; Overall, C.M. New intracellular activities of matrix metalloproteinases shine in the moonlight. Biochim. Biophys. Acta Mol. Cell Res., 2017, 1864(11)(11 Pt A), 2043-2055.
[http://dx.doi.org/10.1016/j.bbamcr.2017.05.013] [PMID: 28526562]
[41]
Wilson, C.L.; Heppner, K.J.; Rudolph, L.A.; Matrisian, L.M. The metalloproteinase matrilysin is preferentially expressed by epithelial cells in a tissue-restricted pattern in the mouse. Mol. Biol. Cell, 1995, 6(7), 851-869.
[http://dx.doi.org/10.1091/mbc.6.7.851] [PMID: 7579699]
[42]
Itoh, Y. Membrane-type matrix metalloproteinases: Their functions and regulations. Matrix Biol., 2015, 44-46, 207-223.
[http://dx.doi.org/10.1016/j.matbio.2015.03.004] [PMID: 25794647]
[43]
Caley, M.P.; Martins, V.L.C.; O’Toole, E.A. Metalloproteinases and wound healing. Adv. Wound Care (New Rochelle), 2015, 4(4), 225-234.
[http://dx.doi.org/10.1089/wound.2014.0581] [PMID: 25945285]
[44]
Ota, I.; Li, X.Y.; Hu, Y.; Weiss, S.J. Induction of a MT1-MMP and MT2-MMP-dependent basement membrane transmigration program in cancer cells by Snail1. Proc. Natl. Acad. Sci. USA, 2009, 106(48), 20318-20323.
[http://dx.doi.org/10.1073/pnas.0910962106] [PMID: 19915148]
[45]
Tatti, O.; Arjama, M.; Ranki, A.; Weiss, S.J.; Keski-Oja, J.; Lehti, K. Membrane-type-3 matrix metalloproteinase (MT3-MMP) functions as a matrix composition-dependent effector of melanoma cell invasion. PLoS One, 2011, 6(12), e28325.
[http://dx.doi.org/10.1371/journal.pone.0028325] [PMID: 22164270]
[46]
Collison, J. MMP12 makes the cut. Nat. Rev. Rheumatol., 2018, 14(9), 501.
[http://dx.doi.org/10.1038/s41584-018-0056-y] [PMID: 30022107]
[47]
Müller, M.; Beck, I.M.; Gadesmann, J.; Karschuk, N.; Paschen, A.; Proksch, E.; Djonov, V.; Reiss, K.; Sedlacek, R. MMP19 is upregulated during melanoma progression and increases invasion of melanoma cells. Mod. Pathol., 2010, 23(4), 511-521.
[http://dx.doi.org/10.1038/modpathol.2009.183] [PMID: 20098411]
[48]
Bartlett, J.D.; Smith, C.E.; Hu, Y.; Ikeda, A.; Strauss, M.; Liang, T.; Hsu, Y.H.; Trout, A.H.; McComb, D.W.; Freeman, R.C.; Simmer, J.P.; Hu, J.C.C. MMP20-generated amelogenin cleavage products prevent formation of fan-shaped enamel malformations. Sci. Rep., 2021, 11(1), 10570.
[http://dx.doi.org/10.1038/s41598-021-90005-z] [PMID: 34012043]
[49]
Guimier, A.; Gabriel, G.C.; Bajolle, F.; Tsang, M.; Liu, H.; Noll, A.; Schwartz, M.; El Malti, R.; Smith, L.D.; Klena, N.T.; Jimenez, G.; Miller, N.A.; Oufadem, M.; Moreau de Bellaing, A.; Yagi, H.; Saunders, C.J.; Baker, C.N.; Di Filippo, S.; Peterson, K.A.; Thiffault, I.; Bole-Feysot, C.; Cooley, L.D.; Farrow, E.G.; Masson, C.; Schoen, P.; Deleuze, J.F.; Nitschké, P.; Lyonnet, S.; de Pontual, L.; Murray, S.A.; Bonnet, D.; Kingsmore, S.F.; Amiel, J.; Bouvagnet, P.; Lo, C.W.; Gordon, C.T. MMP21 is mutated in human heterotaxy and is required for normal left-right asymmetry in vertebrates. Nat. Genet., 2015, 47(11), 1260-1263.
[http://dx.doi.org/10.1038/ng.3376] [PMID: 26437028]
[50]
Zhang, J.; Pan, Q.; Yan, W.; Wang, Y.; He, X.; Zhao, Z. Overexpression of MMP21 and MMP28 is associated with gastric cancer progression and poor prognosis. Oncol. Lett., 2018, 15(5), 7776-7782.
[http://dx.doi.org/10.3892/ol.2018.8328] [PMID: 29731903]
[51]
Manicone, A.M.; Birkland, T.P.; Lin, M.; Betsuyaku, T.; van Rooijen, N.; Lohi, J.; Keski-Oja, J.; Wang, Y.; Skerrett, S.J.; Parks, W.C. Epilysin (MMP-28) restrains early macrophage recruitment in Pseudomonas aeruginosa pneumonia. J. Immunol., 2009, 182(6), 3866-3876.
[http://dx.doi.org/10.4049/jimmunol.0713949] [PMID: 19265166]
[52]
Jhund, P.S.; McMurray, J.J.V. The neprilysin pathway in heart failure: A review and guide on the use of sacubitril/valsartan. Heart, 2016, 102(17), 1342-1347.
[http://dx.doi.org/10.1136/heartjnl-2014-306775] [PMID: 27207980]
[53]
Bavishi, C.; Messerli, F.H.; Kadosh, B.; Ruilope, L.M.; Kario, K. Role of neprilysin inhibitor combinations in hypertension: Insights from hypertension and heart failure trials. Eur. Heart J., 2015, 36(30), 1967-1973.
[http://dx.doi.org/10.1093/eurheartj/ehv142] [PMID: 25898846]
[54]
Pavo, N.; Prausmüller, S.; Bartko, P.E.; Goliasch, G.; Hülsmann, M. Neprilysin as a biomarker: Challenges and opportunities. Card. Fail. Rev., 2020, 6, e23.
[http://dx.doi.org/10.15420/cfr.2019.21] [PMID: 32944293]
[55]
Vardeny, O.; Miller, R.; Solomon, S.D. Combined neprilysin and renin-angiotensin system inhibition for the treatment of heart failure. JACC Heart Fail., 2014, 2(6), 663-670.
[http://dx.doi.org/10.1016/j.jchf.2014.09.001] [PMID: 25306450]
[56]
Giebeler, N.; Zigrino, P. A disintegrin and metalloprotease (ADAM): Historical overview of their functions. Toxins (Basel), 2016, 8(4), 122.
[http://dx.doi.org/10.3390/toxins8040122] [PMID: 27120619]
[57]
Aljohmani, A.; Yildiz, D. A disintegrin and metalloproteinase-control elements in infectious diseases. Front. Cardiovasc. Med., 2020, 7, 608281.
[http://dx.doi.org/10.3389/fcvm.2020.608281] [PMID: 33392273]
[58]
Xu, J.; Mukerjee, S.; Silva-Alves, C.R.A.; Carvalho-Galvão, A.; Cruz, J.C.; Balarini, C.M.; Braga, V.A.; Lazartigues, E.; França-Silva, M.S. A disintegrin and metalloprotease 17 in the cardiovascular and central nervous systems. Front. Physiol., 2016, 7, 469.
[http://dx.doi.org/10.3389/fphys.2016.00469] [PMID: 27803674]
[59]
Freitas-Rodríguez, S.; Folgueras, A.R.; López-Otín, C. The role of matrix metalloproteinases in aging: Tissue remodeling and beyond. Biochim. Biophys. Acta Mol. Cell Res., 2017, 1864(11)(11 Pt A), 2015-2025.
[http://dx.doi.org/10.1016/j.bbamcr.2017.05.007] [PMID: 28499917]
[60]
Zipfel, P.; Rochais, C.; Baranger, K.; Rivera, S.; Dallemagne, P. Matrix metalloproteinases as new targets in Alzheimer’s aisease: Opportunities and challenges. J. Med. Chem., 2020, 63(19), 10705-10725.
[http://dx.doi.org/10.1021/acs.jmedchem.0c00352] [PMID: 32459966]
[61]
Okamoto, T.; Akuta, T.; Tamura, F.; van Der Vliet, A.; Akaike, T. Molecular mechanism for activation and regulation of matrix metalloproteinases during bacterial infections and respiratory inflammation. Biol. Chem., 2004, 385(11), 997-1006.
[http://dx.doi.org/10.1515/BC.2004.130] [PMID: 15576319]
[62]
Tallant, C.; Marrero, A.; Gomis-Rüth, F.X. Matrix metalloproteinases: Fold and function of their catalytic domains. Biochim. Biophys. Acta Mol. Cell Res., 2010, 1803(1), 20-28.
[http://dx.doi.org/10.1016/j.bbamcr.2009.04.003] [PMID: 19374923]
[63]
Khrenova, M.G.; Savitsky, A.P.; Topol, I.A.; Nemukhin, A.V. Exploration of the zinc finger motif in controlling activity of matrix metalloproteinases. J. Phys. Chem. B, 2014, 118(47), 13505-13512.
[http://dx.doi.org/10.1021/jp5088702] [PMID: 25375834]
[64]
Iyer, S.; Wei, S.; Brew, K.; Acharya, K.R. Crystal structure of the catalytic domain of matrix metalloproteinase-1 in complex with the inhibitory domain of tissue inhibitor of metalloproteinase-1. J. Biol. Chem., 2007, 282(1), 364-371.
[http://dx.doi.org/10.1074/jbc.M607625200] [PMID: 17050530]
[65]
Cerdà-Costa, N.; Xavier Gomis-Rüth, F. Architecture and function of metallopeptidase catalytic domains. Protein Sci., 2014, 23(2), 123-144.
[http://dx.doi.org/10.1002/pro.2400] [PMID: 24596965]
[66]
Yue, B. Biology of the extracellular matrix: An overview. J. Glaucoma, 2014, 23(8)(Suppl. 1), S20-S23.
[http://dx.doi.org/10.1097/IJG.0000000000000108] [PMID: 25275899]
[67]
Pompili, S.; Latella, G.; Gaudio, E.; Sferra, R.; Vetuschi, A. The charming world of the extracellular matrix: A dynamic and protective network of the intestinal wall. Front. Med. (Lausanne), 2021, 8, 610189.
[http://dx.doi.org/10.3389/fmed.2021.610189] [PMID: 33937276]
[68]
Giannandrea, M.; Parks, W.C. Diverse functions of matrix metalloproteinases during fibrosis. Dis. Model. Mech., 2014, 7(2), 193-203.
[http://dx.doi.org/10.1242/dmm.012062] [PMID: 24713275]
[69]
Abe, H.; Kamimura, K.; Kobayashi, Y.; Ohtsuka, M.; Miura, H.; Ohashi, R.; Yokoo, T.; Kanefuji, T.; Suda, T.; Tsuchida, M.; Aoyagi, Y.; Zhang, G.; Liu, D.; Terai, S. Effective prevention of liver fibrosis by liver-targeted hydrodynamic gene delivery of matrix metalloproteinase-13 in a rat liver fibrosis model. Mol. Ther. Nucleic Acids, 2016, 5, e276.
[http://dx.doi.org/10.1038/mtna.2015.49] [PMID: 26730813]
[70]
George, J.; Tsutsumi, M.; Tsuchishima, M. MMP-13 deletion decreases profibrogenic molecules and attenuates N -nitrosodimethylamine-induced liver injury and fibrosis in mice. J. Cell. Mol. Med., 2017, 21(12), 3821-3835.
[http://dx.doi.org/10.1111/jcmm.13304] [PMID: 28782260]
[71]
Van Wart, H.E.; Birkedal-Hansen, H. The cysteine switch: A principle of regulation of metalloproteinase activity with potential applicability to the entire matrix metalloproteinase gene family. Proc. Natl. Acad. Sci. USA, 1990, 87(14), 5578-5582.
[http://dx.doi.org/10.1073/pnas.87.14.5578] [PMID: 2164689]
[72]
Jacobsen, J.A.; Major Jourden, J.L.; Miller, M.T.; Cohen, S.M. To bind zinc or not to bind zinc: An examination of innovative approaches to improved metalloproteinase inhibition. Biochim. Biophys. Acta Mol. Cell Res., 2010, 1803(1), 72-94.
[http://dx.doi.org/10.1016/j.bbamcr.2009.08.006] [PMID: 19712708]
[73]
Klein, G.; Vellenga, E.; Fraaije, M.W.; Kamps, W.A.; de Bont, E.S.J.M. The possible role of matrix metalloproteinase (MMP)-2 and MMP-9 in cancer, e.g. acute leukemia. Crit. Rev. Oncol. Hematol., 2004, 50(2), 87-100.
[http://dx.doi.org/10.1016/j.critrevonc.2003.09.001] [PMID: 15157658]
[74]
Nagase, H.; Woessner, J.F., Jr Matrix metalloproteinases. J. Biol. Chem., 1999, 274(31), 21491-21494.
[http://dx.doi.org/10.1074/jbc.274.31.21491] [PMID: 10419448]
[75]
Cathcart, J.; Pulkoski-Gross, A.; Cao, J. Targeting matrix metalloproteinases in cancer: Bringing new life to old ideas. Genes Dis., 2015, 2(`1), 26-34.
[76]
Adhikari, N.; Mukherjee, A.; Saha, A.; Jha, T. Arylsulfonamides and selectivity of matrix metalloproteinase-2: An overview. Eur. J. Med. Chem., 2017, 129, 72-109.
[http://dx.doi.org/10.1016/j.ejmech.2017.02.014] [PMID: 28219048]
[77]
Adhikari, N.; Amin, S.A.; Jha, T. Collagenases and gelatinases and their inhibitors as anticancer agents.Cancer-Leading Proteases; Gupta, S.P., Ed.; Elsevier B.V.: Cambridge, 2020, pp. 265-294.
[http://dx.doi.org/10.1016/B978-0-12-818168-3.00010-3]
[78]
Gimeno, A.; Beltrán-Debón, R.; Mulero, M.; Pujadas, G.; Garcia-Vallvé, S. Understanding the variability of the S1′ pocket to improve matrix metalloproteinase inhibitor selectivity profiles. Drug Discov. Today, 2020, 25(1), 38-57.
[http://dx.doi.org/10.1016/j.drudis.2019.07.013] [PMID: 31513929]
[79]
Rao, B. Recent developments in the design of specific Matrix Metalloproteinase inhibitors aided by structural and computational studies. Curr. Pharm. Des., 2005, 11(3), 295-322.
[http://dx.doi.org/10.2174/1381612053382115] [PMID: 15723627]
[80]
Zhang, C.; Kim, S.K. Matrix metalloproteinase inhibitors (MMPIs) from marine natural products: The current situation and future prospects. Mar. Drugs, 2009, 7(2), 71-84.
[http://dx.doi.org/10.3390/md7020071] [PMID: 19597572]
[81]
Huang, H. Matrix metalloproteinase-9 (MMP-9) as a cancer biomarker and MMP-9 biosensors: Recent advances. Sensors (Basel), 2018, 18(10), 3249.
[http://dx.doi.org/10.3390/s18103249] [PMID: 30262739]
[82]
Amin, S.A.; Adhikari, N.; Jha, T. Is dual inhibition of metalloenzymes HDAC-8 and MMP-2 a potential pharmacological target to combat hematological malignancies? Pharmacol. Res., 2017, 122, 8-19.
[http://dx.doi.org/10.1016/j.phrs.2017.05.002] [PMID: 28501516]
[83]
Bronisz, E.; Kurkowska-Jastrzębska, I. Matrix metalloproteinase 9 in epilepsy: The role of neuroinflammation in seizure development. Mediators Inflamm., 2016, 2016, 1-14.
[http://dx.doi.org/10.1155/2016/7369020] [PMID: 28104930]
[84]
Van den Steen, P.E.; Dubois, B.; Nelissen, I.; Rudd, P.M.; Dwek, R.A.; Opdenakker, G. Biochemistry and molecular biology of gelatinase B or matrix metalloproteinase-9 (MMP-9). Crit. Rev. Biochem. Mol. Biol., 2002, 37(6), 375-536.
[http://dx.doi.org/10.1080/10409230290771546] [PMID: 12540195]
[85]
Xu, D.; Zhou, J.; Lou, X.; He, J.; Ran, T.; Wang, W. Myroilysin is a new bacterial member of the M12A family of metzincin metallopeptidases and is activated by a cysteine switch mechanism. J. Biol. Chem., 2017, 292(13), 5195-5206.
[http://dx.doi.org/10.1074/jbc.M116.758110] [PMID: 28188295]
[86]
Tochowicz, A.; Goettig, P.; Evans, R.; Visse, R.; Shitomi, Y.; Palmisano, R.; Ito, N.; Richter, K.; Maskos, K.; Franke, D.; Svergun, D.; Nagase, H.; Bode, W.; Itoh, Y. The dimer interface of the membrane type 1 matrix metalloproteinase hemopexin domain: Crystal structure and biological functions. J. Biol. Chem., 2011, 286(9), 7587-7600.
[http://dx.doi.org/10.1074/jbc.M110.178434] [PMID: 21193411]
[87]
Mikhailova, M.; Xu, X.; Robichaud, T.K.; Pal, S.; Fields, G.B.; Steffensen, B. Identification of collagen binding domain residues that govern catalytic activities of matrix metalloproteinase-2 (MMP-2). Matrix Biol., 2012, 31(7-8), 380-388.
[http://dx.doi.org/10.1016/j.matbio.2012.10.001] [PMID: 23085623]
[88]
Chiao, Y.A.; Zamilpa, R.; Lopez, E.F.; Dai, Q.; Escobar, G.P.; Hakala, K.; Weintraub, S.T.; Lindsey, M.L. In vivo matrix metalloproteinase-7 substrates identified in the left ventricle post-myocardial infarction using proteomics. J. Proteome Res., 2010, 9(5), 2649-2657.
[http://dx.doi.org/10.1021/pr100147r] [PMID: 20232908]
[89]
López-Pelegrín, M.; Ksiazek, M.; Karim, A.Y.; Guevara, T.; Arolas, J.L.; Potempa, J.; Gomis-Rüth, F.X. A novel mechanism of latency in matrix metalloproteinases. J. Biol. Chem., 2015, 290(8), 4728-4740.
[http://dx.doi.org/10.1074/jbc.M114.605956] [PMID: 25555916]
[90]
Ratnikov, B.I.; Deryugina, E.I.; Strongin, A.Y. Gelatin zymography and substrate cleavage assays of matrix metalloproteinase-2 in breast carcinoma cells overexpressing membrane type-1 matrix metalloproteinase. Lab. Invest., 2002, 82(11), 1583-1590.
[http://dx.doi.org/10.1097/01.LAB.0000038555.67772.DB] [PMID: 12429818]
[91]
Takino, T.; Sato, H.; Shinagawa, A.; Seiki, M. Identification of the second membrane-type matrix metalloproteinase (MT-MMP-2) gene from a human placenta cDNA library. MT-MMPs form a unique membrane-type subclass in the MMP family. J. Biol. Chem., 1995, 270(39), 23013-23020.
[http://dx.doi.org/10.1074/jbc.270.39.23013] [PMID: 7559440]
[92]
Ra, H.J.; Parks, W.C. Control of matrix metalloproteinase catalytic activity. Matrix Biol., 2007, 26(8), 587-596.
[http://dx.doi.org/10.1016/j.matbio.2007.07.001] [PMID: 17669641]
[93]
Hadler-Olsen, E.; Fadnes, B.; Sylte, I.; Uhlin-Hansen, L.; Winberg, J.O. Regulation of matrix metalloproteinase activity in health and disease. FEBS J., 2011, 278(1), 28-45.
[http://dx.doi.org/10.1111/j.1742-4658.2010.07920.x] [PMID: 21087458]
[94]
Sternlicht, M.D.; Werb, Z. How matrix metalloproteinases regulate cell behavior. Annu. Rev. Cell Dev. Biol., 2001, 17(1), 463-516.
[http://dx.doi.org/10.1146/annurev.cellbio.17.1.463] [PMID: 11687497]
[95]
Fanjul-Fernández, M.; Folgueras, A.R.; Cabrera, S.; López-Otín, C. Matrix metalloproteinases: Evolution, gene regulation and functional analysis in mouse models. Biochim. Biophys. Acta Mol. Cell Res., 2010, 1803(1), 3-19.
[http://dx.doi.org/10.1016/j.bbamcr.2009.07.004] [PMID: 19631700]
[96]
Kim, E.S.; Sohn, Y.W.; Moon, A. TGF-β-induced transcriptional activation of MMP-2 is mediated by activating transcription factor (ATF)2 in human breast epithelial cells. Cancer Lett., 2007, 252(1), 147-156.
[http://dx.doi.org/10.1016/j.canlet.2006.12.016] [PMID: 17258390]
[97]
Shin, Y.H.; Yoon, S.H.; Choe, E.Y.; Cho, S.H.; Woo, C.H.; Rho, J.Y.; Kim, J.H. PMA-induced up-regulation of MMP-9 is regulated by a PKCα-NF-κB cascade in human lung epithelial cells. Exp. Mol. Med., 2007, 39(1), 97-105.
[http://dx.doi.org/10.1038/emm.2007.11] [PMID: 17334233]
[98]
Song, J.; Wu, C.; Korpos, E.; Zhang, X.; Agrawal, S.M.; Wang, Y.; Faber, C.; Schäfers, M.; Körner, H.; Opdenakker, G.; Hallmann, R.; Sorokin, L. Focal MMP-2 and MMP-9 activity at the blood-brain barrier promotes chemokine-induced leukocyte migration. Cell Rep., 2015, 10(7), 1040-1054.
[http://dx.doi.org/10.1016/j.celrep.2015.01.037] [PMID: 25704809]
[99]
Quiding-Järbrink, M.; Smith, D.A.; Bancroft, G.J. Production of matrix metalloproteinases in response to mycobacterial infection. Infect. Immun., 2001, 69(9), 5661-5670.
[http://dx.doi.org/10.1128/IAI.69.9.5661-5670.2001] [PMID: 11500442]
[100]
Rodríguez, D.; Morrison, C.J.; Overall, C.M. Matrix metalloproteinases: What do they not do? New substrates and biological roles identified by murine models and proteomics. Biochim. Biophys. Acta Mol. Cell Res., 2010, 1803(1), 39-54.
[http://dx.doi.org/10.1016/j.bbamcr.2009.09.015] [PMID: 19800373]
[101]
Gonzalez-Avila, G.; Sommer, B.; Mendoza-Posada, D.A.; Ramos, C.; Garcia-Hernandez, A.A.; Falfan-Valencia, R. Matrix metalloproteinases participation in the metastatic process and their diagnostic and therapeutic applications in cancer. Crit. Rev. Oncol. Hematol., 2019, 137, 57-83.
[http://dx.doi.org/10.1016/j.critrevonc.2019.02.010] [PMID: 31014516]
[102]
Yosef, G.; Arkadash, V.; Papo, N. Targeting the MMP-14/MMP-2/integrin αvβ3 axis with multispecific N-TIMP2–based antagonists for cancer therapy. J. Biol. Chem., 2018, 293(34), 13310-13326.
[http://dx.doi.org/10.1074/jbc.RA118.004406] [PMID: 29986882]
[103]
Zhong, S.; Khalil, R.A. A Disintegrin and Metalloproteinase (ADAM) and ADAM with thrombospondin motifs (ADAMTS) family in vascular biology and disease. Biochem. Pharmacol., 2019, 164, 188-204.
[http://dx.doi.org/10.1016/j.bcp.2019.03.033] [PMID: 30905657]
[104]
Higashiyama, S.; Nanba, D. ADAM-mediated ectodomain shedding of HB-EGF in receptor cross-talk. Biochim. Biophys. Acta. Proteins Proteomics, 2005, 1751(1), 110-117.
[http://dx.doi.org/10.1016/j.bbapap.2004.11.009] [PMID: 16054021]
[105]
Pan, Y.; Han, C.; Wang, C.; Hu, G.; Luo, C.; Gan, X.; Zhang, F.; Lu, Y.; Ding, X. ADAM10 promotes pituitary adenoma cell migration by regulating cleavage of CD44 and L1. J. Mol. Endocrinol., 2012, 49(1), 21-33.
[http://dx.doi.org/10.1530/JME-11-0174] [PMID: 22586143]
[106]
Endo, K.; Takino, T.; Miyamori, H.; Kinsen, H.; Yoshizaki, T.; Furukawa, M.; Sato, H. Cleavage of syndecan-1 by membrane type matrix metalloproteinase-1 stimulates cell migration. J. Biol. Chem., 2003, 278(42), 40764-40770.
[http://dx.doi.org/10.1074/jbc.M306736200] [PMID: 12904296]
[107]
Gomes, L.R.; Terra, L.F.; Wailemann, R.A.M.; Labriola, L.; Sogayar, M.C. TGF-β1 modulates the homeostasis between MMPs and MMP inhibitors through p38 MAPK and ERK1/2 in highly invasive breast cancer cells. BMC Cancer, 2012, 12(1), 26.
[http://dx.doi.org/10.1186/1471-2407-12-26] [PMID: 22260435]
[108]
Joo, C.K.; Seomun, Y. Matrix metalloproteinase (MMP) and TGF-β1-stimulated cell migration in skin and cornea wound healing. Cell Adhes. Migr., 2008, 2(4), 252-253.
[http://dx.doi.org/10.4161/cam.2.4.6772] [PMID: 19262153]
[109]
Yabluchanskiy, A.; Ma, Y.; Iyer, R.P.; Hall, M.E.; Lindsey, M.L. Matrix metalloproteinase-9: Many shades of function in cardiovascular disease. Physiology (Bethesda), 2013, 28(6), 391-403.
[http://dx.doi.org/10.1152/physiol.00029.2013] [PMID: 24186934]
[110]
Niu, H.; Li, F.; Wang, Q.; Ye, Z.; Chen, Q.; Lin, Y. High expression level of MMP9 is associated with poor prognosis in patients with clear cell renal carcinoma. PeerJ, 2018, 6, e5050.
[http://dx.doi.org/10.7717/peerj.5050] [PMID: 30013825]
[111]
Schwingshackl, A.; Duszyk, M.; Brown, N.; Moqbel, R. Human eosinophils release matrix metalloproteinase-9 on stimulation with TNF-α. J. Allergy Clin. Immunol., 1999, 104(5), 983-990.
[http://dx.doi.org/10.1016/S0091-6749(99)70079-5] [PMID: 10550743]
[112]
Esnault, S.; Kelly, E.A.; Johnson, S.H.; DeLain, L.P.; Haedt, M.J.; Noll, A.L.; Sandbo, N.; Jarjour, N.N. Matrix metalloproteinase-9-dependent release of IL-1beta by human eosinophils. Mediators Inflamm., 2019, 2019, 1-11.
[http://dx.doi.org/10.1155/2019/7479107] [PMID: 30906226]
[113]
Chakrabarti, S.; Patel, K.D. Regulation of matrix metalloproteinase-9 release from IL-8-stimulated human neutrophils. J. Leukoc. Biol., 2005, 78(1), 279-288.
[http://dx.doi.org/10.1189/jlb.1004612] [PMID: 15831558]
[114]
Chaudhary, A.K.; Singh, M.; Bharti, A.C.; Asotra, K.; Sundaram, S.; Mehrotra, R. Genetic polymorphisms of matrix metalloproteinases and their inhibitors in potentially malignant and malignant lesions of the head and neck. J. Biomed. Sci., 2010, 17(1), 10.
[http://dx.doi.org/10.1186/1423-0127-17-10] [PMID: 20152059]
[115]
Cotignola, J.; Reva, B.; Mitra, N.; Ishill, N.; Chuai, S.; Patel, A.; Shah, S.; Vanderbeek, G.; Coit, D.; Busam, K.; Halpern, A.; Houghton, A.; Sander, C.; Berwick, M.; Orlow, I. Matrix Metalloproteinase-9 (MMP-9) polymorphisms in patients with cutaneous malignant melanoma. BMC Med. Genet., 2007, 8(1), 8-10.
[http://dx.doi.org/10.1186/1471-2350-8-10] [PMID: 17346338]
[116]
Christensen, J.; Shastri, V.P. Matrix-metalloproteinase-9 is cleaved and activated by Cathepsin K. BMC Res. Notes, 2015, 8(1), 322.
[http://dx.doi.org/10.1186/s13104-015-1284-8] [PMID: 26219353]
[117]
Serifova, X.; Ugarte-Berzal, E.; Opdenakker, G.; Vandooren, J. Homotrimeric MMP-9 is an active hitchhiker on alpha-2-macroglobulin partially escaping protease inhibition and internalization through LRP-1. Cell. Mol. Life Sci., 2020, 77(15), 3013-3026.
[http://dx.doi.org/10.1007/s00018-019-03338-4] [PMID: 31642940]
[118]
Jotwani, R.; Eswaran, S.V.K.; Moonga, S.; Cutler, C.W. MMP-9/TIMP-1imbalance induced in human dendritic cells by Porphyromonas gingivalis. FEMS Immunol. Med. Microbiol., 2010, 58(3), 314-321.
[http://dx.doi.org/10.1111/j.1574-695X.2009.00637.x] [PMID: 20030715]
[119]
Ghaffarpour, S.; Ghazanfari, T.; Kabudanian Ardestani, S.; Pourfarzam, S.; Fallahi, F.; Shams, J.; Mirsharif, E.S.; Mohseni Majd, A.M.; Faghihzadeh, S. Correlation between MMP-9 and MMP-9/ TIMPs complex with pulmonary function in sulfur mustard exposed civilians: Sardasht-Iran cohort study. Arch. Iran Med., 2017, 20(2), 74-82.
[PMID: 28193079]
[120]
Craig, V.J.; Zhang, L.; Hagood, J.S.; Owen, C.A. Matrix metalloproteinases as therapeutic targets for idiopathic pulmonary fibrosis. Am. J. Respir. Cell Mol. Biol., 2015, 53(5), 585-600.
[http://dx.doi.org/10.1165/rcmb.2015-0020TR] [PMID: 26121236]
[121]
Li, G.; Jin, F.; Du, J.; He, Q.; Yang, B.; Luo, P. Macrophage-secreted TSLP and MMP9 promote bleomycin-induced pulmonary fibrosis. Toxicol. Appl. Pharmacol., 2019, 366, 10-16.
[http://dx.doi.org/10.1016/j.taap.2019.01.011] [PMID: 30653976]
[122]
Espindola, M.S.; Habiel, D.M.; Coelho, A.L.; Stripp, B.; Parks, W.C.; Oldham, J.; Martinez, F.J.; Noth, I.; Lopez, D.; Mikels-Vigdal, A.; Smith, V.; Hogaboam, C.M. Differential responses to targeting matrix metalloproteinase 9 in idiopathic pulmonary fibrosis. Am. J. Respir. Crit. Care Med., 2021, 203(4), 458-470.
[http://dx.doi.org/10.1164/rccm.201910-1977OC] [PMID: 33052708]
[123]
Murthy, S.; Ryan, A.; He, C.; Mallampalli, R.K.; Carter, A.B. Rac1-mediated mitochondrial H2O2 generation regulates MMP-9 gene expression in macrophages via inhibition of SP-1 and AP-1. J. Biol. Chem., 2010, 285(32), 25062-25073.
[http://dx.doi.org/10.1074/jbc.M109.099655] [PMID: 20529870]
[124]
Ramírez, G.; Hagood, J.S.; Sanders, Y.; Ramírez, R.; Becerril, C.; Segura, L.; Barrera, L.; Selman, M.; Pardo, A. Absence of Thy-1 results in TGF-β induced MMP-9 expression and confers a profibrotic phenotype to human lung fibroblasts. Lab. Invest., 2011, 91(8), 1206-1218.
[http://dx.doi.org/10.1038/labinvest.2011.80] [PMID: 21577212]
[125]
Moon, S.K.; Cha, B.Y.; Kim, C.H. ERK1/2 mediates TNF-alpha-induced matrix metalloproteinase-9 expression in human vascular smooth muscle cells via the regulation of NF-?B and AP-1: Involvement of the ras dependent pathway. J. Cell. Physiol., 2004, 198(3), 417-427.
[http://dx.doi.org/10.1002/jcp.10435] [PMID: 14755547]
[126]
Bratcher, P.E.; Weathington, N.M.; Nick, H.J.; Jackson, P.L.; Snelgrove, R.J.; Gaggar, A. MMP-9 cleaves SP-D and abrogates its innate immune functions in vitro. PLoS One, 2012, 7(7), e41881.
[http://dx.doi.org/10.1371/journal.pone.0041881] [PMID: 22860023]
[127]
Zhang, Q.; Tu, W.; Tian, K.; Han, L.; Wang, Q.; Chen, P.; Zhou, X. Sirtuin 6 inhibits myofibroblast differentiation via inactivating transforming growth factor-β1/Smad2 and nuclear factor-κB signaling pathways in human fetal lung fibroblasts. J. Cell. Biochem., 2019, 120(1), 93-104.
[http://dx.doi.org/10.1002/jcb.27128] [PMID: 30230565]
[128]
Legrand, C.; Gilles, C.; Zahm, J.M.; Polette, M.; Buisson, A.C.; Kaplan, H.; Birembaut, P.; Tournier, J.M. Airway epithelial cell migration dynamics. MMP-9 role in cell-extracellular matrix remodeling. J. Cell Biol., 1999, 146(2), 517-529.
[http://dx.doi.org/10.1083/jcb.146.2.517] [PMID: 10427102]
[129]
Vafadari, B.; Salamian, A.; Kaczmarek, L. MMP-9 in translation: From molecule to brain physiology, pathology, and therapy. J. Neurochem., 2016, 139(Suppl. 2), 91-114.
[http://dx.doi.org/10.1111/jnc.13415] [PMID: 26525923]
[130]
Iyer, R.P.; Jung, M.; Lindsey, M.L. MMP-9 signaling in the left ventricle following myocardial infarction. Am. J. Physiol. Heart Circ. Physiol., 2016, 311(1), H190-H198.
[http://dx.doi.org/10.1152/ajpheart.00243.2016] [PMID: 27208160]
[131]
Lettner, T.; Lang, R.; Klausegger, A.; Hainzl, S.; Bauer, J.W.; Wally, V. MMP-9 and CXCL8/IL-8 are potential therapeutic targets in epidermolysis bullosa simplex. PLoS One, 2013, 8(7), e70123.
[http://dx.doi.org/10.1371/journal.pone.0070123] [PMID: 23894602]
[132]
Hiratsuka, S.; Nakamura, K.; Iwai, S.; Murakami, M.; Itoh, T.; Kijima, H.; Shipley, J.M.; Senior, R.M.; Shibuya, M. MMP9 induction by vascular endothelial growth factor receptor-1 is involved in lung-specific metastasis. Cancer Cell, 2002, 2(4), 289-300.
[http://dx.doi.org/10.1016/S1535-6108(02)00153-8] [PMID: 12398893]
[133]
Nkyimbeng, T.; Ruppert, C.; Shiomi, T.; Dahal, B.; Lang, G.; Seeger, W.; Okada, Y.; D’Armiento, J.; Günther, A. Pivotal role of matrix metalloproteinase 13 in extracellular matrix turnover in idiopathic pulmonary fibrosis. PLoS One, 2013, 8(9), e73279.
[http://dx.doi.org/10.1371/journal.pone.0073279] [PMID: 24023851]
[134]
Cabrera, S.; Maciel, M.; Hernández-Barrientos, D.; Calyeca, J.; Gaxiola, M.; Selman, M.; Pardo, A. Delayed resolution of bleomycin-induced pulmonary fibrosis in absence of MMP13 (collagenase 3). Am. J. Physiol. Lung Cell. Mol. Physiol., 2019, 316(5), L961-L976.
[http://dx.doi.org/10.1152/ajplung.00455.2017] [PMID: 30785343]
[135]
Berendsen, A.D.; Olsen, B.R. Bone development. Bone, 2015, 80, 14-18.
[http://dx.doi.org/10.1016/j.bone.2015.04.035] [PMID: 26453494]
[136]
Vu, T.H.; Shipley, J.M.; Bergers, G.; Berger, J.E.; Helms, J.A.; Hanahan, D.; Shapiro, S.D.; Senior, R.M.; Werb, Z. MMP-9/gelatinase B is a key regulator of growth plate angiogenesis and apoptosis of hypertrophic chondrocytes. Cell, 1998, 93(3), 411-422.
[http://dx.doi.org/10.1016/S0092-8674(00)81169-1] [PMID: 9590175]
[137]
Colnot, C.; Sidhu, S.S.; Balmain, N.; Poirier, F. Uncoupling of chondrocyte death and vascular invasion in mouse galectin 3 null mutant bones. Dev. Biol., 2001, 229(1), 203-214.
[http://dx.doi.org/10.1006/dbio.2000.9933] [PMID: 11133164]
[138]
Ortega, N.; Behonick, D.J.; Colnot, C.; Cooper, D.N.W.; Werb, Z. Galectin-3 is a downstream regulator of matrix metalloproteinase-9 function during endochondral bone formation. Mol. Biol. Cell, 2005, 16(6), 3028-3039.
[http://dx.doi.org/10.1091/mbc.e04-12-1119] [PMID: 15800063]
[139]
Colnot, C.; Thompson, Z.; Miclau, T.; Werb, Z.; Helms, J.A. Altered fracture repair in the absence of MMP9. Development, 2003, 130(17), 4123-4133.
[http://dx.doi.org/10.1242/dev.00559] [PMID: 12874132]
[140]
Zhou, Z.; Apte, S.S.; Soininen, R.; Cao, R.; Baaklini, G.Y.; Rauser, R.W.; Wang, J.; Cao, Y.; Tryggvason, K. Impaired endochondral ossification and angiogenesis in mice deficient in membrane-type matrix metalloproteinase I. Proc. Natl. Acad. Sci. USA, 2000, 97(8), 4052-4057.
[http://dx.doi.org/10.1073/pnas.060037197] [PMID: 10737763]
[141]
Kato, T.; Kure, T.; Chang, J.H.; Gabison, E.E.; Itoh, T.; Itohara, S.; Azar, D.T. Diminished corneal angiogenesis in gelatinase A-deficient mice. FEBS Lett., 2001, 508(2), 187-190.
[http://dx.doi.org/10.1016/S0014-5793(01)02897-6] [PMID: 11718713]
[142]
Lambert, V.; Wielockx, B.; Munaut, C.; Galopin, C.; Jost, M.; Itoh, T.; Werb, Z.; Baker, A.; Libert, C.; Krell, H.W.; Foidart, J.M.; Noël, A.; Rakic, J.M. MMP-2 and MMP-9 synergize in promoting choroidal neovascularization. FASEB J., 2003, 17(15), 2290-2292.
[http://dx.doi.org/10.1096/fj.03-0113fje] [PMID: 14563686]
[143]
Chun, T.H.; Sabeh, F.; Ota, I.; Murphy, H.; McDonagh, K.T.; Holmbeck, K.; Birkedal-Hansen, H.; Allen, E.D.; Weiss, S.J. MT1-MMP–dependent neovessel formation within the confines of the three-dimensional extracellular matrix. J. Cell Biol., 2004, 167(4), 757-767.
[http://dx.doi.org/10.1083/jcb.200405001] [PMID: 15545316]
[144]
Filippov, S.; Koenig, G.C.; Chun, T.H.; Hotary, K.B.; Ota, I.; Bugge, T.H.; Roberts, J.D.; Fay, W.P.; Birkedal-Hansen, H.; Holmbeck, K.; Sabeh, F.; Allen, E.D.; Weiss, S.J. MT1-matrix metalloproteinase directs arterial wall invasion and neointima formation by vascular smooth muscle cells. J. Exp. Med., 2005, 202(5), 663-671.
[http://dx.doi.org/10.1084/jem.20050607] [PMID: 16147977]
[145]
Chantrain, C.F.; Shimada, H.; Jodele, S.; Groshen, S.; Ye, W.; Shalinsky, D.R.; Werb, Z.; Coussens, L.M.; DeClerck, Y.A. Stromal matrix metalloproteinase-9 regulates the vascular architecture in neuroblastoma by promoting pericyte recruitment. Cancer Res., 2004, 64(5), 1675-1686.
[http://dx.doi.org/10.1158/0008-5472.CAN-03-0160] [PMID: 14996727]
[146]
Lehti, K.; Allen, E.; Birkedal-Hansen, H.; Holmbeck, K.; Miyake, Y.; Chun, T.H.; Weiss, S.J. An MT1-MMP-PDGF receptor-β axis regulates mural cell investment of the microvasculature. Genes Dev., 2005, 19(8), 979-991.
[http://dx.doi.org/10.1101/gad.1294605] [PMID: 15805464]
[147]
Park, J.E.; Keller, G.A.; Ferrara, N. The vascular endothelial growth factor (VEGF) isoforms: Differential deposition into the subepithelial extracellular matrix and bioactivity of extracellular matrix-bound VEGF. Mol. Biol. Cell, 1993, 4(12), 1317-1326.
[http://dx.doi.org/10.1091/mbc.4.12.1317] [PMID: 8167412]
[148]
Bergers, G.; Hanahan, D.; Coussens, L.M. Angiogenesis and apoptosis are cellular parameters of neoplastic progression in transgenic mouse models of tumorigenesis. Int. J. Dev. Biol., 1998, 42(7), 995-1002.
[PMID: 9853830]
[149]
Bergers, G.; Brekken, R.; McMahon, G.; Vu, T.H.; Itoh, T.; Tamaki, K.; Tanzawa, K.; Thorpe, P.; Itohara, S.; Werb, Z.; Hanahan, D. Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis. Nat. Cell Biol., 2000, 2(10), 737-744.
[http://dx.doi.org/10.1038/35036374] [PMID: 11025665]
[150]
Lee, S.; Jilani, S.M.; Nikolova, G.V.; Carpizo, D.; Iruela-Arispe, M.L. Processing of VEGF-A by matrix metalloproteinases regulates bioavailability and vascular patterning in tumors. J. Cell Biol., 2005, 169(4), 681-691.
[http://dx.doi.org/10.1083/jcb.200409115] [PMID: 15911882]
[151]
Van den Steen, P.E.; Van Aelst, I.; Hvidberg, V.; Piccard, H.; Fiten, P.; Jacobsen, C.; Moestrup, S.K.; Fry, S.; Royle, L.; Wormald, M.R.; Wallis, R.; Rudd, P.M.; Dwek, R.A.; Opdenakker, G. The hemopexin and O-glycosylated domains tune gelatinase B/MMP-9 bioavailability via inhibition and binding to cargo receptors. J. Biol. Chem., 2006, 281(27), 18626-18637.
[http://dx.doi.org/10.1074/jbc.M512308200] [PMID: 16672230]
[152]
Charzewski, Ł.; Krzyśko, K.A.; Lesyng, B. Structural characterisation of inhibitory and non-inhibitory MMP-9–TIMP-1 complexes and implications for regulatory mechanisms of MMP-9. Sci. Rep., 2021, 11(1), 13376.
[http://dx.doi.org/10.1038/s41598-021-92881-x] [PMID: 34183752]
[153]
Olson, M.W.; Bernardo, M.M.; Pietila, M.; Gervasi, D.C.; Toth, M.; Kotra, L.P.; Massova, I.; Mobashery, S.; Fridman, R. Characterization of the monomeric and dimeric forms of latent and active matrix metalloproteinase-9. Differential rates for activation by stromelysin 1. J. Biol. Chem., 2000, 275(4), 2661-2668.
[http://dx.doi.org/10.1074/jbc.275.4.2661] [PMID: 10644727]
[154]
Bouchet, S.; Bauvois, B. Neutrophil gelatinase-associated lipocalin (NGAL), pro-matrix metalloproteinase-9 (pro-MMP-9) and their complex pro-MMP-9/NGAL in leukaemias. Cancers (Basel), 2014, 6(2), 796-812.
[http://dx.doi.org/10.3390/cancers6020796] [PMID: 24713998]
[155]
Di Carlo, A. Evaluation of neutrophil gelatinase-associated lipocalin (NGAL), matrix metalloproteinase-9 (MMP-9) and their complex MMP-9/NGAL in sera and urine of patients with kidney tumors. Oncol. Lett., 2013, 5(5), 1677-1681.
[http://dx.doi.org/10.3892/ol.2013.1252] [PMID: 23760084]
[156]
Winberg, J.O.; Kolset, S.O.; Berg, E.; Uhlin-Hansen, L. Macrophages secrete matrix metalloproteinase 9 covalently linked to the core protein of chondroitin sulphate proteoglycans. J. Mol. Biol., 2000, 304(4), 669-680.
[http://dx.doi.org/10.1006/jmbi.2000.4235] [PMID: 11099388]
[157]
Mittelstadt, M.L.; Patel, R.C. AP-1 mediated transcriptional repression of matrix metalloproteinase-9 by recruitment of histone deacetylase 1 in response to interferon β. PLoS One, 2012, 7(8), e42152.
[http://dx.doi.org/10.1371/journal.pone.0042152] [PMID: 22879913]
[158]
Bansal, K.; Kapoor, N.; Narayana, Y.; Puzo, G.; Gilleron, M.; Balaji, K.N. PIM2 Induced COX-2 and MMP-9 expression in macrophages requires PI3K and Notch1 signaling. PLoS One, 2009, 4(3), e4911.
[http://dx.doi.org/10.1371/journal.pone.0004911] [PMID: 19290049]
[159]
Mason, D.P.; Kenagy, R.D.; Hasenstab, D.; Bowen-Pope, D.F.; Seifert, R.A.; Coats, S.; Hawkins, S.M.; Clowes, A.W. Matrix metalloproteinase-9 overexpression enhances vascular smooth muscle cell migration and alters remodeling in the injured rat carotid artery. Circ. Res., 1999, 85(12), 1179-1185.
[http://dx.doi.org/10.1161/01.RES.85.12.1179] [PMID: 10590245]
[160]
Magid, R.; Murphy, T.J.; Galis, Z.S. Expression of matrix metalloproteinase-9 in endothelial cells is differentially regulated by shear stress. Role of c-Myc. J. Biol. Chem., 2003, 278(35), 32994-32999.
[http://dx.doi.org/10.1074/jbc.M304799200] [PMID: 12816956]
[161]
Remacle, A.G.; Rozanov, D.V.; Fugere, M.; Day, R.; Strongin, A.Y. Furin regulates the intracellular activation and the uptake rate of cell surface-associated MT1-MMP. Oncogene, 2006, 25(41), 5648-5655.
[http://dx.doi.org/10.1038/sj.onc.1209572] [PMID: 16636666]
[162]
Bigg, H.F.; Rowan, A.D.; Barker, M.D.; Cawston, T.E. Activity of matrix metalloproteinase-9 against native collagen types I and III. FEBS J., 2007, 274(5), 1246-1255.
[http://dx.doi.org/10.1111/j.1742-4658.2007.05669.x] [PMID: 17298441]
[163]
Liu, Y.; Liu, H.; Luo, X.; Deng, J.; Pan, Y.; Liang, H. Overexpression of SMYD3 and matrix metalloproteinase-9 are associated with poor prognosis of patients with gastric cancer. Tumour Biol., 2015, 36(6), 4377-4386.
[http://dx.doi.org/10.1007/s13277-015-3077-z] [PMID: 25627005]
[164]
Dragutinović, V.V.; Radovanović, N.S.; Izrael-Živković, L.T.; Vrvić, M.M. Detection of gelatinase B activity in serum of gastric cancer patients. World J. Gastroenterol., 2006, 12(1), 105-109.
[http://dx.doi.org/10.3748/wjg.v12.i1.105] [PMID: 16440426]
[165]
Chiranjeevi, P.; Spurthi, K.M.; Rani, N.S.; Kumar, G.R.; Aiyengar, T.M.; Saraswati, M.; Srilatha, G.; Kumar, G.K.; Sinha, S.; Kumari, C.S.; Reddy, B.N.; Vishnupriya, S.; Rani, H.S. Gelatinase B (−1562C/T) polymorphism in tumor progression and invasion of breast cancer. Tumour Biol., 2014, 35(2), 1351-1356.
[http://dx.doi.org/10.1007/s13277-013-1181-5] [PMID: 24357512]
[166]
van ’t Veer, L.J.; Dai, H.; van de Vijver, M.J.; He, Y.D.; Hart, A.A.M.; Mao, M.; Peterse, H.L.; van der Kooy, K.; Marton, M.J.; Witteveen, A.T.; Schreiber, G.J.; Kerkhoven, R.M.; Roberts, C.; Linsley, P.S.; Bernards, R.; Friend, S.H. Gene expression profiling predicts clinical outcome of breast cancer. Nature, 2002, 415(6871), 530-536.
[http://dx.doi.org/10.1038/415530a] [PMID: 11823860]
[167]
Niu, J.; Gu, X.; Turton, J.; Meldrum, C.; Howard, E.W.; Agrez, M. Integrin-mediated signalling of gelatinase B secretion in colon cancer cells. Biochem. Biophys. Res. Commun., 1998, 249(1), 287-291.
[http://dx.doi.org/10.1006/bbrc.1998.9128] [PMID: 9705874]
[168]
Agrez, M.; Gu, X.; Turton, J.; Meldrum, C.; Niu, J.; Antalis, T.; Howard, E.W. The alpha v beta 6 integrin induces gelatinase B secretion in colon cancer cells. Int. J. Cancer, 1999, 81(1), 90-97.
[http://dx.doi.org/10.1002/(SICI)1097-0215(19990331)81:1<90::AID-IJC16>3.0.CO;2-K] [PMID: 10077158]
[169]
Björklund, M.; Koivunen, E. Gelatinase-mediated migration and invasion of cancer cells. Biochim. Biophys. Acta, 2005, 1755(1), 37-69.
[PMID: 15907591]
[170]
Tokito, A.; Jougasaki, M. Matrix metalloproteinases in non-neoplastic disorders. Int. J. Mol. Sci., 2016, 17(7), 1178.
[http://dx.doi.org/10.3390/ijms17071178] [PMID: 27455234]
[171]
Gu, Z.; Cui, J.; Brown, S.; Fridman, R.; Mobashery, S.; Strongin, A.Y.; Lipton, S.A. A highly specific inhibitor of matrix metalloproteinase-9 rescues laminin from proteolysis and neurons from apoptosis in transient focal cerebral ischemia. J. Neurosci., 2005, 25(27), 6401-6408.
[http://dx.doi.org/10.1523/JNEUROSCI.1563-05.2005] [PMID: 16000631]
[172]
Vandooren, J.; Knoops, S.; Aldinucci Buzzo, J.L.; Boon, L.; Martens, E.; Opdenakker, G.; Kolaczkowska, E. Differential inhibition of activity, activation and gene expression of MMP-9 in THP-1 cells by azithromycin and minocycline versus bortezomib: A comparative study. PLoS One, 2017, 12(4), e0174853.
[http://dx.doi.org/10.1371/journal.pone.0174853] [PMID: 28369077]
[173]
Boucher, B. Matrix metalloproteinase protein inhibitors: Highlighting a new beginning for metalloproteinases in medicine. Metalloproteinases Med., 2016, 3, 75-79.
[http://dx.doi.org/10.2147/MNM.S119588]
[174]
Churg, A.; Wang, R.; Wang, X.; Onnervik, P.O.; Thim, K.; Wright, J.L. Effect of an MMP-9/MMP-12 inhibitor on smoke-induced emphysema and airway remodelling in guinea pigs. Thorax, 2007, 62(8), 706-713.
[http://dx.doi.org/10.1136/thx.2006.068353] [PMID: 17311841]
[175]
Baugh, M.D.; Gavrilovic, J.; Davies, I.R.; Hughes, D.A.; Sampson, M.J. Monocyte matrix metalloproteinase production in type 2 diabetes and controls--a cross sectional study. Cardiovasc. Diabetol., 2003, 2(1), 3.
[http://dx.doi.org/10.1186/1475-2840-2-3] [PMID: 12672267]
[176]
Uemura, S.; Matsushita, H.; Li, W.; Glassford, A.J.; Asagami, T.; Lee, K.H.; Harrison, D.G.; Tsao, P.S. Diabetes mellitus enhances vascular matrix metalloproteinase activity: Role of oxidative stress. Circ. Res., 2001, 88(12), 1291-1298.
[http://dx.doi.org/10.1161/hh1201.092042] [PMID: 11420306]
[177]
Ebihara, I.; Nakamura, T.; Shimada, N.; Koide, H. Increased plasma metalloproteinase-9 concentrations precede development of microalbuminuria in non-insulin-dependent diabetes mellitus. Am. J. Kidney Dis., 1998, 32(4), 544-550.
[http://dx.doi.org/10.1016/S0272-6386(98)70015-0] [PMID: 9774113]
[178]
Nguyen, T.T.; Ding, D.; Wolter, W.R.; Pérez, R.L.; Champion, M.M.; Mahasenan, K.V.; Hesek, D.; Lee, M.; Schroeder, V.A.; Jones, J.I.; Lastochkin, E.; Rose, M.K.; Peterson, C.E.; Suckow, M.A.; Mobashery, S.; Chang, M. Validation of matrix metalloproteinase-9 (MMP-9) as a novel target for treatment of diabetic foot ulcers in humans and discovery of a potent and selective small-molecule MMP-9 inhibitor that accelerates healing. J. Med. Chem., 2018, 61(19), 8825-8837.
[http://dx.doi.org/10.1021/acs.jmedchem.8b01005] [PMID: 30212201]
[179]
Fischer, T.; Senn, N.; Riedl, R. Design and structural evolution of matrix metalloproteinase inhibitors. Chemistry, 2019, 25(34), 7960-7980.
[http://dx.doi.org/10.1002/chem.201805361] [PMID: 30720221]
[180]
Devel, L.; Czarny, B.; Beau, F.; Georgiadis, D.; Stura, E.; Dive, V. Third generation of matrix metalloprotease inhibitors: Gain in selectivity by targeting the depth of the S1′ cavity. Biochimie, 2010, 92(11), 1501-1508.
[http://dx.doi.org/10.1016/j.biochi.2010.07.017] [PMID: 20696203]
[181]
Nuti, E.; Cuffaro, D.; Bernardini, E.; Camodeca, C.; Panelli, L.; Chaves, S.; Ciccone, L.; Tepshi, L.; Vera, L.; Orlandini, E.; Nencetti, S.; Stura, E.A.; Santos, M.A.; Dive, V.; Rossello, A. Development of thioaryl-based matrix metalloproteinase-12 inhibitors with alternative zinc-binding groups: Synthesis, potentiometric, NMR, and crystallographic studies. J. Med. Chem., 2018, 61(10), 4421-4435.
[http://dx.doi.org/10.1021/acs.jmedchem.8b00096] [PMID: 29727184]
[182]
Spicer, T.P.; Jiang, J.; Taylor, A.B.; Choi, J.Y.; Hart, P.J.; Roush, W.R.; Fields, G.B.; Hodder, P.S.; Minond, D. Characterization of selective exosite-binding inhibitors of matrix metalloproteinase 13 that prevent articular cartilage degradation in vitro. J. Med. Chem., 2014, 57(22), 9598-9611.
[http://dx.doi.org/10.1021/jm501284e] [PMID: 25330343]
[183]
Wu, J.; Rush, T.S., III; Hotchandani, R.; Du, X.; Geck, M.; Collins, E.; Xu, Z.B.; Skotnicki, J.; Levin, J.I.; Lovering, F.E. Identification of potent and selective MMP-13 inhibitors. Bioorg. Med. Chem. Lett., 2005, 15(18), 4105-4109.
[http://dx.doi.org/10.1016/j.bmcl.2005.06.019] [PMID: 16005220]
[184]
Choi, J.Y.; Fuerst, R.; Knapinska, A.M.; Taylor, A.B.; Smith, L.; Cao, X.; Hart, P.J.; Fields, G.B.; Roush, W.R. Structure-based design and synthesis of potent and selective matrix metalloproteinase 13 inhibitors. J. Med. Chem., 2017, 60(13), 5816-5825.
[http://dx.doi.org/10.1021/acs.jmedchem.7b00514] [PMID: 28653849]
[185]
Nara, H.; Kaieda, A.; Sato, K.; Naito, T.; Mototani, H.; Oki, H.; Yamamoto, Y.; Kuno, H.; Santou, T.; Kanzaki, N.; Terauchi, J.; Uchikawa, O.; Kori, M. Discovery of novel, highly potent, and selective matrix metalloproteinase (MMP)-13 inhibitors with a 1,2,4-triazol-3-yl moiety as a zinc binding group using a structure-based design approach. J. Med. Chem., 2017, 60(2), 608-626.
[http://dx.doi.org/10.1021/acs.jmedchem.6b01007] [PMID: 27966948]
[186]
Nara, H.; Sato, K.; Kaieda, A.; Oki, H.; Kuno, H.; Santou, T.; Kanzaki, N.; Terauchi, J.; Uchikawa, O.; Kori, M. Design, synthesis, and biological activity of novel, potent, and highly selective fused pyrimidine-2-carboxamide-4-one-based matrix metalloproteinase (MMP)-13 zinc-binding inhibitors. Bioorg. Med. Chem., 2016, 24(23), 6149-6165.
[http://dx.doi.org/10.1016/j.bmc.2016.09.009] [PMID: 27825552]
[187]
Baggio, C.; Velazquez, J.V.; Fragai, M.; Nordgren, T.M.; Pellecchia, M. Therapeutic targeting of MMP-12 for the treatment of chronic obstructive pulmonary disease. J. Med. Chem., 2020, 63(21), 12911-12920.
[http://dx.doi.org/10.1021/acs.jmedchem.0c01285] [PMID: 33107733]
[188]
Nara, H.; Sato, K.; Naito, T.; Mototani, H.; Oki, H.; Yamamoto, Y.; Kuno, H.; Santou, T.; Kanzaki, N.; Terauchi, J.; Uchikawa, O.; Kori, M. Discovery of novel, highly potent, and selective quinazoline-2-carboxamide-based matrix metalloproteinase (MMP)-13 inhibitors without a zinc binding group using a structure-based design approach. J. Med. Chem., 2014, 57(21), 8886-8902.
[http://dx.doi.org/10.1021/jm500981k] [PMID: 25264600]
[189]
Ruminski, P.G.; Massa, M.; Strohbach, J.; Hanau, C.E.; Schmidt, M.; Scholten, J.A.; Fletcher, T.R.; Hamper, B.C.; Carroll, J.N.; Shieh, H.S.; Caspers, N.; Collins, B.; Grapperhaus, M.; Palmquist, K.E.; Collins, J.; Baldus, J.E.; Hitchcock, J.; Kleine, H.P.; Rogers, M.D.; McDonald, J.; Munie, G.E.; Messing, D.M.; Portolan, S.; Whiteley, L.O.; Sunyer, T.; Schnute, M.E. Discovery of N-(4-fluoro-3-methoxybenzyl)-6-(2-(((2S,5R)-5-(hydroxymethyl)- 1,4-dioxan-2-yl)methyl)-2H-tetrazol-5-yl)-2 methylpyrimi- dine-4-carboxamide. A highly selective and orally bioavailable matrix metalloproteinase-13 inhibitor for the potential treatment of osteoarthritis. J. Med. Chem., 2016, 59(1), 313-327.
[http://dx.doi.org/10.1021/acs.jmedchem.5b01434] [PMID: 26653735]
[190]
Fischer, T.; Riedl, R. Development of a non-hydroxamate dual matrix metalloproteinase (MMP)-7/-13 inhibitor. Molecules, 2017, 22(9), 1548.
[http://dx.doi.org/10.3390/molecules22091548] [PMID: 32961647]
[191]
Senn, N.; Ott, M.; Lanz, J.; Riedl, R. Targeted polypharmacology: Discovery of a highly potent non-hydroxamate dual matrix metalloproteinase (MMP)-10/-13 inhibitor. J. Med. Chem., 2017, 60(23), 9585-9598.
[http://dx.doi.org/10.1021/acs.jmedchem.7b01001] [PMID: 28953404]
[192]
El Ashry, E.S.H.; Awad, L.F.; Teleb, M.; Ibrahim, N.A.; Abu-Serie, M.M.; Abd Al Moaty, M.N. Structure-based design and optimization of pyrimidine- and 1,2,4-triazolo[4,3-a]pyrimidine-based matrix metalloproteinase-10/13 inhibitors via dimroth rearrangement towards targeted polypharmacology. Bioorg. Chem., 2020, 96, 103616.
[http://dx.doi.org/10.1016/j.bioorg.2020.103616] [PMID: 32032847]
[193]
Scannevin, R.H.; Alexander, R.; Haarlander, T.M.; Burke, S.L.; Singer, M.; Huo, C.; Zhang, Y.M.; Maguire, D.; Spurlino, J.; Deckman, I.; Carroll, K.I.; Lewandowski, F.; Devine, E.; Dzordzorme, K.; Tounge, B.; Milligan, C.; Bayoumy, S.; Williams, R.; Schalk-Hihi, C.; Leonard, K.; Jackson, P.; Todd, M.; Kuo, L.C.; Rhodes, K.J. Discovery of a highly selective chemical inhibitor of matrix metalloproteinase-9 (MMP-9) that allosterically inhibits zymogen activation. J. Biol. Chem., 2017, 292(43), 17963-17974.
[http://dx.doi.org/10.1074/jbc.M117.806075] [PMID: 28860188]
[194]
Alford, V.M.; Kamath, A.; Ren, X.; Kumar, K.; Gan, Q.; Awwa, M.; Tong, M.; Seeliger, M.A.; Cao, J.; Ojima, I.; Sampson, N.S. Targeting the hemopexin-like domain of latent matrix metalloproteinase-9 (proMMP-9) with a small molecule inhibitor prevents the formation of focal adhesion junctions. ACS Chem. Biol., 2017, 12(11), 2788-2803.
[http://dx.doi.org/10.1021/acschembio.7b00758] [PMID: 28945333]
[195]
Shiomi, T.; Lemaître, V.; D’Armiento, J.; Okada, Y. Matrix metalloproteinases, a disintegrin and metalloproteinases, and a disintegrin and metalloproteinases with thrombospondin motifs in non-neoplastic diseases. Pathol. Int., 2010, 60(7), 477-496.
[http://dx.doi.org/10.1111/j.1440-1827.2010.02547.x] [PMID: 20594269]
[196]
Gupta, P.; Rettiganti, M.; Jeffries, H.E.; Scanlon, M.C.; Ghanayem, N.S.; Daufeldt, J.; Rice, T.B.; Wetzel, R.C. Risk factors and outcomes of in-hospital cardiac arrest following pediatric heart operations of varying complexity. Resuscitation, 2016, 105, 1-7.
[http://dx.doi.org/10.1016/j.resuscitation.2016.04.022] [PMID: 27185218]
[197]
Gkouveris, I.; Nikitakis, N.; Aseervatham, J.; Rao, N.; Ogbureke, K. Matrix metalloproteinases in head and neck cancer: Current perspectives. Metalloproteinases Med., 2017, 4, 47-61.
[http://dx.doi.org/10.2147/MNM.S105770]
[198]
Kim, S.; Kim, S.H.; Hur, S.M.; Lee, S.K.; Kim, W.W.; Kim, J.S.; Kim, J.H.; Choe, J.H.; Nam, S.J.; Lee, J.E.; Yang, J.H. Silibinin prevents TPA-induced MMP-9 expression by down-regulation of COX-2 in human breast cancer cells. J. Ethnopharmacol., 2009, 126(2), 252-257.
[http://dx.doi.org/10.1016/j.jep.2009.08.032] [PMID: 19715751]
[199]
Li, W.; Saji, S.; Sato, F.; Noda, M.; Toi, M. Potential clinical applications of matrix metalloproteinase inhibitors and their future prospects. Int. J. Biol. Markers, 2013, 28(2), 117-130.
[http://dx.doi.org/10.5301/JBM.5000026] [PMID: 23787494]
[200]
Hussain, A.; Harish, G.; Prabhu, S.A.; Mohsin, J.; Khan, M.A.; Rizvi, T.A.; Sharma, C. Inhibitory effect of genistein on the invasive potential of human cervical cancer cells via modulation of matrix metalloproteinase-9 and tissue inhibitiors of matrix metalloproteinase-1 expression. Cancer Epidemiol., 2012, 36(6), e387-e393.
[http://dx.doi.org/10.1016/j.canep.2012.07.005] [PMID: 22884883]
[201]
Chen, Y.J.; Chang, L.S. Gallic acid downregulates matrix metalloproteinase-2 (MMP-2) and MMP-9 in human leukemia cells with expressed Bcr/Abl. Mol. Nutr. Food Res., 2012, 56(9), 1398-1412.
[http://dx.doi.org/10.1002/mnfr.201200167] [PMID: 22865631]
[202]
Maurya, D.K.; Nandakumar, N.; Devasagayam, T.P.A. Anticancer property of gallic acid in A549, a human lung adenocarcinoma cell line, and possible mechanisms. J. Clin. Biochem. Nutr., 2010, 48(1), 85-90.
[http://dx.doi.org/10.3164/jcbn.11-004FR] [PMID: 21297918]
[203]
Khorsandi, K.; Kianmehr, Z.; hosseinmardi, Z.; Hosseinzadeh, R. Anti-cancer effect of gallic acid in presence of low level laser irradiation: ROS production and induction of apoptosis and ferroptosis. Cancer Cell Int., 2020, 20(1), 18.
[http://dx.doi.org/10.1186/s12935-020-1100-y] [PMID: 31956296]
[204]
Chen, L.; Zhang, H.Y. Cancer preventive mechanisms of the green tea polyphenol (-)-epigallocatechin-3-gallate. Molecules, 2007, 12(5), 946-957.
[http://dx.doi.org/10.3390/12050946] [PMID: 17873830]
[205]
Saragusti, A.C.; Ortega, M.G.; Cabrera, J.L.; Estrin, D.A.; Marti, M.A.; Chiabrando, G.A. Inhibitory effect of quercetin on matrix metalloproteinase 9 activity Molecular mechanism and structure–activity relationship of the flavonoid–enzyme interaction. Eur. J. Pharmacol., 2010, 644(1-3), 138-145.
[http://dx.doi.org/10.1016/j.ejphar.2010.07.001] [PMID: 20619256]
[206]
Hoekstra, R.; Eskens, F.A.L.M.; Verweij, J. Matrix metalloproteinase inhibitors: Current developments and future perspectives. Oncologist, 2001, 6(5), 415-427.
[http://dx.doi.org/10.1634/theoncologist.6-5-415] [PMID: 11675519]
[207]
Marshall, D.C.; Lyman, S.K.; McCauley, S.; Kovalenko, M.; Spangler, R.; Liu, C.; Lee, M.; O’Sullivan, C.; Barry-Hamilton, V.; Ghermazien, H.; Mikels-Vigdal, A.; Garcia, C.A.; Jorgensen, B.; Velayo, A.C.; Wang, R.; Adamkewicz, J.I.; Smith, V. Selective allosteric inhibition of MMP9 is efficacious in preclinical models of ulcerative colitis and colorectal cancer. PLoS One, 2015, 10(5), e0127063.
[http://dx.doi.org/10.1371/journal.pone.0127063] [PMID: 25961845]
[208]
Martens, E.; Leyssen, A.; Van Aelst, I.; Fiten, P.; Piccard, H.; Hu, J.; Descamps, F.J.; Van den Steen, P.E.; Proost, P.; Van Damme, J.; Liuzzi, G.M.; Riccio, P.; Polverini, E.; Opdenakker, G. A monoclonal antibody inhibits gelatinase B/MMP-9 by selective binding to part of the catalytic domain and not to the fibronectin or zinc binding domains. Biochim. Biophys. Acta, Gen. Subj., 2007, 1770(2), 178-186.
[http://dx.doi.org/10.1016/j.bbagen.2006.10.012] [PMID: 17137715]
[209]
Pruijt, J.F.M.; Fibbe, W.E.; Laterveer, L.; Pieters, R.A.; Lindley, I.J.D.; Paemen, L.; Masure, S.; Willemze, R.; Opdenakker, G. Prevention of interleukin-8-induced mobilization of hematopoietic progenitor cells in rhesus monkeys by inhibitory antibodies against the Metalloproteinase gelatinase B (MMP-9). Proc. Natl. Acad. Sci. USA, 1999, 96(19), 10863-10868.
[http://dx.doi.org/10.1073/pnas.96.19.10863] [PMID: 10485917]
[210]
Alam, M.A. Methods for hydroxamic acid synthesis. Curr. Org. Chem., 2019, 23(9), 978-993.
[http://dx.doi.org/10.2174/1385272823666190424142821] [PMID: 32565717]
[211]
Tochowicz, A.; Maskos, K.; Huber, R.; Oltenfreiter, R.; Dive, V.; Yiotakis, A.; Zanda, M.; Bode, W.; Goettig, P.; Goettig, P. Crystal structures of MMP-9 complexes with five inhibitors: Contribution of the flexible Arg424 side-chain to selectivity. J. Mol. Biol., 2007, 371(4), 989-1006.
[http://dx.doi.org/10.1016/j.jmb.2007.05.068] [PMID: 17599356]
[212]
Geervliet, E.; Bansal, R. Matrix metalloproteinases as potential biomarkers and therapeutic targets in liver diseases. Cells, 2020, 9(5), 1212.
[http://dx.doi.org/10.3390/cells9051212] [PMID: 32414178]
[213]
Mu, X.; Bellayr, I.; Pan, H.; Choi, Y.; Li, Y. Regeneration of soft tissues is promoted by MMP1 treatment after digit amputation in mice. PLoS One, 2013, 8(3), e59105.
[http://dx.doi.org/10.1371/journal.pone.0059105] [PMID: 23527099]
[214]
Almalki, S.G.; Agrawal, D.K. Effects of matrix metalloproteinases on the fate of mesenchymal stem cells. Stem Cell Res. Ther., 2016, 7(1), 129.
[http://dx.doi.org/10.1186/s13287-016-0393-1] [PMID: 27612636]
[215]
Duarte, S.; Baber, J.; Fujii, T.; Coito, A.J. Matrix metalloproteinases in liver injury, repair and fibrosis. Matrix Biol., 2015, 44-46, 147-156.
[http://dx.doi.org/10.1016/j.matbio.2015.01.004] [PMID: 25599939]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy