Review Article

The Role of Leukocyte Immunoglobulin-Like Receptors Focusing on the Therapeutic Implications of the Subfamily B2

Author(s): Yanyu Hu, Xin Lu, Weimin Qiu, Hui Liu, Qinghua Wang, Yao Chen, Wenyuan Liu, Feng Feng* and Haopeng Sun*

Volume 23, Issue 15, 2022

Published on: 21 September, 2022

Page: [1430 - 1452] Pages: 23

DOI: 10.2174/1389450123666220822201605

Price: $65

Abstract

The leukocyte immunoglobulin (Ig)-like receptors (LILRs) are constituted by five inhibitory subpopulations (LILRB1-5) and six stimulatory subpopulations (LILRA1-6). The LILR populations substantially reside in immune cells, especially myeloid cells, functioning as a regulator in immunosuppressive and immunostimulatory responses, during which the nonclassical major histocompatibility complex (MHC) class I molecules are widely involved. In addition, LILRs are also distributed in certain tumor cells, implicated in the malignancy progression. Collectively, the suppressive Ig-like LILRB2 is relatively well-studied to date. Herein, we summarized the whole family of LILRs and their biologic function in various diseases upon ligation to the critical ligands, therefore providing more information on their potential roles in these pathological processes and giving the clinical significance of strategies targeting LILRs.

Keywords: Leukocyte immunoglobulin-like receptors, leukocyte immunoglobulin-like receptor B2, LILRs-related diseases, MHC-I, immunotherapy, cancer.

« Previous
Graphical Abstract
[1]
Brown D, Trowsdale J, Allen R. The LILR family: Modulators of innate and adaptive immune pathways in health and disease. Tissue Antigens 2004; 64(3): 215-25.
[http://dx.doi.org/10.1111/j.0001-2815.2004.00290.x] [PMID: 15304001]
[2]
Cosman D, Fanger N, Borges L, et al. A novel immunoglobulin superfamily receptor for cellular and viral MHC class I molecules. Immunity 1997; 7(2): 273-82.
[http://dx.doi.org/10.1016/S1074-7613(00)80529-4] [PMID: 9285411]
[3]
Kabalak G, Koch S, Dobberstein B, et al. Immunoglobulin like transcripts as risk genes for autoimmunity. Ann N Y Acad Sci 2007; 1110(1): 10-4.
[http://dx.doi.org/10.1196/annals.1423.002] [PMID: 17911415]
[4]
Hirayasu K, Arase H. Functional and genetic diversity of leukocyte immunoglobulin like receptor and implication for disease associations. J Hum Genet 2015; 60(11): 703-8.
[http://dx.doi.org/10.1038/jhg.2015.64] [PMID: 26040207]
[5]
Zhang F, Zheng J, Kang X, et al. Inhibitory leukocyte immunoglobulin like receptors in cancer development. Sci China Life Sci 2015; 58(12): 1216-25.
[http://dx.doi.org/10.1007/s11427-015-4925-1] [PMID: 26566804]
[6]
Kang X, Kim J, Deng M, et al. Inhibitory leukocyte immunoglobulin like receptors: Immune checkpoint proteins and tumor sustaining factors. Cell Cycle 2016; 15(1): 25-40.
[http://dx.doi.org/10.1080/15384101.2015.1121324] [PMID: 26636629]
[7]
Takeda K, Nakamura A. Regulation of immune and neural function via leukocyte Ig-like receptors. J Biochem 2017; 162(2): 73-80.
[http://dx.doi.org/10.1093/jb/mvx036] [PMID: 28898976]
[8]
Zhang J, Mai S, Chen HM, et al. Leukocyte immunoglobulin like receptors in human diseases: An overview of their distribution, function, and potential application for immunotherapies. J Leukoc Biol 2017; 102(2): 351-60.
[http://dx.doi.org/10.1189/jlb.5MR1216-534R] [PMID: 28351852]
[9]
Zheng J, Umikawa M, Cui C, et al. Inhibitory receptors bind ANGPTLs and support blood stem cells and leukaemia development. Nature 2012; 485(7400): 656-60.
[http://dx.doi.org/10.1038/nature11095] [PMID: 22660330]
[10]
Deng M, Lu Z, Zheng J, et al. A motif in LILRB2 critical for Angptl2 binding and activation. Blood 2014; 124(6): 924-35.
[http://dx.doi.org/10.1182/blood-2014-01-549162] [PMID: 24899623]
[11]
Kuroki K, Tsuchiya N, Shiroishi M, et al. Extensive polymorphisms of LILRB1 (ILT2, LIR1) and their association with HLA-DRB1 shared epitope negative rheumatoid arthritis. Hum Mol Genet 2005; 14(16): 2469-80.
[http://dx.doi.org/10.1093/hmg/ddi247] [PMID: 16014635]
[12]
Rajalingam R. Diversity of killer cell immunoglobulin-like receptors and disease. Clin Lab Med 2018; 38(4): 637-53.
[http://dx.doi.org/10.1016/j.cll.2018.08.001] [PMID: 30420058]
[13]
Al-Moussawy M, Abdelsamed HA, Lakkis FG. Immunoglobulin-like receptors and the generation of innate immune memory. Immunogenetics 2022; 74(1): 179-95.
[http://dx.doi.org/10.1007/s00251-021-01240-7] [PMID: 35034136]
[14]
Ma G, Pan PY, Eisenstein S, et al. Paired immunoglobin-like receptor-B regulates the suppressive function and fate of myeloid derived suppressor cells. Immunity 2011; 34(3): 385-95.
[http://dx.doi.org/10.1016/j.immuni.2011.02.004] [PMID: 21376641]
[15]
Park M, Liu RW, An H, Geczy CL, Thomas PS, Tedla N. A dual positive and negative regulation of monocyte activation by leukocyte Ig-like receptor B4 depends on the position of the tyrosine residues in its ITIMs. Innate Immun 2017; 23(4): 381-91.
[http://dx.doi.org/10.1177/1753425917699465] [PMID: 28409541]
[16]
Mori Y, Tsuji S, Inui M, et al. Inhibitory immunoglobulin-like receptors LILRB and PIR-B negatively regulate osteoclast development. J Immunol 2008; 181(7): 4742-51.
[http://dx.doi.org/10.4049/jimmunol.181.7.4742] [PMID: 18802077]
[17]
Brody AH, Strittmatter SM. Synaptotoxic signaling by amyloid beta oligomers in Alzheimer’s disease through prion protein and mGluR5. Adv Pharmacol 2018; 82: 293-323.
[http://dx.doi.org/10.1016/bs.apha.2017.09.007] [PMID: 29413525]
[18]
Kim T, Vidal GS, Djurisic M, et al. Human LilrB2 is a β-amyloid receptor and its murine homolog PirB regulates synaptic plasticity in an Alzheimer’s model. Science 2013; 341(6152): 1399-404.
[http://dx.doi.org/10.1126/science.1242077] [PMID: 24052308]
[19]
Zhang Y, Lu N, Xue Y, et al. Expression of immunoglobulin-like transcript (ILT)2 and ILT3 in human gastric cancer and its clinical significance. Mol Med Rep 2012; 5(4): 910-6.
[http://dx.doi.org/10.3892/mmr.2012.744] [PMID: 22246571]
[20]
Yang Z, Bjorkman PJ. Structure of UL18, a peptide-binding viral MHC mimic, bound to a host inhibitory receptor. Proc Natl Acad Sci USA 2008; 105(29): 10095-100.
[http://dx.doi.org/10.1073/pnas.0804551105] [PMID: 18632577]
[21]
Clements CS, Kjer NL, Kostenko L, et al. Crystal structure of HLA-G: A nonclassical MHC class I molecule expressed at the fetal maternal interface. Proc Natl Acad Sci USA 2005; 102(9): 3360-5.
[http://dx.doi.org/10.1073/pnas.0409676102] [PMID: 15718280]
[22]
McIntire RH, Sifers T, Platt JS, Ganacias KG, Langat DK, Hunt JS. Novel HLA-G-binding leukocyte immunoglobulin-like receptor (LILR) expression patterns in human placentas and umbilical cords. Placenta 2008; 29(7): 631-8.
[http://dx.doi.org/10.1016/j.placenta.2008.04.007] [PMID: 18538388]
[23]
Köstlin N, Ostermeir AL, Spring B, et al. HLA-G promotes myeloid-derived suppressor cell accumulation and suppressive activity during human pregnancy through engagement of the receptor ILT4. Eur J Immunol 2017; 47(2): 374-84.
[http://dx.doi.org/10.1002/eji.201646564] [PMID: 27859042]
[24]
Kuroki K, Hirose K, Okabe Y, et al. The long term immunosuppressive effects of disulfide-linked HLA-G dimer in mice with collagen induced arthritis. Hum Immunol 2013; 74(4): 433-8.
[http://dx.doi.org/10.1016/j.humimm.2012.11.060] [PMID: 23276819]
[25]
Shiroishi M, Kuroki K, Rasubala L, et al. Structural basis for recognition of the nonclassical MHC molecule HLA-G by the leukocyte Ig-like receptor B2 (LILRB2/LIR2/ILT4/CD85d). Proc Natl Acad Sci USA 2006; 103(44): 16412-7.
[http://dx.doi.org/10.1073/pnas.0605228103] [PMID: 17056715]
[26]
Shiroishi M, Tsumoto K, Amano K, et al. Human inhibitory receptors Ig-like transcript 2 (ILT2) and ILT4 compete with CD8 for MHC class I binding and bind preferentially to HLA-G. Proc Natl Acad Sci USA 2003; 100(15): 8856-61.
[http://dx.doi.org/10.1073/pnas.1431057100] [PMID: 12853576]
[27]
Sakoguchi A, Saito F, Hirayasu K, et al. Plasmodium falciparum RIFIN is a novel ligand for inhibitory immune receptor LILRB2. Biochem Biophys Res Commun 2021; 548: 167-73.
[http://dx.doi.org/10.1016/j.bbrc.2021.02.033] [PMID: 33647792]
[28]
Kuroki K, Matsubara H, Kanda R, et al. Structural and functional basis for LILRB immune checkpoint receptor recognition of HLA-G isoforms. J Immunol 2019; 203(12): 3386-94.
[http://dx.doi.org/10.4049/jimmunol.1900562] [PMID: 31694909]
[29]
Willcox BE, Thomas LM, Bjorkman PJ. Crystal structure of HLA-A2 bound to LIR-1, a host and viral major histocompatibility complex receptor. Nat Immunol 2003; 4(9): 913-9.
[http://dx.doi.org/10.1038/ni961] [PMID: 12897781]
[30]
Wagner CS, Walther JL, Buentke E, Ljunggren H-G, Achour A, Chambers BJ. Human cytomegalovirus derived protein UL18 alters the phenotype and function of monocyte derived dendritic cells. J Leukoc Biol 2008; 83(1): 56-63.
[http://dx.doi.org/10.1189/jlb.0307181] [PMID: 17898320]
[31]
Wagner CS, Ljunggren HG, Achour A. Immune modulation by the human cytomegalovirus encoded molecule UL18, a mystery yet to be solved. J Immunol 2008; 180(1): 19-24.
[http://dx.doi.org/10.4049/jimmunol.180.1.19] [PMID: 18096997]
[32]
Willcox BE, Thomas LM, Chapman TL, Heikema AP, West AP Jr, Bjorkman PJ. Crystal structure of LIR-2 (ILT4) at 1.8 A: Differences from LIR-1 (ILT2) in regions implicated in the binding of the human cytomegalovirus class I MHC homolog UL18. BMC Struct Biol 2002; 2(1): 6.
[http://dx.doi.org/10.1186/1472-6807-2-6] [PMID: 12390682]
[33]
Dulberger CL, McMurtrey CP, Hölzemer A, et al. Human leukocyte antigen F presents peptides and regulates immunity through interactions with NK cell receptors. Immunity 2017; 46(6): 1018-29.
[http://dx.doi.org/10.1016/j.immuni.2017.06.002] [PMID: 28636952]
[34]
Nam G, Shi Y, Ryu M, et al. Crystal structures of the two membrane proximal Ig-like domains (D3D4) of LILRB1/B2: Alternative models for their involvement in peptide-HLA binding. Protein Cell 2013; 4(10): 761-70.
[http://dx.doi.org/10.1007/s13238-013-3908-x] [PMID: 23955630]
[35]
Wang Q, Song H, Cheng H, et al. Structures of the four Ig-like domain LILRB2 and the four domain LILRB1 and HLA-G1 complex. Cell Mol Immunol 2020; 17(9): 966-75.
[http://dx.doi.org/10.1038/s41423-019-0258-5] [PMID: 31273318]
[36]
Shiroishi M, Kuroki K, Ose T, et al. Efficient leukocyte Ig-like receptor signaling and crystal structure of disulfide linked HLA-G dimer. J Biol Chem 2006; 281(15): 10439-47.
[http://dx.doi.org/10.1074/jbc.M512305200] [PMID: 16455647]
[37]
Baía D, Pou J, Jones D, et al. Interaction of the LILRB1 inhibitory receptor with HLA class Ia dimers. Eur J Immunol 2016; 46(7): 1681-90.
[http://dx.doi.org/10.1002/eji.201546149] [PMID: 27109306]
[38]
Chen Y, Gao F, Chu F, et al. Crystal structure of myeloid cell activating receptor leukocyte Ig-like receptor A2 (LILRA2/ILT1/LIR-7) domain swapped dimer: Molecular basis for its non-binding to MHC complexes. J Mol Biol 2009; 386(3): 841-53.
[http://dx.doi.org/10.1016/j.jmb.2009.01.006] [PMID: 19230061]
[39]
Deng M, Chen H, Liu X, et al. Leukocyte immunoglobulin-like receptor subfamily B: Therapeutic targets in cancer. Antib Ther 2021; 4(1): 16-33.
[http://dx.doi.org/10.1093/abt/tbab002] [PMID: 33928233]
[40]
Li NL, Fu L, Uchtenhagen H, Achour A, Burshtyn DN. Cis association of leukocyte Ig-like receptor 1 with MHC class I modulates accessibility to antibodies and HCMV UL18. Eur J Immunol 2013; 43(4): 1042-52.
[http://dx.doi.org/10.1002/eji.201242607] [PMID: 23348966]
[41]
Guerra PC, Villaseñor YS, Cruz DJ, et al. Analysis of the expression and function of immunoglobulin-like transcript 4 (ILT4, LILRB2) in dendritic cells from patients with systemic lupus erythematosus. J Immunol Res 2016; 2016: 4163094.
[http://dx.doi.org/10.1155/2016/4163094] [PMID: 27057555]
[42]
Monsiváis A, Niño MP, Abud-Mendoza C, et al. Analysis of expression and function of the inhibitory receptor ILT2 (CD85j/LILRB1/LIR-1) in peripheral blood mononuclear cells from patients with Systemic Lupus Erythematosus (SLE). J Autoimmun 2007; 29(2-3): 97-105.
[http://dx.doi.org/10.1016/j.jaut.2007.05.003] [PMID: 17601702]
[43]
Figueroa VN, Galindo RG, Bajaña S, et al. Phenotypic analysis of IL-10-treated, monocyte-derived dendritic cells in patients with systemic lupus erythematosus. Scand J Immunol 2006; 64(6): 668-76.
[http://dx.doi.org/10.1111/j.1365-3083.2006.01849.x] [PMID: 17083624]
[44]
Du Y, Cui Y, Liu X, et al. Contribution of functional LILRA3, but not nonfunctional LILRA3, to sex bias in susceptibility and severity of anti-citrullinated protein antibody-positive rheumatoid arthritis. Arthritis Rheumatol 2014; 66(4): 822-30.
[http://dx.doi.org/10.1002/art.38308] [PMID: 24757135]
[45]
Du Y, Su Y, He J, et al. Impact of the leucocyte immunoglobulin-like receptor A3 (LILRA3) on susceptibility and subphenotypes of systemic lupus erythematosus and Sjögren’s syndrome. Ann Rheum Dis 2015; 74(11): 2070-5.
[http://dx.doi.org/10.1136/annrheumdis-2013-204441] [PMID: 24906639]
[46]
Jensen MA, Patterson KC, Kumar AA, Kumabe M, Franek BS, Niewold TB. Functional genetic polymorphisms in ILT3 are associated with decreased surface expression on dendritic cells and increased serum cytokines in lupus patients. Ann Rheum Dis 2013; 72(4): 596-601.
[http://dx.doi.org/10.1136/annrheumdis-2012-202024] [PMID: 22904259]
[47]
Huynh OA, Hampartzoumian T, Arm JP, et al. Down-regulation of leucocyte immunoglobulin-like receptor expression in the synovium of rheumatoid arthritis patients after treatment with disease modifying anti rheumatic drugs. Rheumatology (Oxford) 2007; 46(5): 742-51.
[http://dx.doi.org/10.1093/rheumatology/kel405] [PMID: 17202177]
[48]
Takahashi A, Kuroki K, Okabe Y, et al. The immunosuppressive effect of domain-deleted dimer of HLA-G2 isoform in collagen-induced arthritis mice. Hum Immunol 2016; 77(9): 754-9.
[http://dx.doi.org/10.1016/j.humimm.2016.01.010] [PMID: 26805457]
[49]
Nishiyama S, Hirose N, Yanoshita M, et al. ANGPTL2 induces synovial inflammation via LILRB2. Inflammation 2021; 44(3): 1108-18.
[http://dx.doi.org/10.1007/s10753-020-01406-7] [PMID: 33538932]
[50]
Kaur G, Trowsdale J, Fugger L. Natural killer cells and their receptors in multiple sclerosis. Brain 2013; 136(9): 2657-76.
[http://dx.doi.org/10.1093/brain/aws159] [PMID: 22734127]
[51]
Wiendl H, Feger U, Mittelbronn M, et al. Expression of the immune-tolerogenic major histocompatibility molecule HLA-G in multiple sclerosis: Implications for CNS immunity. Brain 2005; 128(Pt 11): 2689-704.
[http://dx.doi.org/10.1093/brain/awh609] [PMID: 16123145]
[52]
Zhang S, Ma X, Fu J. Silencing leukocyte immunoglobulin-like receptor A1 in monocytes inhibits inflammation in mice with multiple sclerosis. Neuroimmunomodulation 2019; 26(2): 93-101.
[http://dx.doi.org/10.1159/000495625] [PMID: 30673676]
[53]
An H, Lim C, Guillemin GJ, et al. Serum leukocyte immunoglobulin-like receptor A3 (LILRA3) is increased in patients with multiple sclerosis and is a strong independent indicator of disease severity; 6.7kbp LILRA3 gene deletion is not associated with diseases susceptibility. PLoS One 2016; 11(2): e0149200.
[http://dx.doi.org/10.1371/journal.pone.0149200] [PMID: 26871720]
[54]
Baudhuin J, Migraine J, Faivre V, et al. Exocytosis acts as a modulator of the ILT4-mediated inhibition of neutrophil functions. Proc Natl Acad Sci USA 2013; 110(44): 17957-62.
[http://dx.doi.org/10.1073/pnas.1221535110] [PMID: 24133137]
[55]
Sloane DE, Tedla N, Awoniyi M, et al. Leukocyte immunoglobulin-like receptors: Novel innate receptors for human basophil activation and inhibition. Blood 2004; 104(9): 2832-9.
[http://dx.doi.org/10.1182/blood-2004-01-0268] [PMID: 15242876]
[56]
Truong AD, Rengaraj D, Hong Y, et al. Leukocyte immunoglobulin-like receptors A2 and A6 are expressed in avian macrophages and modulate cytokine production by activating multiple signaling pathways. Int J Mol Sci 2018; 19(9): E2710.
[http://dx.doi.org/10.3390/ijms19092710] [PMID: 30208630]
[57]
Naji A, Menier C, Morandi F, et al. Binding of HLA-G to ITIM-bearing Ig-like transcript 2 receptor suppresses B cell responses. J Immunol 2014; 192(4): 1536-46.
[http://dx.doi.org/10.4049/jimmunol.1300438] [PMID: 24453251]
[58]
Sun YX, Feng Q, Wang SW, Li X, Sheng Z, Peng J. HLA-G-ILT2 interaction contributes to suppression of bone marrow B cell proliferation in acquired aplastic anemia. Ann Hematol 2022; 101(4): 739-48.
[http://dx.doi.org/10.1007/s00277-022-04757-3] [PMID: 35041051]
[59]
Ristich V, Zhang W, Liang S, Horuzsko A. Mechanisms of prolongation of allograft survival by HLA-G/ILT4-modified dendritic cells. Hum Immunol 2007; 68(4): 264-71.
[http://dx.doi.org/10.1016/j.humimm.2006.11.008] [PMID: 17400062]
[60]
Anfossi N, Doisne JM, Peyrat MA, et al. Coordinated expression of Ig-like inhibitory MHC class I receptors and acquisition of cytotoxic function in human CD8+ T cells. J Immunol 2004; 173(12): 7223-9.
[http://dx.doi.org/10.4049/jimmunol.173.12.7223] [PMID: 15585844]
[61]
Naji A, Durrbach A, Carosella ED, Rouas-Freiss N. Soluble HLA-G and HLA-G1 expressing antigen-presenting cells inhibit T-cell alloproliferation through ILT-2/ILT-4/Fasl-mediated pathways. Hum Immunol 2007; 68(4): 233-9.
[http://dx.doi.org/10.1016/j.humimm.2006.10.017] [PMID: 17400057]
[62]
Kuroki K, Mio K, Takahashi A, et al. Cutting edge: Class II-like structural features and strong receptor binding of the nonclassical HLA-G2 isoform homodimer. J Immunol 2017; 198(9): 3399-403.
[http://dx.doi.org/10.4049/jimmunol.1601296] [PMID: 28348268]
[63]
Watanabe H, Kuroki K, Yamada C, Saburi Y, Maeda N, Maenaka K. Therapeutic effects of soluble human leukocyte antigen G2 isoform in lupus-prone MRL/lpr mice. Hum Immunol 2020; 81(4): 186-90.
[http://dx.doi.org/10.1016/j.humimm.2019.11.002] [PMID: 31733925]
[64]
Bronte V, Serafini P, De Santo C, et al. IL-4-induced arginase 1 suppresses alloreactive T cells in tumor bearing mice. J Immunol 2003; 170(1): 270-8.
[http://dx.doi.org/10.4049/jimmunol.170.1.270] [PMID: 12496409]
[65]
Bashirova AA, Martin GE, Jones DC, et al. LILRB2 interaction with HLA class I correlates with control of HIV-1 infection. PLoS Genet 2014; 10(3): e1004196.
[http://dx.doi.org/10.1371/journal.pgen.1004196] [PMID: 24603468]
[66]
Vlad G, Piazza F, Colovai A, et al. Interleukin-10 induces the upregulation of the inhibitory receptor ILT4 in monocytes from HIV positive individuals. Hum Immunol 2003; 64(5): 483-9.
[http://dx.doi.org/10.1016/S0198-8859(03)00040-5] [PMID: 12691698]
[67]
O’Connor GM, Holmes A, Mulcahy F, Gardiner CM. Natural Killer cells from long-term non-progressor HIV patients are characterized by altered phenotype and function. Clin Immunol 2007; 124(3): 277-83.
[http://dx.doi.org/10.1016/j.clim.2007.05.016] [PMID: 17611161]
[68]
Arnold V, Cummings JS, Moreno-Nieves UY, et al. S100A9 protein is a novel ligand for the CD85j receptor and its interaction is implicated in the control of HIV-1 replication by NK cells. Retrovirology 2013; 10(1): 122.
[http://dx.doi.org/10.1186/1742-4690-10-122] [PMID: 24156302]
[69]
Ahrenstorf G, Low HZ, Kniesch K, et al. LILRA3 deletion is a genetic risk factor of HIV infection. AIDS 2017; 31(1): 25-34.
[http://dx.doi.org/10.1097/QAD.0000000000001304] [PMID: 27755104]
[70]
Chan KR, Ong EZ, Tan HC, et al. Leukocyte immunoglobulin-like receptor B1 is critical for antibody-dependent dengue. Proc Natl Acad Sci USA 2014; 111(7): 2722-7.
[http://dx.doi.org/10.1073/pnas.1317454111] [PMID: 24550301]
[71]
Vlad G, Chang CC, Colovai AI, Berloco P, Cortesini R, Suciu FN. Immunoglobulin-like transcript 3: A crucial regulator of dendritic cell function. Hum Immunol 2009; 70(5): 340-4.
[http://dx.doi.org/10.1016/j.humimm.2009.03.004] [PMID: 19275918]
[72]
Hirayasu K, Saito F, Suenaga T, et al. Microbially cleaved immunoglobulins are sensed by the innate immune receptor LILRA2. Nat Microbiol 2016; 1(6): 16054.
[http://dx.doi.org/10.1038/nmicrobiol.2016.54] [PMID: 27572839]
[73]
Yamazaki R, Furukawa A, Hirayasu K, et al. Molecular mechanism of the recognition of bacterially cleaved immunoglobulin by the immune regulatory receptor LILRA2. J Biol Chem 2020; 295(28): 9531-41.
[http://dx.doi.org/10.1074/jbc.RA120.013354] [PMID: 32424043]
[74]
Cella M, Döhring C, Samaridis J, et al. A novel inhibitory receptor (ILT3) expressed on monocytes, macrophages, and dendritic cells involved in antigen processing. J Exp Med 1997; 185(10): 1743-51.
[http://dx.doi.org/10.1084/jem.185.10.1743] [PMID: 9151699]
[75]
Brown DP, Jones DC, Anderson KJ, et al. The inhibitory receptor LILRB4 (ILT3) modulates antigen presenting cell phenotype and, along with LILRB2 (ILT4), is upregulated in response to Salmonella infection. BMC Immunol 2009; 10(1): 56.
[http://dx.doi.org/10.1186/1471-2172-10-56] [PMID: 19860908]
[76]
Cao W, Rosen DB, Ito T, et al. Plasmacytoid dendritic cell-specific receptor ILT7-Fc epsilonRI gamma inhibits toll like receptor induced interferon production. J Exp Med 2006; 203(6): 1399-405.
[http://dx.doi.org/10.1084/jem.20052454] [PMID: 16735691]
[77]
Park M, Raftery MJ, Thomas PS, Geczy CL, Bryant K, Tedla N. Leukocyte immunoglobulin-like receptor B4 regulates key signalling molecules involved in FcγRI-mediated clathrin dependent endocytosis and phagocytosis. Sci Rep 2016; 6(1): 35085.
[http://dx.doi.org/10.1038/srep35085] [PMID: 27725776]
[78]
Wiśniewski A, Kowal A, Wyrodek E, et al. Genetic polymorphisms and expression of HLA-G and its receptors, KIR2DL4 and LILRB1, in non-small cell lung cancer. Tissue Antigens 2015; 85(6): 466-75.
[http://dx.doi.org/10.1111/tan.12561] [PMID: 25855135]
[79]
Qiu T, Zhou J, Wang T, et al. Leukocyte immunoglobulin-like receptor B4 deficiency exacerbates acute lung injury via NF-κB signaling in bone marrow-derived macrophages. Biosci Rep 2019; 39(6): BSR20181888.
[http://dx.doi.org/10.1042/BSR20181888] [PMID: 31138763]
[80]
Fan J, Wang L, Chen M, et al. Analysis of the expression and prognosis for leukocyte immunoglobulin-like receptor subfamily B in human liver cancer. World J Surg Oncol 2022; 20(1): 92.
[http://dx.doi.org/10.1186/s12957-022-02562-w] [PMID: 35321724]
[81]
Zhang Y, Zhao J, Qiu L, et al. Co-expression of ILT4/HLA-G in human non-small cell lung cancer correlates with poor prognosis and ILT4-HLA-G interaction activates ERK signaling. Tumour Biol 2016; 37(8): 11187-98.
[http://dx.doi.org/10.1007/s13277-016-5002-5] [PMID: 26939901]
[82]
Zhang P, Guo X, Li J, et al. Immunoglobulin-like transcript 4 promotes tumor progression and metastasis and up-regulates VEGF-C expression via ERK signaling pathway in non-small cell lung cancer. Oncotarget 2015; 6(15): 13550-63.
[http://dx.doi.org/10.18632/oncotarget.3624] [PMID: 25948790]
[83]
Zhang P, Yu S, Li H, et al. ILT4 drives B7-H3 expression via PI3K/AKT/mTOR signalling and ILT4/B7-H3 co-expression correlates with poor prognosis in non-small cell lung cancer. FEBS Lett 2015; 589(17): 2248-56.
[http://dx.doi.org/10.1016/j.febslet.2015.06.037] [PMID: 26149216]
[84]
Chen X, Gao A, Zhang F, et al. ILT4 inhibition prevents TAM and dysfunctional T cell-mediated immunosuppression and enhances the efficacy of anti PDL1 therapy in NSCLC with EGFR activation. Theranostics 2021; 11(7): 3392-416.
[http://dx.doi.org/10.7150/thno.52435] [PMID: 33537094]
[85]
Chen HM, Touw W, Wang YS, et al. Blocking immunoinhibitory receptor LILRB2 reprograms tumor-associated myeloid cells and promotes antitumor immunity. J Clin Invest 2018; 128(12): 5647-62.
[http://dx.doi.org/10.1172/JCI97570] [PMID: 30352428]
[86]
Gao A, Sun Y, Peng G. ILT4 functions as a potential checkpoint molecule for tumor immunotherapy. Biochim Biophys Acta Rev Cancer 2018; 1869(2): 278-85.
[http://dx.doi.org/10.1016/j.bbcan.2018.04.001] [PMID: 29649510]
[87]
Wang L, Geng T, Guo X, et al. Co-expression of immunoglobulin-like transcript 4 and angiopoietin-like proteins in human non small cell lung cancer. Mol Med Rep 2015; 11(4): 2789-96.
[http://dx.doi.org/10.3892/mmr.2014.3029] [PMID: 25482926]
[88]
Liu X, Yu X, Xie J, et al. ANGPTL2/LILRB2 signaling promotes the propagation of lung cancer cells. Oncotarget 2015; 6(25): 21004-15.
[http://dx.doi.org/10.18632/oncotarget.4217] [PMID: 26056041]
[89]
Medin C, Turgeon MK, Keilson JM, et al. High-risk gene expression in colorectal liver metastasis: Potential for novel therapies. J Clin Oncol 2022; 29(4): 381-1.
[http://dx.doi.org/10.1200/JCO.2022.40.4_suppl.147]
[90]
Cai Z, Wang L, Han Y, et al. Immunoglobulin like transcript 4 and human leukocyte antigen G interaction promotes the progression of human colorectal cancer. Int J Oncol 2019; 54(6): 1943-54.
[http://dx.doi.org/10.3892/ijo.2019.4761] [PMID: 30942436]
[91]
Cheng J, Gao X, Zhang X, Guo H, Chen S, Gou X. Leukocyte immunoglobulin-like receptor subfamily B member 1 potentially acts as a diagnostic and prognostic target in certain subtypes of adenocarcinoma. Med Hypotheses 2020; 144: 109863.
[http://dx.doi.org/10.1016/j.mehy.2020.109863] [PMID: 32534335]
[92]
Liu J, Wang L, Gao W, et al. Inhibitory receptor immunoglobulin-like transcript 4 was highly expressed in primary ductal and lobular breast cancer and significantly correlated with IL-10. Diagn Pathol 2014; 9: 85.
[http://dx.doi.org/10.1186/1746-1596-9-85] [PMID: 24762057]
[93]
Roberti MP, Juliá EP, Rocca YS, et al. Overexpression of CD85j in TNBC patients inhibits Cetuximab mediated NK-cell ADCC but can be restored with CD85j functional blockade. Eur J Immunol 2015; 45(5): 1560-9.
[http://dx.doi.org/10.1002/eji.201445353] [PMID: 25726929]
[94]
Ju XS, Hacker C, Scherer B, et al. Immunoglobulin-like transcripts ILT2, ILT3 and ILT7 are expressed by human dendritic cells and down-regulated following activation. Gene 2004; 331: 159-64.
[http://dx.doi.org/10.1016/j.gene.2004.02.018] [PMID: 15094202]
[95]
Nikolova M, Musette P, Bagot M, Boumsell L, Bensussan A. Engagement of ILT2/CD85j in Sézary syndrome cells inhibits their CD3/TCR signaling. Blood 2002; 100(3): 1019-25.
[http://dx.doi.org/10.1182/blood-2001-12-0303] [PMID: 12130517]
[96]
Naji A, Menier C, Maki G, Carosella ED, Rouas-Freiss N. Neoplastic B-cell growth is impaired by HLA-G/ILT2 interaction. Leukemia 2012; 26(8): 1889-92.
[http://dx.doi.org/10.1038/leu.2012.62] [PMID: 22441169]
[97]
Heidenreich S, Zu Eulenburg C, Hildebrandt Y, et al. Impact of the NK cell receptor LIR-1 (ILT-2/CD85j/LILRB1) on cytotoxicity against multiple myeloma. Clin Dev Immunol 2012; 2012: 652130.
[http://dx.doi.org/10.1155/2012/652130] [PMID: 22844324]
[98]
Li X, Wei X, Xu H, et al. Expression of leukocyte immunoglobulin-like receptor B2 in hepatocellular carcinoma and its clinical significance. J Cancer Res Ther 2018; 14(7): 1655-9.
[http://dx.doi.org/10.4103/jcrt.JCRT_542_18] [PMID: 30589055]
[99]
García M, Palma MB, Verine J, et al. The immune-checkpoint HLA-G/ILT4 is involved in the regulation of VEGF expression in clear cell renal cell carcinoma. BMC Cancer 2020; 20(1): 624.
[http://dx.doi.org/10.1186/s12885-020-07113-8] [PMID: 32620162]
[100]
Dobrowolska H, Gill KZ, Serban G, et al. Expression of immune inhibitory receptor ILT3 in acute myeloid leukemia with monocytic differentiation. Cytometry B Clin Cytom 2013; 84(1): 21-9.
[http://dx.doi.org/10.1002/cyto.b.21050] [PMID: 23027709]
[101]
Colovai AI, Tsao L, Wang S, et al. Expression of inhibitory receptor ILT3 on neoplastic B cells is associated with lymphoid tissue involvement in chronic lymphocytic leukemia. Cytometry B Clin Cytom 2007; 72(5): 354-62.
[http://dx.doi.org/10.1002/cyto.b.20164] [PMID: 17266150]
[102]
Deng M, Gui X, Kim J, et al. LILRB4 signalling in leukaemia cells mediates T cell suppression and tumour infiltration. Nature 2018; 562(7728): 605-9.
[http://dx.doi.org/10.1038/s41586-018-0615-z] [PMID: 30333625]
[103]
Gui X, Deng M, Song H, et al. Disrupting LILRB4/APOE interaction by an efficacious humanized antibody reverses T-cell suppression and blocks AML development. Cancer Immunol Res 2019; 7(8): 1244-57.
[http://dx.doi.org/10.1158/2326-6066.CIR-19-0036] [PMID: 31213474]
[104]
Meyaard L. The inhibitory collagen receptor LAIR-1 (CD305). J Leukoc Biol 2008; 83(4): 799-803.
[http://dx.doi.org/10.1189/jlb.0907609] [PMID: 18063695]
[105]
Hu JG, Lu PH, Xu XM. Inhibitory proteins against axon regeneration in the central nervous system. Sheng Li Ke Xue Jin Zhan 2004; 35(4): 311-4.
[PMID: 15727207]
[106]
Smith LM, Kostylev MA, Lee S, Strittmatter SM. Systematic and standardized comparison of reported amyloid-β receptors for sufficiency, affinity, and Alzheimer’s disease relevance. J Biol Chem 2019; 294(15): 6042-53.
[http://dx.doi.org/10.1074/jbc.RA118.006252] [PMID: 30787106]
[107]
Perez SE, He B, Nadeem M, et al. Hippocampal endosomal, lysosomal, and autophagic dysregulation in mild cognitive impairment: Correlation with aβ and tau pathology. J Neuropathol Exp Neurol 2015; 74(4): 345-58.
[http://dx.doi.org/10.1097/NEN.0000000000000179] [PMID: 25756588]
[108]
Atwal JK, Pinkston GJ, Syken J, et al. PirB is a functional receptor for myelin inhibitors of axonal regeneration. Science 2008; 322(5903): 967-70.
[http://dx.doi.org/10.1126/science.1161151] [PMID: 18988857]
[109]
Cao Q, Shin WS, Chan H, et al. Inhibiting amyloid-β cytotoxicity through its interaction with the cell surface receptor LilrB2 by structure-based design. Nat Chem 2018; 10(12): 1213-21.
[http://dx.doi.org/10.1038/s41557-018-0147-z] [PMID: 30297750]
[110]
VanGuilder SHD, Van KCA, Bixler GV, et al. Neuroglial expression of the MHCI pathway and PirB receptor is upregulated in the hippocampus with advanced aging. J Mol Neurosci 2012; 48(1): 111-26.
[http://dx.doi.org/10.1007/s12031-012-9783-8] [PMID: 22562814]
[111]
Cafferty WBJ, Duffy P, Huebner E, Strittmatter SM. MAG and OMgp synergize with Nogo-A to restrict axonal growth and neurological recovery after spinal cord trauma. J Neurosci 2010; 30(20): 6825-37.
[http://dx.doi.org/10.1523/JNEUROSCI.6239-09.2010] [PMID: 20484625]
[112]
An H, Brettle M, Lee T, et al. Soluble LILRA3 promotes neurite outgrowth and synapses formation through a high-affinity interaction with Nogo 66. J Cell Sci 2016; 129(6): 1198-209.
[http://dx.doi.org/10.1242/jcs.182006] [PMID: 26826187]
[113]
Harly C, Peyrat MA, Netzer S, Déchanet MJ, Bonneville M, Scotet E. Up-regulation of cytolytic functions of human Vδ2-γ T lymphocytes through engagement of ILT2 expressed by tumor target cells. Blood 2011; 117(10): 2864-73.
[http://dx.doi.org/10.1182/blood-2010-09-309781] [PMID: 21233315]
[114]
Lu Y, Jiang Z, Dai H, et al. Hepatic leukocyte immunoglobulin-like receptor B4 (LILRB4) attenuates nonalcoholic fatty liver disease via SHP1-TRAF6 pathway. Hepatology 2018; 67(4): 1303-19.
[http://dx.doi.org/10.1002/hep.29633] [PMID: 29091299]
[115]
Li Q, Wei G, Tao T. Leukocyte immunoglobulin-like receptor B4 (LILRB4) negatively mediates the pathological cardiac hypertrophy by suppressing fibrosis, inflammation and apoptosis via the activation of NF-κB signaling. Biochem Biophys Res Commun 2019; 509(1): 16-23.
[http://dx.doi.org/10.1016/j.bbrc.2018.11.137] [PMID: 30581005]
[116]
Ceelen D, Voors AA, Tromp J, et al. Pathophysiological pathways related to high plasma growth differentiation factor 15 concentrations in patients with heart failure. Eur J Heart Fail 2022; 24(2): 308-20.
[http://dx.doi.org/10.1002/ejhf.2424] [PMID: 34989084]
[117]
Dubé MP, Zetler R, Barhdadi A, et al. CKM and LILRB5 are associated with serum levels of creatine kinase. Circ Cardiovasc Genet 2014; 7(6): 880-6.
[http://dx.doi.org/10.1161/CIRCGENETICS.113.000395] [PMID: 25214527]
[118]
Bylińska A, Wilczyńska K, Malejczyk J, et al. The impact of HLA-G, LILRB1 and LILRB2 gene polymorphisms on susceptibility to and severity of endometriosis. Mol Genet Genomics 2018; 293(3): 601-13.
[http://dx.doi.org/10.1007/s00438-017-1404-3] [PMID: 29234882]
[119]
Shao H, Ma L, Jin F, Zhou Y, Tao M, Teng Y. Immune inhibitory receptor LILRB2 is critical for the endometrial cancer progression. Biochem Biophys Res Commun 2018; 506(1): 243-50.
[http://dx.doi.org/10.1016/j.bbrc.2018.09.114] [PMID: 30343889]
[120]
Hinshaw DC, Shevde LA. The tumor microenvironment innately modulates cancer progression. Cancer Res 2019; 79(18): 4557-66.
[http://dx.doi.org/10.1158/0008-5472.CAN-18-3962] [PMID: 31350295]
[121]
Bader JE, Voss K, Rathmell JC. Targeting metabolism to improve the tumor microenvironment for cancer immunotherapy. Mol Cell 2020; 78(6): 1019-33.
[http://dx.doi.org/10.1016/j.molcel.2020.05.034] [PMID: 32559423]
[122]
Goswami M, Gui G, Dillon LW, et al. Pembrolizumab and decitabine for refractory or relapsed acute myeloid leukemia. J Immunother Cancer 2022; 10(1): e003392.
[http://dx.doi.org/10.1136/jitc-2021-003392] [PMID: 35017151]
[123]
Singh L, Muise ES, Bhattacharya A, et al. ILT3 (LILRB4) promotes the immunosuppressive function of tumor-educated human monocytic myeloid-derived suppressor cells. Mol Cancer Res 2021; 19(4): 702-16.
[http://dx.doi.org/10.1158/1541-7786.MCR-20-0622] [PMID: 33372059]
[124]
Hashambhoy RY, Spaulding V, Priess M, et al. 217 Evaluating biomarkers of JTX-8064 (anti-LILRB2/ILT4 monoclonal antibody) in an ex vivo human tumor histoculture system to inform clinical development. J Immunother Cancer 2020; 8(3): A129-30.
[125]
Lao K, Zhang R, Dai Y, et al. Identification of novel Aβ-LilrB2 inhibitors as potential therapeutic agents for Alzheimer’s disease. Mol Cell Neurosci 2021; 114: 103630.
[http://dx.doi.org/10.1016/j.mcn.2021.103630] [PMID: 34029694]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy