Generic placeholder image

Current Bioactive Compounds

Editor-in-Chief

ISSN (Print): 1573-4072
ISSN (Online): 1875-6646

Mini-Review Article

Current Approaches in Healing of Wounds in Diabetes and Diabetic Foot Ulcers

Author(s): Samrat Chauhan, Rishabh Chalotra, Akshay Rathi, Monika Saini, Shweta Deol, Mehak Lard and Sumeet Gupta*

Volume 19, Issue 3, 2023

Published on: 17 October, 2022

Article ID: e230822207903 Pages: 18

DOI: 10.2174/1573407218666220823111344

Open Access Journals Promotions 2
Abstract

Background: Diabetes is a chronic disease affecting more than 8.5 % adult population in the world. Among various issues caused by diabetes, wound healing is a major cause of concern.

Objective: Injuries are most common, and can be caused normally by abrasion, laceration (cuts), injury, etc. But in diabetes, they do not heal so easily and cause problems. It can be due to a compromised immune system, neuropathy, poor circulation, infections etc., which could lead to amputation or even death. Current therapies for the treatment of wound healing in diabetic patients, have side effects of their own, as there is no particular drug for the healing of wounds.

Methods: Numerous surveys in literature were carried out to reveal the obstacles in diabetic wound healing and current approaches to its management with emphasis on alternative therapies. Relevant peer-reviewed research publications were searched through various online bibliographic databases such as ScienceDirect, PubMed, Scopus, Google Scholar, and ResearchGate (all English-language articles).

Results: Repurposed drugs include a class of statin, phenytoin, estrogen, and DPP4 inhibitors. Plants with wound healing activity include Rosmarinus officinalis, Radix Rehmannia, Carica papaya, Aloe vera, Catharanthus roseus, Punica granatum, etc. have been explored in pre-clinical studies. Besides these studies, a lot of other studies, including clinical trials, have been performed for wound healing in diabetes by using different procedures like Honey-dressing, Royal Jelly, Extracorporeal Shock wave therapy, Manuka honey-impregnated dressing, LeucoPatch system, etc.

Conclusion: In this review, an approach was made to study wound healing in diabetes and various options that could be best suited for the treatment of wounds in diabetes.

Keywords: Diabetes, wound healing, clinical trials, diabetic wound healing, current treatments.

Graphical Abstract
[1]
Goboza, M.; Aboua, Y.G.; Meyer, S.; Oguntibeju, O.O. Diabetes mellitus: Economic and health burden, treatment and the therapeutical effects of Hypoxis hemerrocallidea plant. Med. Technol. SA., 2016, 30(2), 39-46.
[2]
Kim, J.E.; Lee, J.H.; Kim, S.H.; Jung, Y. Skin regeneration with self-assembled peptide hydrogels conjugated with substance P in a diabetic rat model. Tissue Eng. Part A, 2018, 24(1-2), 21-33.
[http://dx.doi.org/10.1089/ten.tea.2016.0517] [PMID: 28467735]
[3]
WHO Global Reports on Diabetes; World Health Organization: Geneva, Switzerland, 2018.
[4]
Akash, M.S.H.; Rehman, K.; Chen, S. Role of inflammatory mechanisms in pathogenesis of type 2 diabetes mellitus. J. Cell. Biochem., 2013, 114(3), 525-531.
[http://dx.doi.org/10.1002/jcb.24402] [PMID: 22991242]
[5]
Guo, R.; Liu, B.; Wang, K.; Zhou, S.; Li, W.; Xu, Y. Resveratrol ameliorates diabetic vascular inflammation and macrophage in-filtration in db/db mice by inhibiting the NF-B pathway. Diab. Vasc. Dis. Res., 2014, 11(2), 92-102.
[http://dx.doi.org/10.1177/1479164113520332] [PMID: 24464099]
[6]
Yamamoto, T.; Otake, H.; Hiramatsu, N.; Yamamoto, N.; Taga, A.; Nagai, N. A proteomic approach for understanding the mechanisms of delayed corneal wound healing in diabetic ker-atopathy using diabetic model rat. Int. J. Mol. Sci., 2018, 19(11), 3635.
[http://dx.doi.org/10.3390/ijms19113635] [PMID: 30453691]
[7]
Kneer, K.; Green, M.B.; Meyer, J.; Rich, C.B.; Minns, M.S.; Trinkaus-Randall, V. High fat diet induces pre-type 2 diabetes with regional changes in corneal sensory nerves and altered P2X7 expression and localization. Exp. Eye Res., 2018, 175, 44-55.
[http://dx.doi.org/10.1016/j.exer.2018.06.001] [PMID: 29883639]
[8]
Zhao, X.; Ye, Y.; Zhang, S. The values of the new American Diabetes Association Diagnostic Criteria for screening of pre-diabetes and diabetes in patients undergoing elective coronary angiography. Zhonghua Nei Ke Za Zhi, 2015, 54(4), 302-306.
[PMID: 26268057]
[9]
Alavi, A.; Sibbald, R.G.; Mayer, D.; Goodman, L.; Botros, M.; Armstrong, D.G. Diabetic foot ulcers: Part I. Pathophysiology and prevention. J. Am. Acad. Dermatol., 2014, 70(1), 1.
[10]
Yazdanpanah, L.; Nasiri, M.; Adarvishi, S. Literature review on the management of diabetic foot ulcer. World J. Diabetes, 2015, 6(1), 37-53.
[http://dx.doi.org/10.4239/wjd.v6.i1.37] [PMID: 25685277]
[11]
Mirza, R.E.; Fang, M.M.; Novak, M.L.; Urao, N.; Sui, A.; Ennis, W.J.; Koh, T.J. Macrophage PPARγ and impaired wound healing in type 2 diabetes. J. Pathol., 2015, 236(4), 433-444.
[http://dx.doi.org/10.1002/path.4548] [PMID: 25875529]
[12]
Okonkwo, U.A.; DiPietro, L.A. Diabetes and wound angiogene-sis. Int. J. Mol. Sci., 2017, 18(7), 1419.
[http://dx.doi.org/10.3390/ijms18071419] [PMID: 28671607]
[13]
Weinheimer-Haus, E.M.; Mirza, R.E.; Koh, T.J. Nod-like recep-tor protein-3 inflammasome plays an important role during ear-ly stages of wound healing. PLoS One, 2015, 10(3)e0119106
[http://dx.doi.org/10.1371/journal.pone.0119106] [PMID: 25793779]
[14]
Aya, K.L.; Stern, R. Hyaluronan in wound healing: Rediscover-ing a major player. Wound Repair Regen., 2014, 22(5), 579-593.
[http://dx.doi.org/10.1111/wrr.12214] [PMID: 25039417]
[15]
Gosain, A.; DiPietro, L.A. Aging and wound healing. World J. Surg., 2004, 28(3), 321-326.
[http://dx.doi.org/10.1007/s00268-003-7397-6] [PMID: 14961191]
[16]
Suguna, L.; Singh, S.; Sivakumar, P.; Sampath, P.; Chan-drakasan, G. Influence of Terminalia chebula on dermal wound healing in rats. Phytother. Res., 2002, 16(3), 227-231.
[http://dx.doi.org/10.1002/ptr.827] [PMID: 12164266]
[17]
Anderson, K.; Hamm, R.L. Factors that impair wound healing. J. Am. Coll. Clin. Wound Spec., 2014, 4(4), 84-91.
[http://dx.doi.org/10.1016/j.jccw.2014.03.001] [PMID: 26199879]
[18]
Wang, A.S.; Armstrong, E.J.; Armstrong, A.W. Corticosteroids and wound healing: Clinical considerations in the perioperative period. Am. J. Surg., 2013, 206(3), 410-417.
[http://dx.doi.org/10.1016/j.amjsurg.2012.11.018] [PMID: 23759697]
[19]
Kumar, B.; Vijayakumar, M.; Govindarajan, R.; Pushpangadan, P. Ethnopharmacological approaches to wound healing--exploring medicinal plants of India. J. Ethnopharmacol., 2007, 114(2), 103-113.
[http://dx.doi.org/10.1016/j.jep.2007.08.010] [PMID: 17884316]
[20]
Demianenko, I.A.; Vasilieva, T.V.; Domnina, L.V.; Dugina, V.B.; Egorov, M.V.; Ivanova, O.Y.; Ilinskaya, O.P.; Pletjush-kina, O.Y.; Popova, E.N.; Sakharov, I.Y.; Fedorov, A.V.; Chernyak, B.V. Novel mitochondria-targeted antioxidants, “Skulachev-ion” derivatives, accelerate dermal wound healing in animals. Biochemistry (Mosc.), 2010, 75(3), 274-280.
[http://dx.doi.org/10.1134/S000629791003003X] [PMID: 20370605]
[21]
Nguyen, D.; Orgill, D.; Murphy, G. The pathophysiologic basis for wound healing and cutaneous regeneration.Biomaterials for Treating Skin Loss; Elsevier, 2009, pp. 25-57.
[http://dx.doi.org/10.1533/9781845695545.1.25]
[22]
Mathieu, D.; Linke, J-C.; Wattel, F. Non-healing wounds.Handbook on Hyperbaric Medicine; Springer, 2006, pp. 401-428.
[http://dx.doi.org/10.1007/1-4020-4448-8_20]
[23]
Ogurtsova, K.; da Rocha Fernandes, J.D.; Huang, Y.; Linnen-kamp, U.; Guariguata, L.; Cho, N.H.; Cavan, D.; Shaw, J.E.; Makaroff, L.E. IDF Diabetes Atlas: Global estimates for the prevalence of diabetes for 2015 and 2040. Diabetes Res. Clin. Pract., 2017, 128, 40-50.
[http://dx.doi.org/10.1016/j.diabres.2017.03.024] [PMID: 28437734]
[24]
Broughton, G.I.I.; Janis, J.E.; Attinger, C.E. The basic science of wound healing. Plast. Reconstr. Surg., 2006, 117(7), 12S-34S.
[http://dx.doi.org/10.1097/01.prs.0000225430.42531.c2] [PMID: 16799372]
[25]
Campos, A.C.; Groth, A.K.; Branco, A.B. Assessment and nutri-tional aspects of wound healing. Curr. Opin. Clin. Nutr. Metab. Care, 2008, 11(3), 281-288.
[http://dx.doi.org/10.1097/MCO.0b013e3282fbd35a] [PMID: 18403925]
[26]
Meszaros, A.J.; Reichner, J.S.; Albina, J.E. Macrophage-induced neutrophil apoptosis. J. Immunol., 2000, 165(1), 435-441.
[http://dx.doi.org/10.4049/jimmunol.165.1.435] [PMID: 10861082]
[27]
Mosser, D.M.; Edwards, J.P. Exploring the full spectrum of macrophage activation. Nat. Rev. Immunol., 2008, 8(12), 958-969.
[http://dx.doi.org/10.1038/nri2448] [PMID: 19029990]
[28]
Midwood, K.S.; Williams, L.V.; Schwarzbauer, J.E. Tissue re-pair and the dynamics of the extracellular matrix. Int. J. Biochem. Cell Biol., 2004, 36(6), 1031-1037.
[http://dx.doi.org/10.1016/j.biocel.2003.12.003] [PMID: 15094118]
[29]
Chang, H.Y.; Sneddon, J.B.; Alizadeh, A.A.; Sood, R.; West, R.B.; Montgomery, K.; Chi, J.T.; van de Rijn, M.; Botstein, D.; Brown, P.O.; Liu, E.T. Gene expression signature of fibroblast serum response predicts human cancer progression: Similarities between tumors and wounds. PLoS Biol., 2004, 2(2), E7.
[http://dx.doi.org/10.1371/journal.pbio.0020007] [PMID: 14737219]
[30]
Rodrigues, A.D. Scarless Wound Healing; CRC Press, 2000.
[http://dx.doi.org/10.3109/9780203909652]
[31]
Bishop, A. Role of oxygen in wound healing. J. Wound Care, 2008, 17(9), 399-402.
[http://dx.doi.org/10.12968/jowc.2008.17.9.30937] [PMID: 18833899]
[32]
Rodriguez, P.G.; Felix, F.N.; Woodley, D.T.; Shim, E.K. The role of oxygen in wound healing: A review of the literature. Dermatol. Surg., 2008, 34(9), 1159-1169.
[http://dx.doi.org/10.1097/00042728-200809000-00001] [PMID: 18513296]
[33]
Davis, S.C.; Ricotti, C.; Cazzaniga, A.; Welsh, E.; Eaglstein, W.H.; Mertz, P.M. Microscopic and physiologic evidence for biofilm-associated wound colonization in vivo. Wound Repair Regen., 2008, 16(1), 23-29.
[http://dx.doi.org/10.1111/j.1524-475X.2007.00303.x] [PMID: 18211576]
[34]
Bjarnsholt, T.; Kirketerp-Møller, K.; Jensen, P.Ø.; Madsen, K.G.; Phipps, R.; Krogfelt, K.; Høiby, N.; Givskov, M. Why chronic wounds will not heal: A novel hypothesis. Wound Repair Regen., 2008, 16(1), 2-10.
[http://dx.doi.org/10.1111/j.1524-475X.2007.00283.x] [PMID: 18211573]
[35]
Barrientos, S.; Stojadinovic, O.; Golinko, M.S.; Brem, H.; Tom-ic-Canic, M. Growth factors and cytokines in wound healing. Wound Repair Regen., 2008, 16(5), 585-601.
[http://dx.doi.org/10.1111/j.1524-475X.2008.00410.x] [PMID: 19128254]
[36]
Quinn, K.P.; Leal, E.C.; Tellechea, A.; Kafanas, A.; Auster, M.E.; Veves, A.; Georgakoudi, I. Diabetic wounds exhibit dis-tinct microstructural and metabolic heterogeneity through label-free multiphoton microscopy. J. Invest. Dermatol., 2016, 136(1), 342-344.
[http://dx.doi.org/10.1038/JID.2015.371] [PMID: 26763462]
[37]
FrykbergRobert, G. Challenges in the treatment of chronic wounds. Adv. Wound Care, 2015, 4(9), 560-582.
[38]
Greenhalgh, D.G. Wound healing and diabetes mellitus. Clin. Plast. Surg., 2003, 30(1), 37-45.
[http://dx.doi.org/10.1016/S0094-1298(02)00066-4] [PMID: 12636214]
[39]
Dinh, T.; Elder, S.; Veves, A. Delayed wound healing in diabe-tes: Considering future treatments. Diabetes Management, 2011, 1(5), 509.
[http://dx.doi.org/10.2217/dmt.11.44]
[40]
Vincent, A.M.; Russell, J.W.; Low, P.; Feldman, E.L. Oxidative stress in the pathogenesis of diabetic neuropathy. Endocr. Rev., 2004, 25(4), 612-628.
[http://dx.doi.org/10.1210/er.2003-0019] [PMID: 15294884]
[41]
Huijberts, M.S.; Schaper, N.C.; Schalkwijk, C.G. Advanced glycation end products and diabetic foot disease. Diabetes Metab. Res. Rev., 2008, 24(Suppl. 1), S19-S24.
[http://dx.doi.org/10.1002/dmrr.861] [PMID: 18442180]
[42]
Woo, K.; Ayello, E.A.; Sibbald, R.G. The edge effect: Current therapeutic options to advance the wound edge. Adv. Skin Wound Care, 2007, 20(2), 99-117.
[http://dx.doi.org/10.1097/00129334-200702000-00009] [PMID: 17287621]
[43]
Hübner, G.; Brauchle, M.; Smola, H.; Madlener, M.; Fässler, R.; Werner, S. Differential regulation of pro-inflammatory cyto-kines during wound healing in normal and glucocorticoid-treated mice. Cytokine, 1996, 8(7), 548-556.
[http://dx.doi.org/10.1006/cyto.1996.0074] [PMID: 8891436]
[44]
Dohan, D.M.; Choukroun, J.; Diss, A.; Dohan, S.L.; Dohan, A.J.; Mouhyi, J.; Gogly, B. Platelet-rich fibrin (PRF): A second-generation platelet concentrate. Part I: Technological concepts and evolution. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod., 2006, 101(3), e37-e44.
[http://dx.doi.org/10.1016/j.tripleo.2005.07.008] [PMID: 16504849]
[45]
Shah, J.M.; Omar, E.; Pai, D.R.; Sood, S. Cellular events and biomarkers of wound healing. Indian J. Plast. Surg., 2012, 45(2), 220-228.
[http://dx.doi.org/10.4103/0970-0358.101282] [PMID: 23162220]
[46]
Gianino, E.; Miller, C.; Gilmore, J. Smart wound dressings for diabetic chronic wounds. Bioengineering (Basel), 2018, 5(3), 51.
[http://dx.doi.org/10.3390/bioengineering5030051] [PMID: 29949930]
[47]
Dinh, T.; Veves, A. Microcirculation of the diabetic foot. Curr. Pharm. Des., 2005, 11(18), 2301-2309.
[http://dx.doi.org/10.2174/1381612054367328] [PMID: 16022669]
[48]
Pereira, L.P. Focusing on metabolomic dysregulation and modu-lation of retinal metabolism to develop novel therapeutic strate-gies for diabetic retinopathy., 2015.
[49]
Patel, P.; Macerollo, A. Diabetes mellitus: Diagnosis and screen-ing. Am. Fam. Physician, 2010, 81(7), 863-870.
[PMID: 20353144]
[50]
Blakytny, R.; Jude, E. The molecular biology of chronic wounds and delayed healing in diabetes. Diabet. Med., 2006, 23(6), 594-608.
[http://dx.doi.org/10.1111/j.1464-5491.2006.01773.x] [PMID: 16759300]
[51]
Steinhoff, M.; Ständer, S.; Seeliger, S.; Ansel, J.C.; Schmelz, M.; Luger, T. Modern aspects of cutaneous neurogenic inflamma-tion. Arch. Dermatol., 2003, 139(11), 1479-1488.
[http://dx.doi.org/10.1001/archderm.139.11.1479] [PMID: 14623709]
[52]
Ekstrand, A.J.; Cao, R.; Björndahl, M.; Nyström, S.; Jönsson-Rylander, A-C.; Hassani, H.; Hallberg, B.; Nordlander, M.; Cao, Y. Deletion of neuropeptide Y (NPY) 2 receptor in mice results in blockage of NPY-induced angiogenesis and delayed wound healing. Proc. Natl. Acad. Sci. USA, 2003, 100(10), 6033-6038.
[http://dx.doi.org/10.1073/pnas.1135965100] [PMID: 12730369]
[53]
Toda, M.; Suzuki, T.; Hosono, K.; Kurihara, Y.; Kurihara, H.; Hayashi, I.; Kitasato, H.; Hoka, S.; Majima, M. Roles of calci-tonin gene-related peptide in facilitation of wound healing and angiogenesis. Biomed. Pharmacother., 2008, 62(6), 352-359.
[http://dx.doi.org/10.1016/j.biopha.2008.02.003] [PMID: 18430544]
[54]
Tellechea, A.; Kafanas, A.; Leal, E.C.; Tecilazich, F.; Ku-chibhotla, S.; Auster, M.E.; Kontoes, I.; Paolino, J.; Carvalho, E.; Nabzdyk, L.P.; Veves, A. Increased skin inflammation and blood vessel density in human and experimental diabetes. Int. J. Low. Extrem. Wounds, 2013, 12(1), 4-11.
[http://dx.doi.org/10.1177/1534734612474303] [PMID: 23446362]
[55]
Falanga, V. Wound healing and its impairment in the diabetic foot. Lancet, 2005, 366(9498), 1736-1743.
[http://dx.doi.org/10.1016/S0140-6736(05)67700-8] [PMID: 16291068]
[56]
Donaghue, V.M.; Chrzan, J.S.; Rosenblum, B.I.; Giurini, J.M.; Habershaw, G.M.; Veves, A. Evaluation of a collagen-alginate wound dressing in the management of diabetic foot ulcers. Adv. Wound Care, 1998, 11(3), 114-119.
[PMID: 9729942]
[57]
Nabzdyk, L.P.; Kuchibhotla, S.; Guthrie, P.; Chun, M.; Auster, M.E.; Nabzdyk, C.; Deso, S.; Andersen, N.; Gnardellis, C.; LoGerfo, F.W.; Veves, A. Expression of neuropeptides and cy-tokines in a rabbit model of diabetic neuroischemic wound heal-ing. J. Vasc. Surg., 2013, 58(3), 766-775.
[58]
Brem, H.; Tomic-Canic, M. Cellular and molecular basis of wound healing in diabetes. J. Clin. Invest., 2007, 117(5), 1219-1222.
[http://dx.doi.org/10.1172/JCI32169] [PMID: 17476353]
[59]
Galiano, R.D.; Tepper, O.M.; Pelo, C.R.; Bhatt, K.A.; Callaghan, M.; Bastidas, N.; Bunting, S.; Steinmetz, H.G.; Gurtner, G.C. Topical vascular endothelial growth factor accelerates diabetic wound healing through increased angiogenesis and by mobiliz-ing and recruiting bone marrow-derived cells. Am. J. Pathol., 2004, 164(6), 1935-1947.
[http://dx.doi.org/10.1016/S0002-9440(10)63754-6] [PMID: 15161630]
[60]
Mathieu, D. Handbook on Hyperbaric Medicine; Springer, 2006.
[http://dx.doi.org/10.1007/1-4020-4448-8]
[61]
Ashcroft, G.S.; Dodsworth, J.; van Boxtel, E.; Tarnuzzer, R.W.; Horan, M.A.; Schultz, G.S.; Ferguson, M.W. Estrogen acceler-ates cutaneous wound healing associated with an increase in TGF-β1 levels. Nat. Med., 1997, 3(11), 1209-1215.
[http://dx.doi.org/10.1038/nm1197-1209] [PMID: 9359694]
[62]
Long, M.; Cai, L.; Li, W.; Zhang, L.; Guo, S.; Zhang, R.; Zheng, Y.; Liu, X.; Wang, M.; Zhou, X.; Wang, H.; Li, X.; Li, L.; Zhu, Z.; Yang, G.; Zheng, H. DPP-4 inhibitors improve diabetic wound healing via direct and indirect promotion of epithelial-mesenchymal transition and reduction of scarring. Diabetes, 2018, 67(3), 518-531.
[http://dx.doi.org/10.2337/db17-0934] [PMID: 29254987]
[63]
Zandifar, E.; Beheshti, S.S.; Zandifar, A.; Javanmard, S.H. The effect of captopril on impaired wound healing in experimental diabetes. Int. J. Endocrinol., 2012, 2012785247
[http://dx.doi.org/10.1155/2012/785247]
[64]
Valachova, K.; Svik, K.; Biro, C.; Soltes, L. Skin wound healing with composite biomembranes loaded by tiopronin or captopril. J. Biotechnol., 2020, 310, 49-53.
[http://dx.doi.org/10.1016/j.jbiotec.2020.02.001] [PMID: 32027945]
[65]
Spampinato, S.F.; Caruso, G.I.; De Pasquale, R.; Sortino, M.A.; Merlo, S. The treatment of impaired wound healing in diabetes: Looking among old drugs. Pharmaceuticals (Basel), 2020, 13(4), 60.
[http://dx.doi.org/10.3390/ph13040060] [PMID: 32244718]
[66]
Kavalipati, N.; Shah, J.; Ramakrishan, A.; Vasnawala, H. Plei-otropic effects of statins. Indian J. Endocrinol. Metab., 2015, 19(5), 554-562.
[http://dx.doi.org/10.4103/2230-8210.163106] [PMID: 26425463]
[67]
Dimmeler, S.; Aicher, A.; Vasa, M.; Mildner-Rihm, C.; Adler, K.; Tiemann, M.; Rütten, H.; Fichtlscherer, S.; Martin, H.; Zei-her, A.M. HMG-CoA reductase inhibitors (statins) increase en-dothelial progenitor cells via the PI 3-kinase/Akt pathway. J. Clin. Invest., 2001, 108(3), 391-397.
[http://dx.doi.org/10.1172/JCI200113152] [PMID: 11489932]
[68]
Bitto, A.; Minutoli, L.; Altavilla, D.; Polito, F.; Fiumara, T.; Marini, H.; Galeano, M.; Calò, M.; Lo Cascio, P.; Bonaiuto, M.; Migliorato, A.; Caputi, A.P.; Squadrito, F. Simvastatin enhances VEGF production and ameliorates impaired wound healing in experimental diabetes. Pharmacol. Res., 2008, 57(2), 159-169.
[http://dx.doi.org/10.1016/j.phrs.2008.01.005] [PMID: 18316203]
[69]
Farsaei, S.; Khalili, H.; Farboud, E.S. Potential role of statins on wound healing: Review of the literature. Int. Wound J., 2012, 9(3), 238-247.
[http://dx.doi.org/10.1111/j.1742-481X.2011.00888.x] [PMID: 22050652]
[70]
Liu, C.; Zhu, J.; Hai, B.; Zhang, W.; Wang, H.; Leng, H.; Xu, Y.; Song, C. Single intraosseous injection of simvastatin promotes endothelial progenitor cell mobilization, neovascularization, and wound healing in diabetic rats. Plast. Reconstr. Surg., 2020, 145(2), 433-443.
[http://dx.doi.org/10.1097/PRS.0000000000006502] [PMID: 31985637]
[71]
Toker, S.; Gulcan, E.; Cayc, M.K.; Olgun, E.G.; Erbilen, E.; Özay, Y. Topical atorvastatin in the treatment of diabetic wounds. Am. J. Med. Sci., 2009, 338(3), 201-204.
[http://dx.doi.org/10.1097/MAJ.0b013e3181aaf209] [PMID: 19667969]
[72]
Johansen, O.E.; Birkeland, K.I.; Jørgensen, A.P.; Orvik, E.; Sørgård, B.; Torjussen, B.R.; Ueland, T.; Aukrust, P.; Gullestad, L. Diabetic foot ulcer burden may be modified by high-dose atorvastatin: A 6-month randomized controlled pilot trial. J. Diabetes, 2009, 1(3), 182-187.
[http://dx.doi.org/10.1111/j.1753-0407.2009.00031.x] [PMID: 20923537]
[73]
Sawaya, A.P.; Pastar, I.; Stojadinovic, O.; Lazovic, S.; Davis, S.C.; Gil, J.; Kirsner, R.S.; Tomic-Canic, M. Topical mevastatin promotes wound healing by inhibiting the transcription factor c-Myc via the glucocorticoid receptor and the long non-coding RNA Gas5. J. Biol. Chem., 2018, 293(4), 1439-1449.
[http://dx.doi.org/10.1074/jbc.M117.811240] [PMID: 29158265]
[74]
Hesselink, J.M.K. Phenytoin repositioned in wound healing: Clinical experience spanning 60 years. Drug Discov. Today, 2018, 23(2), 402-408.
[http://dx.doi.org/10.1016/j.drudis.2017.09.020] [PMID: 28993152]
[75]
Moy, L.S.; Tan, E.M.; Holness, R.; Uitto, J. Phenytoin modu-lates connective tissue metabolism and cell proliferation in hu-man skin fibroblast cultures. Arch. Dermatol., 1985, 121(1), 79-83.
[http://dx.doi.org/10.1001/archderm.1985.01660010083024] [PMID: 2981518]
[76]
Bhatia, A.; Prakash, S. Topical phenytoin for wound healing. Dermatol. Online J., 2004, 10(1), 5.
[http://dx.doi.org/10.5070/D30Z3612W1] [PMID: 15347487]
[77]
Patil, M.M.; Sahoo, J.; Kamalanathan, S.; Pillai, V. Phenytoin induced osteopathy-too common to be neglected. J. Clin. Diagn. Res., 2015, 9(11), OD11-OD12.
[http://dx.doi.org/10.7860/JCDR/2015/15224.6820] [PMID: 26674262]
[78]
Talas, G.; Brown, R.A.; McGrouther, D.A. Role of phenytoin in wound healing--a wound pharmacology perspective. Biochem. Pharmacol., 1999, 57(10), 1085-1094.
[PMID: 11265677]
[79]
Bansal, N.K. Mukul. Comparison of topical phenytoin with normal saline in the treatment of chronic trophic ulcers in lepro-sy. Int. J. Dermatol., 1993, 32(3), 210-213.
[http://dx.doi.org/10.1111/j.1365-4362.1993.tb02798.x] [PMID: 8444537]
[80]
Pereira, C.A.Z. de A Alchorne, A.D.O. Assessment of the effect of phenytoin on cutaneous healing from excision of melanocyt-ic nevi on the face and on the back. BMC Dermatol., 2010, 10(1), 1-7.
[http://dx.doi.org/10.1186/1471-5945-10-7]
[81]
Shakeri, F.; Tebyanian, H.; Karami, A.; Babavalian, H.; Tah-masbi, M.H. Effect of topical phenytoin on wound healing. Trauma Mon., 2017, 22(5), 5.
[82]
Rena, G.; Hardie, D.G.; Pearson, E.R. The mechanisms of action of metformin. Diabetologia, 2017, 60(9), 1577-1585.
[http://dx.doi.org/10.1007/s00125-017-4342-z] [PMID: 28776086]
[83]
Ursini, F.; Russo, E.; Pellino, G.; D’Angelo, S.; Chiaravalloti, A.; De Sarro, G.; Manfredini, R.; De Giorgio, R. Metformin and autoimmunity: A “new deal” of an old drug. Front. Immunol., 2018, 9, 1236.
[http://dx.doi.org/10.3389/fimmu.2018.01236] [PMID: 29915588]
[84]
Zhao, P.; Sui, B.D.; Liu, N.; Lv, Y.J.; Zheng, C.X.; Lu, Y.B.; Huang, W.T.; Zhou, C.H.; Chen, J.; Pang, D.L.; Fei, D.D.; Xuan, K.; Hu, C.H.; Jin, Y. Anti-aging pharmacology in cutaneous wound healing: Effects of metformin, resveratrol, and rapamy-cin by local application. Aging Cell, 2017, 16(5), 1083-1093.
[http://dx.doi.org/10.1111/acel.12635] [PMID: 28677234]
[85]
Tawfeek, H.M.; Abou-Taleb, D.A.E.; Badary, D.M.; Ibrahim, M.; Abdellatif, A.A.H. Pharmaceutical, clinical, and immuno-histochemical studies of metformin hydrochloride topical hy-drogel for wound healing application. Arch. Dermatol. Res., 2020, 312(2), 113-121.
[http://dx.doi.org/10.1007/s00403-019-01982-1] [PMID: 31620870]
[86]
Mohammadi, M.H.; Molavi, B.; Mohammadi, S.; Nikbakht, M.; Mohammadi, A.M.; Mostafaei, S.; Norooznezhad, A.H. Ghor-bani Abdegah, A.; Ghavamzadeh, A. Evaluation of wound heal-ing in diabetic foot ulcer using platelet-rich plasma gel: A single-arm clinical trial. Transfus. Apheresis Sci., 2017, 56(2), 160-164.
[http://dx.doi.org/10.1016/j.transci.2016.10.020] [PMID: 27839965]
[87]
Han, X.; Tao, Y.; Deng, Y.; Yu, J.; Sun, Y.; Jiang, G. Metformin accelerates wound healing in type 2 diabetic db/db mice. Mol. Med. Rep., 2017, 16(6), 8691-8698.
[http://dx.doi.org/10.3892/mmr.2017.7707] [PMID: 28990070]
[88]
El-Ridy, M.S.; Yehia, S.A.; Elsayed, I.; Younis, M.M.; Abdel-Rahman, R.F.; El-Gamil, M.A. Metformin hydrochloride and wound healing: From nanoformulation to pharmacological eval-uation. J. Liposome Res., 2019, 29(4), 343-356.
[http://dx.doi.org/10.1080/08982104.2018.1556291] [PMID: 30526146]
[89]
Drucker, D.J. The biology of incretin hormones. Cell Metab., 2006, 3(3), 153-165.
[http://dx.doi.org/10.1016/j.cmet.2006.01.004] [PMID: 16517403]
[90]
Boonacker, E.; Van Noorden, C.J. The multifunctional or moon-lighting protein CD26/DPPIV. Eur. J. Cell Biol., 2003, 82(2), 53-73.
[http://dx.doi.org/10.1078/0171-9335-00302] [PMID: 12647932]
[91]
Hattori, Y.; Jojima, T.; Tomizawa, A.; Satoh, H.; Hattori, S.; Kasai, K.; Hayashi, T. A glucagon-like peptide-1 (GLP-1) ana-logue, liraglutide, upregulates nitric oxide production and exerts anti-inflammatory action in endothelial cells (Retraction of vol 53, pg 2256, 2010). Diabetologia, 2012, 55(2), 533.
[http://dx.doi.org/10.1007/s00125-011-2394-z] [PMID: 22170464]
[92]
Erdogdu, O.; Nathanson, D.; Sjöholm, A.; Nyström, T.; Zhang, Q. Exendin-4 stimulates proliferation of human coronary artery endothelial cells through eNOS-, PKA- and PI3K/Akt-dependent pathways and requires GLP-1 receptor. Mol. Cell. Endocrinol., 2010, 325(1-2), 26-35.
[http://dx.doi.org/10.1016/j.mce.2010.04.022] [PMID: 20452396]
[93]
Baticic Pucar, L.; Pernjak Pugel, E.; Detel, D.; Varljen, J. In-volvement of DPP IV/CD26 in cutaneous wound healing pro-cess in mice. Wound Repair Regen., 2017, 25(1), 25-40.
[http://dx.doi.org/10.1111/wrr.12498] [PMID: 27868279]
[94]
Schürmann, C.; Linke, A.; Engelmann-Pilger, K.; Steinmetz, C.; Mark, M.; Pfeilschifter, J.; Klein, T.; Frank, S. The dipeptidyl peptidase-4 inhibitor linagliptin attenuates inflammation and ac-celerates epithelialization in wounds of diabetic ob/ob mice. J. Pharmacol. Exp. Ther., 2012, 342(1), 71-80.
[http://dx.doi.org/10.1124/jpet.111.191098] [PMID: 22493041]
[95]
Straino, S.; Di Carlo, A.; Mangoni, A.; De Mori, R.; Guerra, L.; Maurelli, R.; Panacchia, L.; Di Giacomo, F.; Palumbo, R.; Di Campli, C.; Uccioli, L.; Biglioli, P.; Bianchi, M.E.; Capogrossi, M.C.; Germani, A. High-mobility group box 1 protein in human and murine skin: Involvement in wound healing. J. Invest. Dermatol., 2008, 128(6), 1545-1553.
[http://dx.doi.org/10.1038/sj.jid.5701212] [PMID: 18239618]
[96]
Ranzato, E.; Patrone, M.; Pedrazzi, M.; Burlando, B. HMGb1 promotes scratch wound closure of HaCaT keratinocytes via ERK1/2 activation. Mol. Cell. Biochem., 2009, 332(1-2), 199-205.
[http://dx.doi.org/10.1007/s11010-009-0192-4] [PMID: 19588230]
[97]
Ranzato, E.; Patrone, M.; Pedrazzi, M.; Burlando, B. Hmgb1 promotes wound healing of 3T3 mouse fibroblasts via RAGE-dependent ERK1/2 activation. Cell Biochem. Biophys., 2010, 57(1), 9-17.
[http://dx.doi.org/10.1007/s12013-010-9077-0] [PMID: 20361273]
[98]
Gallagher, K.A.; Liu, Z-J.; Xiao, M.; Chen, H.; Goldstein, L.J.; Buerk, D.G.; Nedeau, A.; Thom, S.R.; Velazquez, O.C. Diabetic impairments in NO-mediated endothelial progenitor cell mobili-zation and homing are reversed by hyperoxia and SDF-1 α. J. Clin. Invest., 2007, 117(5), 1249-1259.
[http://dx.doi.org/10.1172/JCI29710] [PMID: 17476357]
[99]
Fadini, G.P.; Boscaro, E.; Albiero, M.; Menegazzo, L.; Frison, V.; de Kreutzenberg, S.; Agostini, C.; Tiengo, A.; Avogaro, A. The oral dipeptidyl peptidase-4 inhibitor sitagliptin increases circulating endothelial progenitor cells in patients with type 2 di-abetes: Possible role of stromal-derived factor-1α. Diabetes Care, 2010, 33(7), 1607-1609.
[http://dx.doi.org/10.2337/dc10-0187] [PMID: 20357375]
[100]
Syed, R.S.; Reid, S.W.; Li, C.; Cheetham, J.C.; Aoki, K.H.; Liu, B.; Zhan, H.; Osslund, T.D.; Chirino, A.J.; Zhang, J.; Finer-Moore, J.; Elliott, S.; Sitney, K.; Katz, B.A.; Matthews, D.J.; Wendoloski, J.J.; Egrie, J.; Stroud, R.M. Efficiency of signalling through cytokine receptors depends critically on receptor orien-tation. Nature, 1998, 395(6701), 511-516.
[http://dx.doi.org/10.1038/26773] [PMID: 9774108]
[101]
Maiese, K.; Li, F.; Chong, Z.Z. New avenues of exploration for erythropoietin. JAMA, 2005, 293(1), 90-95.
[http://dx.doi.org/10.1001/jama.293.1.90] [PMID: 15632341]
[102]
Galeano, M.; Altavilla, D.; Bitto, A.; Minutoli, L.; Calò, M.; Lo Cascio, P.; Polito, F.; Giugliano, G.; Squadrito, G.; Mioni, C.; Giuliani, D.; Venuti, F.S.; Squadrito, F. Recombinant human erythropoietin improves angiogenesis and wound healing in ex-perimental burn wounds. Crit. Care Med., 2006, 34(4), 1139-1146.
[http://dx.doi.org/10.1097/01.CCM.0000206468.18653.EC] [PMID: 16484928]
[103]
Bader, A.; Ebert, S.; Giri, S.; Kremer, M.; Liu, S.; Nerlich, A.; Günter, C.I.; Smith, D.U.; Machens, H.G. Skin regeneration with conical and hair follicle structure of deep second-degree scald-ing injuries via combined expression of the EPO receptor and beta common receptor by local subcutaneous injection of na-nosized rhEPO. Int. J. Nanomedicine, 2012, 7, 1227-1237.
[PMID: 22419870]
[104]
Hamed, S.; Bennett, C.L.; Demiot, C.; Ullmann, Y.; Teot, L.; Desmoulière, A. Erythropoietin, a novel repurposed drug: An innovative treatment for wound healing in patients with diabetes mellitus. Wound Repair Regen., 2014, 22(1), 23-33.
[http://dx.doi.org/10.1111/wrr.12135] [PMID: 24471742]
[105]
Dijke, P.T.; Iwata, K.K. Growth factors for wound healing. Bio/Technology, 1989, 7(8), 793-798.
[106]
Nagai, M.K.; Embil, J.M. Becaplermin: Recombinant platelet derived growth factor, a new treatment for healing diabetic foot ulcers. Expert Opin. Biol. Ther., 2002, 2(2), 211-218.
[http://dx.doi.org/10.1517/14712598.2.2.211] [PMID: 11849120]
[107]
Firdous, S.M.; Sautya, D. Medicinal plants with wound healing potential. Bangladesh J. Pharmacol., 2018, 13(1), 41-52.
[http://dx.doi.org/10.3329/bjp.v13i1.32646]
[108]
Attah, M.O.; Jacks, T.W.; Jacob, A.; Eduitem, O.; John, B. The effect of aloe vera (linn) on cutaneous wound healing and wound contraction rate in adult rabbits. Nova J. Med. Biol. Sci., 2016, 5(3), 1-8.
[109]
Gutierrez, P.R.M.; Vargas, S.R. Evaluation of the wound healing properties of Acalypha langiana in diabetic rats. Fitoterapia, 2006, 77(4), 286-289.
[http://dx.doi.org/10.1016/j.fitote.2006.03.011] [PMID: 16713129]
[110]
Chithra, P.; Sajithlal, G.B.; Chandrakasan, G. Influence of aloe vera on the healing of dermal wounds in diabetic rats. J. Ethnopharmacol., 1998, 59(3), 195-201.
[http://dx.doi.org/10.1016/S0378-8741(97)00124-4] [PMID: 9507904]
[111]
Atique, A.; Iqbal, M.; Ghouse, A. Use of Annona squamosa and Piper nigrum against diabetes. Fitoterapia, 1985, 56, 190-192.
[112]
Ponrasu, T.; Suguna, L. Efficacy of Annona squamosa on wound healing in streptozotocin-induced diabetic rats. Int. Wound J., 2012, 9(6), 613-623.
[http://dx.doi.org/10.1111/j.1742-481X.2011.00924.x] [PMID: 22233431]
[113]
Dawkins, G.; Hewitt, H.; Wint, Y.; Obiefuna, P.C.; Wint, B. Antibacterial effects of Carica papaya fruit on common wound organisms. West Indian Med. J., 2003, 52(4), 290-292.
[PMID: 15040064]
[114]
Morton, J.J.; Malone, M.H. Evaluation of vulneray activity by an open wound procedure in rats. Arch. Int. Pharmacodyn. Ther., 1972, 196(1), 117-126.
[PMID: 5059357]
[115]
Nayak, B.S.; Pereira, L.P.; Maharaj, D. Wound healing activity of Carica papaya L. in experimentally induced diabetic rats. Indian J. Exp. Biol., 2007, 45(8), 739-743.
[116]
Mahmood, A.; Sidik, K.; Salmah, I. Wound healing activity of Carica papaya L. aqueous leaf extract in rats. Int. J. Mol. Med. Adv. Sci., 2005, 1(4), 398-401.
[117]
Rasineni, K.; Bellamkonda, R.; Singareddy, S.R.; Desireddy, S. Antihyperglycemic activity of Catharanthus roseus leaf powder in streptozotocin-induced diabetic rats. Pharmacognosy Res., 2010, 2(3), 195-201.
[http://dx.doi.org/10.4103/0974-8490.65523] [PMID: 21808566]
[118]
Nayak, S. Influence of ethanol extract of Vinca rosea on wound healing in diabetic rats. Online J. Biol. Sci., 2006, 6(2), 51-55.
[http://dx.doi.org/10.3844/ojbsci.2006.51.55]
[119]
Maquart, F-X.; Bellon, G.; Gillery, P.; Wegrowski, Y.; Borel, J-P. Stimulation of collagen synthesis in fibroblast cultures by a triterpene extracted from Centella asiatica. Connect. Tissue Res., 1990, 24(2), 107-120.
[http://dx.doi.org/10.3109/03008209009152427] [PMID: 2354631]
[120]
Nganlasom, J.; Suttitum, T.; Jirakulsomchok, D.; Puapairoj, A. Effects of Centella asiatica linn. And Garcinia mangostana linn. On the healing of dermal wounds in diabetic rats. Srinagarind Med. J., 2008, 23(4), 402-407.
[121]
Suh, D.H.; Lee, S.; Heo, Y.; Kim, Y-S.; Cho, S.K.; Lee, S.; Lee, C.H. Metabolite profiling of red and white pitayas (Hylocereus polyrhizus and Hylocereus undatus) for comparing betalain bio-synthesis and antioxidant activity. J. Agric. Food Chem., 2014, 62(34), 8764-8771.
[http://dx.doi.org/10.1021/jf5020704] [PMID: 25101804]
[122]
Biswas, T.K.; Maity, L.N.; Mukherjee, B. Wound healing poten-tial of Pterocarpus santalinus linn: A pharmacological evalua-tion. Int. J. Low. Extrem. Wounds, 2004, 3(3), 143-150.
[http://dx.doi.org/10.1177/1534734604268385] [PMID: 15866805]
[123]
Mali, P.C.; Ansari, A.S.; Chaturvedi, M. Antifertility effect of chronically administered Martynia annua root extract on male rats. J. Ethnopharmacol., 2002, 82(2-3), 61-67.
[http://dx.doi.org/10.1016/S0378-8741(02)00084-3] [PMID: 12241978]
[124]
Lodhi, S.; Singhai, A.K. Wound healing effect of flavonoid rich fraction and luteolin isolated from Martynia annua Linn. on streptozotocin induced diabetic rats. Asian Pac. J. Trop. Med., 2013, 6(4), 253-259.
[http://dx.doi.org/10.1016/S1995-7645(13)60053-X] [PMID: 23608325]
[125]
Pirbalouti, A.G.; Azizi, S.; Koohpayeh, A.; Hamedi, B. Wound healing activity of Malva sylvestris and Punica granatum in alloxan-induced diabetic rats. Acta Pol. Pharm., 2010, 67(5), 511-516.
[PMID: 20873419]
[126]
Lau, T.W.; Sahota, D.S.; Lau, C.H.; Chan, C.M.; Lam, F.C.; Ho, Y.Y.; Fung, K.P.; Lau, C.B.S.; Leung, P.C. An in vivo investiga-tion on the wound-healing effect of two medicinal herbs using an animal model with foot ulcer. Eur. Surg. Res., 2008, 41(1), 15-23.
[http://dx.doi.org/10.1159/000122834] [PMID: 18382110]
[127]
Bek, E.L.; McMillen, M.A.; Scott, P.; Angus, L.G.; Shaftan, G.W. The effect of diabetes on endothelin, interleukin-8 and vascular endothelial growth factor-mediated angiogenesis in rats. Clin. Sci. , 2002, 103, 424S-429S.
[http://dx.doi.org/10.1042/CS103S424S]
[128]
Abu-Al-Basal, M.A. Healing potential of Rosmarinus officinalis L. on full-thickness excision cutaneous wounds in alloxan-induced-diabetic BALB/c mice. J. Ethnopharmacol., 2010, 131(2), 443-450.
[http://dx.doi.org/10.1016/j.jep.2010.07.007] [PMID: 20633625]
[129]
Rostagno, M.A.; Prado, J.M. Natural Product Extraction: Prin-ciples and Applications; Royal Society of Chemistry, 2013.
[http://dx.doi.org/10.1039/9781849737579]
[130]
Ghosh, P.K.; Gaba, A. Phyto-extracts in wound healing. J. Pharm. Pharm. Sci., 2013, 16(5), 760-820.
[http://dx.doi.org/10.18433/J3831V] [PMID: 24393557]
[131]
Shivashankar, M.; Mani, D. A brief overview of diabetes. Int. J. Pharm. Pharm. Sci., 2011, 3(4), 22-27.
[132]
You, W-P.; Henneberg, M. Type 1 diabetes prevalence increas-ing globally and regionally: The role of natural selection and life expectancy at birth. BMJ Open Diabetes Res. Care, 2016, 4(1)e000161
[http://dx.doi.org/10.1136/bmjdrc-2015-000161] [PMID: 26977306]
[133]
Bener, A.; Zirie, M.; Al-Rikabi, A. Genetics, obesity, and envi-ronmental risk factors associated with type 2 diabetes. Croat. Med. J., 2005, 46(2), 302-307.
[PMID: 15849854]
[134]
Morimoto, N.; Takemoto, S.; Kawazoe, T.; Suzuki, S. Nicotine at a low concentration promotes wound healing. J. Surg. Res., 2008, 145(2), 199-204.
[http://dx.doi.org/10.1016/j.jss.2007.05.031] [PMID: 17644111]
[135]
Tournier, J-M. Maouche, K.; Coraux, C.; Zahm, J-M.; Cloëz-Tayarani, I.; Nawrocki-Raby, B.; Bonnomet, A.; Burlet, H.; Leb-argy, F.; Polette, M.; Birembaut, P. α3α5β2-Nicotinic acetylcho-line receptor contributes to the wound repair of the respiratory epithelium by modulating intracellular calcium in migrating cells. Am. J. Pathol., 2006, 168(1), 55-68.
[http://dx.doi.org/10.2353/ajpath.2006.050333] [PMID: 16400009]
[136]
Zyuz’kov, G.N.; Krapivin, A.V.; Nesterova, Y.V.; Povetieva, T.N.; Zhdanov, V.V.; Suslov, N.I.; Fomina, T.I.; Udut, E.V.; Miroshnichenko, L.A.; Simanina, E.V.; Semenov, A.A.; Krav-tsova, S.S.; Dygai, A.M. Mechanisms of regeneratory effects of baikal aconite diterpene alkaloids. Bull. Exp. Biol. Med., 2012, 153(6), 846-850.
[http://dx.doi.org/10.1007/s10517-012-1841-2] [PMID: 23113300]
[137]
Dong, Y.; He, L.; Chen, F. Enhancement of wound healing by taspine and its effect on fibroblast. Zhong Yao Cai, 2005, 28(7), 579-582.
[PMID: 16252727]
[138]
Gomathi, K.; Gopinath, D.; Rafiuddin Ahmed, M.; Jayakumar, R. Quercetin incorporated collagen matrices for dermal wound healing processes in rat. Biomaterials, 2003, 24(16), 2767-2772.
[http://dx.doi.org/10.1016/S0142-9612(03)00059-0] [PMID: 12711523]
[139]
Fu, S.C.; Hui, C.W.; Li, L.C.; Cheuk, Y.C.; Qin, L.; Gao, J.; Chan, K.M. Total flavones of Hippophae rhamnoides promotes early restoration of ultimate stress of healing patellar tendon in a rat model. Med. Eng. Phys., 2005, 27(4), 313-321.
[http://dx.doi.org/10.1016/j.medengphy.2004.12.011] [PMID: 15823472]
[140]
Ghosh, S.; Samanta, A.; Mandal, N.B.; Bannerjee, S.; Chatto-padhyay, D. Evaluation of the wound healing activity of metha-nol extract of Pedilanthus tithymaloides (L.) Poit leaf and its isolated active constituents in topical formulation. J. Ethnopharmacol., 2012, 142(3), 714-722.
[http://dx.doi.org/10.1016/j.jep.2012.05.048] [PMID: 22683906]
[141]
Muhammad, A.A.; Pauzi, N.A.S.; Arulselvan, P.; Abas, F.; Fakurazi, S. In vitro wound healing potential and identification of bioactive compounds from Moringa oleifera Lam. BioMed Res. Int., 2013, 2013974580
[142]
Bui, N.T.; Ho, M.T.; Kim, Y.M.; Lim, Y.; Cho, M. Flavonoids promoting HaCaT migration: II. Molecular mechanism of 46,7-trimethoxyisoflavone via NOX2 activation. Phytomedicine, 2014, 21(4), 570-577.
[http://dx.doi.org/10.1016/j.phymed.2013.10.010] [PMID: 24388604]
[143]
Oztürk, N.; Korkmaz, S.; Oztürk, Y. Baer, K.H. Effects of gentiopicroside, sweroside and swertiamarine, secoiridoids from gentian (Gentiana lutea ssp. symphyandra), on cultured chicken embryonic fibroblasts. Planta Med., 2006, 72(4), 289-294.
[http://dx.doi.org/10.1055/s-2005-916198] [PMID: 16557467]
[144]
Park, T-J.; Park, Y-S.; Lee, T-G.; Ha, H.; Kim, K-T. Inhibition of acetylcholine-mediated effects by borneol. Biochem. Pharmacol., 2003, 65(1), 83-90.
[http://dx.doi.org/10.1016/S0006-2952(02)01444-2] [PMID: 12473382]
[145]
Riella, K.R.; Marinho, R.R.; Santos, J.S.; Pereira-Filho, R.N.; Cardoso, J.C.; Albuquerque-Junior, R.L.; Thomazzi, S.M. Anti-inflammatory and cicatrizing activities of thymol, a monoter-pene of the essential oil from Lippia gracilis, in rodents. J. Ethnopharmacol., 2012, 143(2), 656-663.
[http://dx.doi.org/10.1016/j.jep.2012.07.028] [PMID: 22885071]
[146]
Kuonen, R.; Weissenstein, U.; Urech, K.; Kunz, M.; Hostanska, K.; Estko, M.; Heusser, P.; Baumgartner, S. Effects of lipophilic extract of Viscum album L. and oleanolic acid on migratory ac-tivity of NIH/3T3 fibroblasts and on HaCat keratinocytes. Evid. Based Complement. Alternat. Med., 2013, 2013718105
[147]
Coldren, C.D.; Hashim, P.; Ali, J.M.; Oh, S-K.; Sinskey, A.J.; Rha, C. Gene expression changes in the human fibroblast in-duced by Centella asiatica triterpenoids. Planta Med., 2003, 69(8), 725-732.
[http://dx.doi.org/10.1055/s-2003-42791] [PMID: 14531023]
[148]
Liu, M.; Dai, Y.; Li, Y.; Luo, Y.; Huang, F.; Gong, Z.; Meng, Q. Madecassoside isolated from Centella asiatica herbs facilitates burn wound healing in mice. Planta Med., 2008, 74(8), 809-815.
[http://dx.doi.org/10.1055/s-2008-1074533] [PMID: 18484522]
[149]
Wright, K.; Rooney, N.; Feeney, M.; Tate, J.; Robertson, D.; Welham, M.; Ward, S. Differential expression of cannabinoid receptors in the human colon: Cannabinoids promote epithelial wound healing. Gastroenterology, 2005, 129(2), 437-453.
[http://dx.doi.org/10.1016/j.gastro.2005.05.026] [PMID: 16083701]
[150]
Ben-Shabat, S.; Hanuš, L.O.; Katzavian, G.; Gallily, R. New cannabidiol derivatives: Synthesis, binding to cannabinoid re-ceptor, and evaluation of their antiinflammatory activity. J. Med. Chem., 2006, 49(3), 1113-1117.
[http://dx.doi.org/10.1021/jm050709m] [PMID: 16451075]
[151]
Kim, Y.S.; Cho, I-H.; Jeong, M-J.; Jeong, S-J.; Nah, S.Y.; Cho, Y-S.; Kim, S.H.; Go, A.; Kim, S.E.; Kang, S.S.; Moon, C.J.; Kim, J.C.; Kim, S.H.; Bae, C.S. Therapeutic effect of total gin-seng saponin on skin wound healing. J. Ginseng Res., 2011, 35(3), 360-367.
[http://dx.doi.org/10.5142/jgr.2011.35.3.360] [PMID: 23717081]
[152]
Czemplik, M.; Kulma, A.; Bazela, K.; Szopa, J. The biomedical potential of genetically modified flax seeds overexpressing the glucosyltransferase gene. BMC Complement. Altern. Med., 2012, 12(1), 251.
[http://dx.doi.org/10.1186/1472-6882-12-251] [PMID: 23228136]
[153]
Guo, C.; Fu, X. Research on effect evaluation of local treatment of patients with diabetic foot ulcers using honey dressing. Med. J. West China, 2013, 25, 977-980.
[154]
Siavash, M.; Shokri, S.; Haghighi, S.; Shahtalebi, M.A.; Farajza-dehgan, Z. The efficacy of topical royal jelly on healing of dia-betic foot ulcers: A double-blind placebo-controlled clinical tri-al. Int. Wound J., 2015, 12(2), 137-142.
[http://dx.doi.org/10.1111/iwj.12063] [PMID: 23566071]
[155]
Barret, J.P.; Podmelle, F.; Lipový, B.; Rennekampff, H-O.; Schumann, H.; Schwieger-Briel, A.; Zahn, T.R.; Metelmann, H.R. Accelerated re-epithelialization of partial-thickness skin wounds by a topical betulin gel: Results of a randomized phase III clinical trials program. Burns, 2017, 43(6), 1284-1294.
[http://dx.doi.org/10.1016/j.burns.2017.03.005] [PMID: 28400148]
[156]
Namjoyan, F.; Kiashi, F.; Moosavi, Z.B.; Saffari, F.; Makhmal-zadeh, B.S. Efficacy of Dragon’s blood cream on wound heal-ing: A randomized, double-blind, placebo-controlled clinical tri-al. J. Tradit. Complement. Med., 2015, 6(1), 37-40.
[http://dx.doi.org/10.1016/j.jtcme.2014.11.029] [PMID: 26870678]
[157]
Kamaratos, A.V.; Tzirogiannis, K.N.; Iraklianou, S.A.; Panout-sopoulos, G.I.; Kanellos, I.E.; Melidonis, A.I. Manuka honey-impregnated dressings in the treatment of neuropathic diabetic foot ulcers. Int. Wound J., 2014, 11(3), 259-263.
[http://dx.doi.org/10.1111/j.1742-481X.2012.01082.x] [PMID: 22985336]
[158]
Sepúlveda, G.; Espíndola, M.; Maureira, M.; Sepúlveda, E.; Ignacio Fernández, J.; Oliva, C.; Sanhueza, A.; Vial, M.; Man-terola, C. Negative-pressure wound therapy versus standard wound dressing in the treatment of diabetic foot amputation. A randomised controlled trial. Cir. Esp., 2009, 86(3), 171-177.
[PMID: 19616774]
[159]
Game, F.; Jeffcoate, W.; Tarnow, L.; Jacobsen, J.L.; Whitham, D.J.; Harrison, E.F.; Ellender, S.J.; Fitzsimmons, D.; Löndahl, M.; Dhatariya, K.; Chant, H. LeucoPatch system for the man-agement of hard-to-heal diabetic foot ulcers in the UK, Den-mark, and Sweden: An observer-masked, randomised con-trolled trial. Lancet Diabetes Endocrinol., 2018, 6(11), 870-878.
[http://dx.doi.org/10.1016/S2213-8587(18)30240-7] [PMID: 30243803]
[160]
Hashemi, S.S.; Mohammadi, A.A.; Kabiri, H.; Hashempoor, M.R.; Mahmoodi, M.; Amini, M.; Mehrabani, D. The healing ef-fect of Wharton’s jelly stem cells seeded on biological scaffold in chronic skin ulcers: A randomized clinical trial. J. Cosmet. Dermatol., 2019, 18(6), 1961-1967.
[http://dx.doi.org/10.1111/jocd.12931] [PMID: 31127705]
[161]
Kosaric, N.; Kiwanuka, H.; Gurtner, G.C. Stem cell therapies for wound healing. Expert Opin. Biol. Ther., 2019, 19(6), 575-585.
[http://dx.doi.org/10.1080/14712598.2019.1596257] [PMID: 30900481]
[162]
Tiganescu, A. PhD, University of Leeds. Glucocorticoids and skin Healing in Diabetes. ClinicalTrials.gov; U.S. National Li-brary of Medicine, 2019.
[163]
Bayoumi, M. Beni-Suef University. Evaluation of diabetic foot wound healing using hydrogel/nano silver-based dressing vs. traditional dressing.ClinicalTrials.gov; U.S. National Library of Medicine, 2021.

© 2024 Bentham Science Publishers | Privacy Policy