General Review Article

芳香或异芳香直接附着三取代和四取代甲烷:作为抗感染的新化学实体

卷 30, 期 8, 2023

发表于: 08 November, 2022

页: [974 - 998] 页: 25

弟呕挨: 10.2174/0929867329666220823111812

价格: $65

摘要

三和四取代甲烷(TRSMs)是许多已批准的药物和前药物的重要结构基序。TRSM单元在药物化学中的应用越来越多,许多衍生物被专门设计用于通过围绕TRSM部分的新化学空间进行药物-靶相互作用。从这个角度来看,我们描述了获取一系列功能化选择性TRSMs及其分子作用机制的合成挑战,特别是作为抗感染的作用机制。与拥有更多sp2碳的平面基序相比,(+)-Bionectin A, B, (+)-Gliocladine C, Balanocarpol等天然抗感染蛋白具有选择性和有效的TRSMs与靶蛋白结合,这可能是由于构象减少了构象熵的惩罚,随着三维度的增强。本文还概述了阿米三嗪、艾芬地尔、巴瑞克替尼和瑞德西韦等再利用trsm的性质及其在COVID-19治疗中的最新进展和作用模式。这一观点有望为科学家、研究人员和学者提供用户指南和参考来源,以寻求新设计的TRSMs作为治疗方法。

关键词: 三和四取代甲烷,抗感染药、阿米三嗪、艾芬地尔、巴瑞克替尼和瑞德西韦

« Previous
[1]
Nair, V.; Thomas, S.; Mathew, S.C.; Abhilash, K.G. Recent advances in the chemistry of triaryl- and triheteroarylmethanes. Tetrahedron, 2006, 62(29), 6731-6747.
[http://dx.doi.org/10.1016/j.tet.2006.04.081]
[2]
Shagufta, S.; Srivastava, A.K.; Sharma, R.; Mishra, R.; Balapure, A.K.; Murthy, P.S.; Panda, G. Substituted phenanthrenes with basic amino side chains: A new series of anti-breast cancer agents. Bioorg. Med. Chem., 2006, 14(5), 1497-1505.
[http://dx.doi.org/10.1016/j.bmc.2005.10.002] [PMID: 16249093]
[3]
(a) Shagufta; Kumar, A.; Panda, G.; Siddiqi, M.I. CoMFA and CoMSIA 3D-QSAR analysis of diaryloxy-methano-phenanthrene derivatives as anti-tubercular agents. J. Mol. Model., 2007, 13(1), 99-109.
[http://dx.doi.org/10.1007/s00894-006-0124-0] [PMID: 16858589];
(b) Panda, G.; Parai, M.K.; Das, S.K. Shagufta; Sinha, M.; Chaturvedi, V.; Srivastava, A.K.; Manju, Y.S.; Gaikwad, A.N.; Sinha, S. Effect of substituents on diarylmethanes for antitubercular activity. Eur. J. Med. Chem., 2007, 42(3), 410-419.
[http://dx.doi.org/10.1016/j.ejmech.2006.09.020] [PMID: 17112639]
[4]
Srivastava, N. Sangita; Ray, S.; Singh, M.M.; Dwivedi, A.; Kumar, A. Diaryl naphthyl methanes a novel class of anti-implantation agents. Bioorg. Med. Chem., 2004, 12(5), 1011-1021.
[http://dx.doi.org/10.1016/j.bmc.2003.12.015] [PMID: 14980614]
[5]
Al-Qawasmeh, R.A.; Lee, Y.; Cao, M.Y.; Gu, X.; Vassilakos, A.; Wright, J.A.; Young, A. Triaryl methane derivatives as antiproliferative agents. Bioorg. Med. Chem. Lett., 2004, 14(2), 347-350.
[http://dx.doi.org/10.1016/j.bmcl.2003.11.004] [PMID: 14698156]
[6]
(a) Terrier, M.; Boubaker, T.; Xiao, L.; Farrell, P.G. Steric effects on the intrinsic reactivity of nitrotriphenylmethanes. J. Org. Chem., 1992, 57(14), 3924-3929.
[http://dx.doi.org/10.1021/jo00040a037];
(b) Muthyala, R.; Katritzky, A.R.; Lan, X. A synthetic study on the preparation of triarylmethanes. Dyes Pigments, 1994, 25(4), 303-324.
[http://dx.doi.org/10.1016/0143-7208(94)87017-9]
[7]
Recanatini, M.; Cavalli, A.; Valenti, P. Nonsteroidal aromatase inhibitors: Recent advances. Med. Res. Rev., 2002, 22(3), 282-304.
[http://dx.doi.org/10.1002/med.10010] [PMID: 11933021]
[8]
Bhatnagar, A.S.; Häusler, A.; Schieweck, K.; Lang, M.; Bowman, R. Highly selective inhibition of estrogen biosynthesis by CGS 20267, a new non-steroidal aromatase inhibitor. J. Steroid Biochem. Mol. Biol., 1990, 37(6), 1021-1027.
[http://dx.doi.org/10.1016/0960-0760(90)90460-3] [PMID: 2149502]
[9]
Baker, L.A.; Sun, L.; Crooks, R.M. Synthesis and Catalytic Properties of Imidazole-Functionalized Poly(propylene imine). Dendrimers. Bull. Korean Chem. Soc., 2002, 23(5), 647-654.
[http://dx.doi.org/10.5012/bkcs.2002.23.5.647]
[10]
Köster, H.; Beck, S.; Coull, J.M.; Dunne, T.; Gildea, B.D.; Kissinger, C.; O’Keeffe, T. Oligonucleotide synthesis and multiplex DNA sequencing using chemiluminescent detection. Nucleic Acids Symp. Ser., 1991, 24(24), 318-321.
[PMID: 1841371]
[11]
(a) Ramage, R.; Wahl, F.O. 4-(17-tetrabenzo [a,c,g,i] fluorenylmethyl)-41′,4″-Dimethoxytrityl Chloride: A hydrophobic 5′-protecting group for the separation of synthetic oligonucleotides. Tetrahedron Lett., 1993, 34(44), 7133-7136.
[http://dx.doi.org/10.1016/S0040-4039(00)61618-0];
(b) Letsinger, R.L.; Finnan, J.L. Selective deprotection by reductive cleavage with radical anions. J. Am. Chem. Soc., 1975, 97(24), 7197-7198.
[http://dx.doi.org/10.1021/ja00857a058]
[12]
Shchepinov, M.S.; Chalk, R.; Southern, E.M. Trityl tags for encoding in combinatorial synthesis. Tetrahedron, 2000, 56(17), 2713-2724.
[http://dx.doi.org/10.1016/S0040-4020(00)00223-4]
[13]
(a) Breslow, R.; Kaplan, L.; LaFollette, D. Carbonium ions with multiple neighboring groups. II. Physical studies. J. Am. Chem. Soc., 1968, 90(15), 4056-4064.
[http://dx.doi.org/10.1021/ja01017a024];
(b) Fisher, E.F.; Caruthers, M.H. Color coded triarylmethyl protecting groups useful for deoxypolynucleotide synthesis. Nucleic Acids Res., 1983, 11(5), 1589-1599.
[http://dx.doi.org/10.1093/nar/11.5.1589] [PMID: 6828388];
(c) Fourrey, J.L.; Varenne, J.; Blonski, C.; Dousset, P.; Shire, D. 1,1-Bis-(4-ethoxyphenyl)-1′-pyrenyl ethyl (bmpm): A new fluorescent 5′ protecting group for the purification of unmodified and modified oligonucleotides. Tetrahedron Lett., 1987, 28(43), 5157-5160.
[http://dx.doi.org/10.1016/S0040-4039(00)95616-8];
(d) Meier, H.; Kim, S. Methylium Ions with OPV Chains − New NIR Dyes. Eur. J. Org. Chem., 2001, 2001(6), 1163-1167.
[http://dx.doi.org/10.1002/1099-0690(200103)2001:6<1163:AID-EJOC1163>3.0.CO;2-K]
[14]
Talele, T.T. Opportunities for Tapping into Three-Dimensional Chemical Space through a Quaternary Carbon. J. Med. Chem., 2020, 63(22), 13291-13315.
[http://dx.doi.org/10.1021/acs.jmedchem.0c00829] [PMID: 32805118]
[16]
O’Neill. Tackling drug-resistant infections globally: final report and recommendations., 2016. Available from: https://amr-review.org/sites/default/files/160518_Final% 20paper_with%20cover.pdf
[17]
WHO. WHO publishes list of bacteria for which new antibiotics are urgently needed., Available from: https://www.who.int/news/item/27-02-2017-who-publishes-list-of-bacteria-for-which-new-antibiotics-are-urgently-needed
[18]
Taylor, B.L.H.; Harris, M.R.; Jarvo, E.R. Synthesis of enantioenriched triarylmethanes by stereospecific cross-coupling reactions. Angew. Chem. Int. Ed., 2012, 51(31), 7790-7793.
[http://dx.doi.org/10.1002/anie.201202527]
[19]
Matthew, S.C.; Glasspoole, B.W.; Eisenberger, P.; Crudden, C.M. Synthesis of enantiomerically enriched triarylmethanes by enantiospecific Suzuki-Miyaura cross-coupling reactions. J. Am. Chem. Soc., 2014, 136(16), 5828-5831.
[http://dx.doi.org/10.1021/ja412159g] [PMID: 24684649]
[20]
Tsuchida, K.; Senda, Y.; Nakajima, K.; Nishibayashi, Y. Construction of chiral tri- and tetra-arylmethanes bearing quaternary carbon centers: Copper-catalyzed enantioselective propargylation of indoles with propargylic esters. Angew. Chem. Int. Ed., 2016, 55(33), 9728-9732.
[http://dx.doi.org/10.1002/anie.201604182]
[21]
Zhang, S.; Kim, B.S.; Wu, C.; Mao, J.; Walsh, P.J. Palladium-catalysed synthesis of triaryl(heteroaryl)methanes. Nat. Commun., 2017, 8(1), 14641.
[http://dx.doi.org/10.1038/ncomms14641] [PMID: 28290445]
[22]
Saha, S.; Alamsetti, S.K.; Schneider, C. Chiral Brønsted acid-catalyzed Friedel-Crafts alkylation of electron-rich arenes with in situ-generated ortho-quinone methides: Highly enantioselective synthesis of diarylindolylmethanes and triarylmethanes. Chem. Commun. (Camb.), 2015, 51(8), 1461-1464.
[http://dx.doi.org/10.1039/C4CC08559K] [PMID: 25493449]
[23]
Ardea, P.; Anand, R.V. Expedient access to unsymmetrical triarylmethanes through N-heterocyclic carbene catalysed 1,6-conjugate addition of 2-naphthols to para-quinone methides. RSC Advances, 2016, 6(81), 77111-77115.
[http://dx.doi.org/10.1039/C6RA11116E]
[24]
Nambo, M.; Yim, J.; Fowler, K.; Crudden, C. Synthesis of tetraarylmethanes by the triflic acid-promoted formal cross-dehydrogenative coupling of triarylmethanes with arenes. Synlett, 2017, 28(20), 2936-2940.
[http://dx.doi.org/10.1055/s-0036-1588563]
[25]
Roy, D.; Panda, G. A dehydrative arylation and thiolation of tertiary alcohols catalyzed by in situ generated triflic acid - Viable protocol for CeC and CeS bond formation. Tetrahedron, 2018, 74(43), 6270-6277.
[http://dx.doi.org/10.1016/j.tet.2018.09.009]
[26]
Sabacky, M.J.; Johnson, S.M.; Martin, J.C.; Paul, I.C. Steric effects in ortho-substituted triarylmethanes. J. Am. Chem. Soc., 1969, 91(26), 7542-7544.
[http://dx.doi.org/10.1021/ja01054a073]
[27]
Zheng, C.J.; Kim, C.J.; Bae, K.S.; Kim, Y.H.; Kim, W.G. Bionectins A-C, epidithiodioxopiperazines with anti-MRSA activity, from Bionectra byssicola F120. J. Nat. Prod., 2006, 69(12), 1816-1819.
[http://dx.doi.org/10.1021/np060348t] [PMID: 17190469]
[28]
Yang, Y.H.; Yang, D.S.; Li, G.H.; Pu, X.J.; Mo, M.H.; Zhao, P.J. Antibacterial diketopiperazines from an endophytic fungus Bionectria sp. Y1085. J. Antibiot. (Tokyo), 2019, 72(10), 752-758.
[http://dx.doi.org/10.1038/s41429-019-0209-5] [PMID: 31324892]
[29]
Dong, J.Y.; He, H.P.; Shen, Y.M.; Zhang, K.Q. Nematicidal epipolysulfanyldioxopiperazines from Gliocladium roseum. J. Nat. Prod., 2005, 68(10), 1510-1513.
[http://dx.doi.org/10.1021/np0502241] [PMID: 16252916]
[30]
Arora, P.; Wani, Z.A.; Nalli, Y.; Ali, A.; Riyaz-Ul-Hassan, S. Antimicrobial potential of thiodiketopiperazine derivatives produced by Phoma sp., an endophyte of Glycyrrhizaglabra Linn. Microb. Ecol., 2016, 72(4), 802-812.
[http://dx.doi.org/10.1007/s00248-016-0805-x] [PMID: 27357141]
[31]
Zhao, P.; Xue, Y.; Li, J.; Li, X.; Zu, X.; Zhao, Z.; Quan, C.; Gao, W.; Feng, S. Non-lipopeptide fungi-derived peptide antibiotics developed since 2000. Biotechnol. Lett., 2019, 41(6-7), 651-673.
[http://dx.doi.org/10.1007/s10529-019-02677-3] [PMID: 31020454]
[32]
Song, H.C.; Shen, W.Y.; Dong, J.Y. Nematicidal metabolites from Gliocladium roseum YMF1.00133. Appl. Biochem. Microbiol., 2016, 52(3), 324-330.
[http://dx.doi.org/10.1134/S0003683816030169]
[33]
Atun, S.; Aznam, N.; Arianingrum, R.; Takaya, Y.; Masatake, N. Resveratrol derivatives from stem bark of hopea and their biological activity test. J. Physiol. Sci., 2008, 19(2), 7-21.
[34]
Dai, J.R.; Hallock, Y.F.; Cardellina, J.H., II; Boyd, M.R. HIV-inhibitory and cytotoxic oligostilbenes from the leaves of Hopea malibato. J. Nat. Prod., 1998, 61(3), 351-353.
[http://dx.doi.org/10.1021/np970519h] [PMID: 9544565]
[35]
Sahidin, I.; Waahyuni, W.; Malaka, M.H.; Imran, I. Antibacterial and cytotoxic potencies of stilbene oligomers from stem barks of baoti (Dryobalanops lanceolata) growing in Kendari, Indonesia. Asian J. Pharm. Clin. Res., 2017, 10(8), 139-143.
[36]
Alsterholm, M.; Karami, N.; Faergemann, J. Antimicrobial activity of topical skin pharmaceuticals - an in vitro study. Acta Derm. Venereol., 2010, 90(3), 239-245.
[http://dx.doi.org/10.2340/00015555-0840] [PMID: 20526539]
[37]
Frosini, S-M.; Bond, R. Activity in vitro of clotrimazole against canine methicillin-resistant and susceptible Staphylococcus pseudintermedius. Antibiotics (Basel), 2017, 6(4), 29.
[http://dx.doi.org/10.3390/antibiotics6040029]
[38]
Schaller, K. In vitro antibacterial activity of different clotrimazole formulations. Chemotherapy, 1982, 28(Suppl. 1), 32-36.
[http://dx.doi.org/10.1159/000238149] [PMID: 7160238]
[39]
Owen, M.K.; Clenney, T.L. Management of vaginitis. Am. Fam. Phys., 2004, 70(11), 2125-2132.
[PMID: 15606061]
[40]
duBouchet, L.; Spence, M.R.; Rein, M.F.; Danzig, M.R.; McCormack, W.M. Multicenter comparison of clotrimazole vaginal tablets, oral metronidazole, and vaginal suppositories containing sulfanilamide, aminacrine hydrochloride, and allantoin in the treatment of symptomatic trichomoniasis. Sex. Transm. Dis., 1997, 24(3), 156-160.
[http://dx.doi.org/10.1097/00007435-199703000-00006] [PMID: 9132982]
[41]
(a) Singh, S.; Jain, S.; Muthu, M.S.; Tiwari, S.; Tilak, R. Preparation and evaluation of buccal bioadhesive films containing clotrimazole. AAPS PharmSciTech, 2008, 9(2), 660-667.
[http://dx.doi.org/10.1208/s12249-008-9083-3] [PMID: 18500560];
(b) Tonglairoum, P.; Ngawhirunpat, T.; Rojanarata, T.; Kaomongkolgit, R.; Opanasopit, P. Fast-acting clotrimazole composited PVP/HPβCD nanofibers for oral candidiasis application. Pharm. Res., 2014, 31(8), 1893-1906.
[http://dx.doi.org/10.1007/s11095-013-1291-1] [PMID: 24554117];
(c) Bilensoy, E.; Rouf, M.A.; Vural, I.; Hincal, A.A. Thermosensitive vaginal gel formulation for the controlled release of clotrimazole via complexation to beta-cyclodextrin. J. Control. Release, 2006, 116(2), e107-e109.
[http://dx.doi.org/10.1016/j.jconrel.2006.09.075] [PMID: 17718942];
(d) Vanić, Ž.; Škalko-Basnet, N. Nanopharmaceuticals for improved topical vaginal therapy: Can they deliver? Eur. J. Pharm. Sci., 2013, 50(1), 29-41.
[http://dx.doi.org/10.1016/j.ejps.2013.04.035] [PMID: 23684936];
(e) Santos, S.S.; Lorenzoni, A.; Pegoraro, N.S.; Denardi, L.B.; Alves, S.H.; Schaffazick, S.R.; Cruz, L. Formulation and in vitro evaluation of coconut oil-core cationic nanocapsules intended for vaginal delivery of clotrimazole. Colloids Surf. B Biointerfaces, 2014, 116, 270-276.
[http://dx.doi.org/10.1016/j.colsurfb.2014.01.011] [PMID: 24503350]
[42]
García Rafanell, J.; Dronda, M.A.; Merlos, M.; Forn, J.; Torres, J.M.; Zapatero, M.I.; Basi, N. In vitro and in vivo studies with flutrimazole, a new imidazole derivative with antifungal activity. Arzneimittelforschung, 1992, 42(6), 836-840.
[PMID: 1418042]
[43]
Alomar, A.; Videla, S.; Delgadillo, J.; Gich, I.; Izquierdo, I.; Forn, J. Flutrimazole 1% dermal cream in the treatment of dermatomycoses: A multicentre, double-blind, randomized, comparative clinical trial with bifonazole 1% cream. Efficacy of flutrimazole 1% dermal cream in dermatomycoses. Dermatology, 1995, 190(4), 295-300.
[http://dx.doi.org/10.1159/000246720] [PMID: 7655109]
[44]
Haberfeld, H., Ed.; Austria-Codex; Österreichischer Apothekerverlag. Canesten Bifonazol-Crème: Vienna, 2015.
[45]
Berg, D.; Regel, E.; Harenberg, H.E.; Plempel, M. Bifonazole and clotrimazole. Their mode of action and the possible reason for the fungicidal behaviour of bifonazole. Arzneimittelforschung, 1984, 34(2), 139-146.
[PMID: 6372801]
[46]
Lackner, T.E.; Clissold, S.P. Bifonazole, A review of its antimicrobial activity and therapeutic use in superficial mycoses. Drugs, 1989, 38(2), 204-225.
[http://dx.doi.org/10.2165/00003495-198938020-00004] [PMID: 2670516]
[47]
El Hage, S.; Lajoie, B.; Feuillolay, C.; Roques, C.; Baziard, G. Synthesis, antibacterial and antifungal activities of bifonazole derivatives. Arch. Pharm. (Weinheim), 2011, 344(6), 402-410.
[http://dx.doi.org/10.1002/ardp.201000304] [PMID: 21433056]
[48]
de Almeida, R.F.M.; Santos, F.C.; Marycz, K.; Alicka, M.; Krasowska, A.; Suchodolski, J.; Panek, J.J.; Jezierska, A.; Starosta, R. New diphenylphosphane derivatives of ketoconazole are promising antifungal agents. Sci. Rep., 2019, 9(1), 16214.
[http://dx.doi.org/10.1038/s41598-019-52525-7] [PMID: 31700024]
[49]
Pirson, P.; Leclef, B.; Trouet, A. Activity of ketoconazole derivatives against Leishmania mexicana amazonensis within mouse peritoneal macrophages. Ann. Trop. Med. Parasitol., 1990, 84(2), 133-139.
[http://dx.doi.org/10.1080/00034983.1990.11812446] [PMID: 2383093]
[50]
Bedaquiline, Fumarate The American Society of Health-System Pharmacists. Archived from the original on 20 December 2016. Retrieved 8 December, 2016.
[51]
Ahmad, N.; Ahuja, S.D.; Akkerman, O.W.; Alffenaar, J.C.; Anderson, L.F.; Baghaei, P.; Bang, D.; Barry, P.M.; Bastos, M.L.; Behera, D.; Benedetti, A.; Bisson, G.P.; Boeree, M.J.; Bonnet, M.; Brode, S.K.; Brust, J.C.M.; Cai, Y.; Caumes, E.; Cegielski, J.P.; Centis, R.; Chan, P.C.; Chan, E.D.; Chang, K.C.; Charles, M.; Cirule, A.; Dalcolmo, M.P.; D’Ambrosio, L.; de Vries, G.; Dheda, K.; Esmail, A.; Flood, J.; Fox, G.J.; Fréchet-Jachym, M.; Fregona, G.; Gayoso, R.; Gegia, M.; Gler, M.T.; Gu, S.; Guglielmetti, L.; Holtz, T.H.; Hughes, J.; Isaakidis, P.; Jarlsberg, L.; Kempker, R.R.; Keshavjee, S.; Khan, F.A.; Kipiani, M.; Koenig, S.P.; Koh, W.J.; Kritski, A.; Kuksa, L.; Kvasnovsky, C.L.; Kwak, N.; Lan, Z.; Lange, C.; Laniado-Laborín, R.; Lee, M.; Leimane, V.; Leung, C.C.; Leung, E.C.; Li, P.Z.; Lowenthal, P.; Maciel, E.L.; Marks, S.M.; Mase, S.; Mbuagbaw, L.; Migliori, G.B.; Milanov, V.; Miller, A.C.; Mitnick, C.D.; Modongo, C.; Mohr, E.; Monedero, I.; Nahid, P.; Ndjeka, N.; O’Donnell, M.R.; Padayatchi, N.; Palmero, D.; Pape, J.W.; Podewils, L.J.; Reynolds, I.; Riekstina, V.; Robert, J.; Rodriguez, M.; Seaworth, B.; Seung, K.J.; Schnippel, K.; Shim, T.S.; Singla, R.; Smith, S.E.; Sotgiu, G.; Sukhbaatar, G.; Tabarsi, P.; Tiberi, S.; Trajman, A.; Trieu, L.; Udwadia, Z.F.; van der Werf, T.S.; Veziris, N.; Viiklepp, P.; Vilbrun, S.C.; Walsh, K.; Westenhouse, J.; Yew, W.W.; Yim, J.J.; Zetola, N.M.; Zignol, M.; Menzies, D. Treatment correlates of successful outcomes in pulmonary multidrug-resistant tuberculosis: An individual patient data meta-analysis. Lancet, 2018, 392(10150), 821-834.
[http://dx.doi.org/10.1016/S0140-6736(18)31644-1] [PMID: 30215381]
[52]
WHO. Rapid Communication: Key changes to treatment of multidrug- and rifampicin-resistant tuberculosis (MDR/RR-TB). 2022. Available from: https://www.who.int/publications/i/item/WHO-UCN-TB-2022-2
[53]
Deoghare, S. Bedaquiline: A new drug approved for treatment of multidrug-resistant tuberculosis. Indian J. Pharmacol., 2013, 45(5), 536-537.
[http://dx.doi.org/10.4103/0253-7613.117765] [PMID: 24130398]
[54]
Guo, H.; Courbon, G.M.; Bueler, S.A.; Mai, J.; Liu, J.; Rubinstein, J.L. Structure of mycobacterial ATP synthase bound to the tuberculosis drug bedaquiline. Nature, 2021, 589(7840), 143-147.
[http://dx.doi.org/10.1038/s41586-020-3004-3]
[55]
Andries, K.; Verhasselt, P.; Guillemont, J.; Göhlmann, H.W.H.; Neefs, J.M.; Winkler, H.; Van Gestel, J.; Timmerman, P.; Zhu, M.; Lee, E.; Williams, P.; de Chaffoy, D.; Huitric, E.; Hoffner, S.; Cambau, E.; Truffot-Pernot, C.; Lounis, N.; Jarlier, V. A diarylquinoline drug active on the ATP synthase of Mycobacterium tuberculosis. Science, 2005, 307(5707), 223-227.
[http://dx.doi.org/10.1126/science.1106753] [PMID: 15591164]
[56]
Guillemont, J.; Meyer, C.; Poncelet, A.; Bourdrez, X.; Andries, K. Diarylquinolines, synthesis pathways and quantitative structure--activity relationship studies leading to the discovery of TMC207. Future Med. Chem., 2011, 3(11), 1345-1360.
[http://dx.doi.org/10.4155/fmc.11.79] [PMID: 21879841]
[57]
van Heeswijk, R.P.G.; Dannemann, B.; Hoetelmans, R.M.W. Bedaquiline: A review of human pharmacokinetics and drug–drug interactions. J. Antimicrob. Chemother., 2014, 69(9), 2310-2318.
[http://dx.doi.org/10.1093/jac/dku171]
[58]
Pearlstein, R.A.; Vaz, R.J.; Kang, J.; Chen, X.L.; Preobrazhenskaya, M.; Shchekotikhin, A.E.; Korolev, A.M.; Lysenkova, L.N.; Miroshnikova, O.V.; Hendrix, J.; Rampe, D. Characterization of HERG potassium channel inhibition using CoMSiA 3D QSAR and homology modeling approaches. Bioorg. Med. Chem. Lett., 2003, 13(10), 1829-1835.
[http://dx.doi.org/10.1016/S0960-894X(03)00196-3] [PMID: 12729675]
[59]
Mycobacterial inhibitors. US Patent US,7498,343,B2 2003.
[60]
Gemma, S.; Campiani, G.; Butini, S.; Kukreja, G.; Joshi, B.P.; Persico, M.; Catalanotti, B.; Novellino, E.; Fattorusso, E.; Nacci, V.; Savini, L.; Taramelli, D.; Basilico, N.; Morace, G.; Yardley, V.; Fattorusso, C. Design and synthesis of potent antimalarial agents based on clotrimazole scaffold: Exploring an innovative pharmacophore. J. Med. Chem., 2007, 50(4), 595-598.
[http://dx.doi.org/10.1021/jm061429p] [PMID: 17263523]
[61]
Sandra, G.; Giuseppe, C.; Stefania, B.; Gagan, K.; Salvatore, S.C.; Bhupendra, P.J.; Marco, P. Clotrimazole scaffold as an innovative pharmacophore towards potent antimalarial agents: Design, synthesis, and biological and structure–activity relationship studies. J. Med. Chem., 2008, 51, 1278-1294.
[62]
(a) Giordanetto, F.; Karlsson, O.; Lindberg, J.; Larsson, L.O.; Linusson, A.; Evertsson, E.; Morgan, D.G.; Inghardt, T. Discovery of cyclopentane- and cyclohexane-trans-1,3-diamines as potent melanin-concentrating hormone receptor 1 antagonists. Bioorg. Med. Chem. Lett., 2007, 17(15), 4232-4241.
[http://dx.doi.org/10.1016/j.bmcl.2007.05.034] [PMID: 17532215];
(b) Kumar, P.R.; Raju, S.; Goud, P.S.; Sailaja, M.; Sarma, M.R.; Reddy, G.O.; Kumar, M.P.; Reddy, V.V.; Suresh, T.; Hegde, P. Synthesis and biological evaluation of thiophene [3,2-b] pyrrole derivatives as potential anti-inflammatory agents. Bioorg. Med. Chem., 2004, 12(5), 1221-1230.
[http://dx.doi.org/10.1016/j.bmc.2003.11.003] [PMID: 14980634];
(c) Bonini, C.; Chiummiento, L.; Bonis, M.D.; Funicello, M.; Lupattelli, P.; Suanno, G.; Berti, F.; Campaner, P. Synthesis, biological activity and modelling studies of two novel anti HIV PR inhibitors with a thiophene containing hydroxyethylamino core. Tetrahedron, 2005, 61(27), 6580-6589.
[http://dx.doi.org/10.1016/j.tet.2005.04.048];
(d) Brault, L.; Migianu, E.; Néguesque, A.; Battaglia, E.; Bagrel, D.; Kirsch, G. New thiophene analogues of kenpaullone: Synthesis and biological evaluation in breast cancer cells. Eur. J. Med. Chem., 2005, 40(8), 757-763.
[http://dx.doi.org/10.1016/j.ejmech.2005.02.010] [PMID: 16122578]
[63]
Parai, M.K.; Panda, G.; Chaturvedi, V.; Manju, Y.K.; Sinha, S. Thiophene containing triarylmethanes as antitubercular agents. Bioorg. Med. Chem. Lett., 2008, 18(1), 289-292.
[http://dx.doi.org/10.1016/j.bmcl.2007.10.083] [PMID: 17997304]
[64]
Kashyap, V.K.; Gupta, R.K.; Shrivastava, R.; Srivastava, B.S.; Srivastava, R.; Parai, M.K.; Singh, P.; Bera, S.; Panda, G. In vivo activity of thiophene-containing trisubstituted methanes against acute and persistent infection of non-tubercular Mycobacterium fortuitum in a murine infection model. J. Antimicrob. Chemother., 2012, 67(5), 1188-1197.
[http://dx.doi.org/10.1093/jac/dkr592] [PMID: 22311937]
[65]
Singh, P.; Manna, S.K.; Jana, A.K.; Saha, T.; Mishra, P.; Bera, S.; Parai, M.K.; Kumar, M.S.L.; Mondal, S.; Trivedi, P.; Chaturvedi, V.; Singh, S.; Sinha, S.; Panda, G. Thiophene containing trisubstituted methanes [TRSMs] as identified lead against Mycobacterium tuberculosis. Eur. J. Med. Chem., 2015, 95, 357-368.
[http://dx.doi.org/10.1016/j.ejmech.2015.03.036] [PMID: 25828928]
[66]
Singh, P.; Kumar, S.K.; Maurya, V.K.; Mehta, B.K.; Ahmad, H.; Dwivedi, A.K.; Chaturvedi, V.; Thakur, T.S.; Sinha, S. S-enantiomer of the antitubercular compound S006-830 complements activity of frontline TB drugs and targets biogenesis of Mycobacterium tuberculosis cell envelope. ACS Omega, 2017, 2(11), 8453-8465.
[http://dx.doi.org/10.1021/acsomega.7b01281] [PMID: 30023583]
[67]
Lepesheva, G.I.; Hargrove, T.Y.; Rachakonda, G.; Wawrzak, Z.; Pomel, S.; Cojean, S.; Nde, P.N.; Nes, W.D.; Locuson, C.W.; Calcutt, M.W.; Waterman, M.R.; Daniels, J.S.; Loiseau, P.M.; Villalta, F. VFV as a new effective CYP51 structure-derived drug candidate for Chagas disease and visceral leishmaniasis. J. Infect. Dis., 2015, 212(9), 1439-1448.
[http://dx.doi.org/10.1093/infdis/jiv228] [PMID: 25883390]
[68]
(a) Kulkarni, M.M.; Reddy, N.; Gude, T.; McGwire, B.S. Voriconazole suppresses the growth of Leishmania species in vitro. Parasitol. Res., 2013, 112(5), 2095-2099.
[http://dx.doi.org/10.1007/s00436-013-3274-x] [PMID: 23392902];
(b) Docampo, R.; Moreno, S.N.J.; Turrens, J.F.; Katzin, A.M.; Gonzalez-Cappa, S.M.; Stoppani, A.O.M. Biochemical and ultrastructural alterations produced by miconazole and econazole in Trypanosoma cruzi. Mol. Biochem. Parasitol., 1981, 3(3), 169-180.
[http://dx.doi.org/10.1016/0166-6851(81)90047-5] [PMID: 6265775]
[69]
Lepesheva, G.I.; Friggeri, L.; Waterman, M.R. CYP51 as drug targets for fungi and protozoan parasites: Past, present and future. Parasitology, 2018, 145(14), 1820-1836.
[http://dx.doi.org/10.1017/S0031182018000562] [PMID: 29642960]
[70]
Saccoliti, F.; Madia, V.N.; Tudino, V.; De Leo, A.; Pescatori, L.; Messore, A.; De Vita, D.; Scipione, L.; Brun, R.; Kaiser, M.; Mäser, P.; Calvet, C.M.; Jennings, G.K.; Podust, L.M.; Pepe, G.; Cirilli, R.; Faggi, C.; Di Marco, A.; Battista, M.R.; Summa, V.; Costi, R.; Di Santo, R. Design, synthesis, and biological evaluation of new 1-(Aryl-1 H-pyrrolyl)(phenyl)methyl-1 H-imidazole derivatives as antiprotozoal agents. J. Med. Chem., 2019, 62(3), 1330-1347.
[http://dx.doi.org/10.1021/acs.jmedchem.8b01464] [PMID: 30615444]
[71]
Kumar, S.; Das, S.K.; Dey, S.; Maity, P.; Guha, M.; Choubey, V.; Panda, G.; Bandyopadhyay, U. Antiplasmodial activity of [(aryl)arylsulfanylmethyl]Pyridine. Antimicrob. Agents Chemother., 2008, 52(2), 705-715.
[http://dx.doi.org/10.1128/AAC.00898-07] [PMID: 18025110]
[72]
Goyal, M.; Singh, P.; Alam, A.; Das, S.K.; Iqbal, M.S.; Dey, S.; Bindu, S.; Pal, C.; Das, S.K.; Panda, G.; Bandyopadhyay, U. Aryl aryl methyl thio arenes prevent multidrug-resistant malaria in mouse by promoting oxidative stress in parasites. Free Radic. Biol. Med., 2012, 53(1), 129-142.
[http://dx.doi.org/10.1016/j.freeradbiomed.2012.04.028] [PMID: 22588006]
[73]
Chong, C.R.; Sullivan, D.J., Jr New uses for old drugs. Nature, 2007, 448(7154), 645-646.
[http://dx.doi.org/10.1038/448645a] [PMID: 17687303]
[74]
Debnath, A.; Parsonage, D.; Andrade, R.M.; He, C.; Cobo, E.R.; Hirata, K.; Chen, S.; García-Rivera, G.; Orozco, E.; Martínez, M.B.; Gunatilleke, S.S.; Barrios, A.M.; Arkin, M.R.; Poole, L.B.; McKerrow, J.H.; Reed, S.L. A high-throughput drug screen for Entamoeba histolytica identifies a new lead and target. Nat. Med., 2012, 18(6), 956-960.
[http://dx.doi.org/10.1038/nm.2758] [PMID: 22610278]
[75]
Lumb, A.B.; Slinger, P. Hypoxic pulmonary vasoconstriction: Physiology and anesthetic implications. Anesthesiology, 2015, 122(4), 932-946.
[http://dx.doi.org/10.1097/ALN.0000000000000569] [PMID: 25587641]
[76]
Papazian, L.; Roch, A.; Bregeon, F.; Thirion, X.; Gaillat, F.; Saux, P.; Fulachier, V.; Jammes, Y.; Auffray, J.P. Inhaled nitric oxide and vasoconstrictors in acute respiratory distress syndrome. Am. J. Respir. Crit. Care Med., 1999, 160(2), 473-479.
[http://dx.doi.org/10.1164/ajrccm.160.2.9809110] [PMID: 10430716]
[77]
Barthélémy, R.; Blot, P.L.; Tiepolo, A.; Le Gall, A.; Mayeur, C.; Gaugain, S.; Morisson, L.; Gayat, E.; Mebazaa, A.; Chousterman, B.G. Efficacy of almitrine in the treatment of hypoxemia in Sars-Cov-2 acute respiratory distress syndrome. Chest, 2020, 158(5), 2003-2006.
[http://dx.doi.org/10.1016/j.chest.2020.05.573] [PMID: 32512007]
[78]
Bendjelid, K.; Giraud, R.; Von Düring, S. Treating hypoxemic COVID-19 “ARDS” patients with almitrine: The earlier the better? Anaesth. Crit. Care Pain Med., 2020, 39(4), 451-452.
[http://dx.doi.org/10.1016/j.accpm.2020.07.003] [PMID: 32653550]
[79]
Practice Update. Almitrine infusion in SARS-CoV-2–induced acute respiratory distress syndrome., Available from: https://www.practiceupdate.com/content/almitrine-infusion-in-sars-cov-2-induced-acute-respiratorydistress%20syndrome/108995
[80]
Reynolds, I.J.; Miller, R.J. Ifenprodil is a novel type of N-methyl-D-aspartate receptor antagonist: Interaction with polyamines. Mol. Pharmacol., 1989, 36(5), 758-765.
[PMID: 2555674]
[81]
Korinek, M.; Kapras, V.; Vyklicky, V.; Adamusova, E.; Borovska, J.; Vales, K.; Stuchlik, A.; Horak, M.; Chodounska, H.; Vyklicky, L. Jr Neurosteroid modulation of N-methyl-d-aspartate receptors: Molecular mechanism and behavioral effects. Steroids, 2011, 76(13), 1409-1418.
[http://dx.doi.org/10.1016/j.steroids.2011.09.002]
[82]
Summary of opinion for Olumiant. European Medicines Agency (EMA) 2016.
[83]
NIH. A Study of Baricitinib (LY3009104) in Participants With COVID-19 (COV-BARRIER). Available from: https://clinicaltrials.gov/ct2/show/NCT04421027?term=baricitinib&cond=covid-19&draw=2
[84]
Andre, C. for the ACTT-2 study group members, Baricitinib plus Remdesivir for Hospitalized Adults with Covid-19. N. Engl. J. Med., 2021, 384(9), 795-807.
[http://dx.doi.org/10.1056/NEJMoa2031994]
[85]
FDA. Coronavirus. (COVID-19) update: FDA authorizes drug combination for treatment of COVID-19; , 2020. Available from: https://www.fda.gov/news-events/press-announcements/coronavirus-covid-19-update-fda-authorizes-drug-combination-treatment-covid-19
[86]
Wang, M.; Cao, R.; Zhang, L.; Yang, X.; Liu, J.; Xu, M.; Shi, Z.; Hu, Z.; Zhong, W.; Xiao, G. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res., 2020, 30(3), 269-271.
[http://dx.doi.org/10.1038/s41422-020-0282-0]
[87]
Yan, V.C.; Muller, F.L. Gilead should ditch remdesivir and focus on its simpler and safer ancestor; , 2020. Available from: https://www.statnews.com/2020/05/14/gilead-should-ditch-remdesivir-and-focus-on-its-simpler-safer-ancestor/
[88]
FDA. FDA Approves First Treatment for COVID-19, 2020.
[89]
Food and Drug Administration. Remdesivir (Veklury) [package insert], 2020. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2020/214787Orig1s000lbl.pdf
[90]
Goldman, J.D.; Lye, D.C.B.; Hui, D.S.; Marks, K.M.; Bruno, R.; Montejano, R.; Spinner, C.D.; Galli, M.; Ahn, M-Y.; Nahass, R.G.; Chen, Y-S.; SenGupta, D.; Hyland, R.H.; Osinusi, A.O.; Cao, H.; Blair, C.; Wei, X.; Gaggar, A.; Brainard, D.M.; Towner, W.J.; Muñoz, J.; Mullane, K.M.; Marty, F.M.; Tashima, K.T.; Diaz, G.; Subramanian, A. GS-US-540-5773 Investigators. Remdesivir for 5 or 10 days in patients with severe Covid-19. N. Engl. J. Med., 2020, 383(19), 1827-1837.
[http://dx.doi.org/10.1056/NEJMoa2015301]
[91]
Spinner, C.D.; Gottlieb, R.L.; Criner, G.J.; Arribas López, J.R.; Cattelan, A.M.; Soriano Viladomiu, A.; Ogbuagu, O.; Malhotra, P.; Mullane, K.M.; Castagna, A.; Chai, L.Y.A.; Roestenberg, M.; Tsang, O.T.Y.; Bernasconi, E.; Le Turnier, P.; Chang, S-C.; SenGupta, D.; Hyland, R.H.; Osinusi, A.O.; Cao, H.; Blair, C.; Wang, H.; Gaggar, A.; Brainard, D.M.; McPhail, M.J.; Bhagani, S.; Ahn, M.Y.; Sanyal, A.J.; Huhn, G.; Marty, F.M. Effect of remdesivir vs standard care on clinical status at 11 days in patients with moderate COVID-19: A randomized clinical trial. JAMA, 2020, 324(11), 1048-1057.
[http://dx.doi.org/10.1001/jama.2020.16349]
[92]
Mondal, S.; Verma, A.; Saha, S. Conformationally restricted triarylmethanes: Synthesis, photophysical studies, and applications. Eur. J. Org. Chem., 2019, 5(5), 864-894.
[http://dx.doi.org/10.1002/ejoc.201800971]
[93]
Liang, T.; Neumann, C.N.; Ritter, T. Introduction of fluorine and fluorine-containing functional groups. Angew. Chem. Int. Ed., 2013, 52(32), 8214-8264.
[http://dx.doi.org/10.1002/anie.201206566]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy