Generic placeholder image

Current Nutrition & Food Science

Editor-in-Chief

ISSN (Print): 1573-4013
ISSN (Online): 2212-3881

Review Article

Phytonutraceuticals in Cancer Prevention and Therapeutics

Author(s): Shailaja Amol Dombe* and Pramodkumar Jaykumar Shirote

Volume 19, Issue 3, 2023

Published on: 26 September, 2022

Page: [209 - 228] Pages: 20

DOI: 10.2174/1573401318666220820151421

Price: $65

conference banner
Abstract

Background: Urbanization has led to numerous health tribulations globally, and cancer is the most devastating among them. Phytochemicals have been utilized as bioactive compounds/ nutrients prominently as antioxidants and revitalizing agents and found to have notable health benefits.

Objectives: The nutritional constituents of plants have intensively been investigated to appraise their healthiness and effectiveness in cancer. Food supplements like nutraceuticals have an important role in health and provide essential molecules required for different metabolic processes, which regulate body functions and protect the body from diseases.

Methods: Numerous attempts and substantial studies have been escalated by many researchers. These studies have explained that dietary patterns and restrictions are the most important cardinal stride and determinant of many dreadful diseases like cancer. This review article focuses on the exploration of the clinical significance of phytochemicals in cancer therapy.

Results: The phytochemicals from various plant parts having the potential to prevent cancer as well as serve as effective anti-cancer agents have been summarized in terms of their components, such as carotenoids, flavonoids, alkaloids, organosulphur compounds etc., along with the targets on which they act, sources from where they can be obtained, and their screening procedure. Significant interest has been received in nutraceuticals because of nutritional benefits, safety and preventive as well as therapeutic perspectives.

Conclusion: Phytonutraceuticals, as current drug delivery for cancer, have been utilized as an option for modern medicines. Ultimately, they ensure health improvement, and this review focuses on an overview of current nutraceuticals and nano-based delivery systems, which may be helpful in focusing on further groundbreaking research plans in the new domain.

Keywords: Phytochemicals, nutraceuticals, flavonoids, carotenoids, alkaloids, anticancer.

Graphical Abstract
[1]
Smith-Warner SA, Elmer PJ, Tharp TM, et al. Increasing vegetable and fruit intake: Randomized intervention and monitoring in an atrisk population. Cancer Epidemiol Biomarkers Prev 2000; 9(3): 307-17.
[PMID: 10750670]
[2]
Andersen V, Holst R, Vogel U. Systematic review: Diet-gene interactions and the risk of colorectal cancer. Aliment Pharmacol Ther 2013; 37(4): 383-91.
[http://dx.doi.org/10.1111/apt.12180] [PMID: 23216531]
[3]
Ranzato E, Martinotti S, Calabrese CM, Calabrese G. Role of nutraceuticals in cancer therapy. J Food Res 2014; 3(4): 18.
[http://dx.doi.org/10.5539/jfr.v3n4p18]
[4]
Angel NM, Raja K, Kumaravel M, Sasidharan S, Seethapathy GS. Role of nutraceuticals in cancer. Int J Pharm Pharm Sci 2012; 4 (Suppl. 4): 415-20.
[http://dx.doi.org/10.4018/978-1-5225-7039-4.ch017]
[5]
Chanda S, Tiwari RK, Kumar A, Singh K. Nutraceuticals inspiring the current therapy for lifestyle diseases. Adv Pharmacol Sci 2019; 2019: 6908716.
[http://dx.doi.org/10.1155/2019/6908716] [PMID: 30755770]
[6]
Brower V. Nutraceuticals: Poised for a healthy slice of the healthcare market? Nat Biotechnol 1998; 16(8): 728-31.
[http://dx.doi.org/10.1038/nbt0898-728] [PMID: 9702769]
[7]
KalraEkta K. Nutraceutical- Definition and introduction. AAPS Pharm 2003; 5(3): 1-2.
[http://dx.doi.org/10.1208/ps050325]
[8]
Cencic A, Chingwaru W. The role of functional foods, nutraceuticals, and food supplements in intestinal health. Nutrients 2010; 2(6): 611-25.
[http://dx.doi.org/10.3390/nu2060611] [PMID: 22254045]
[9]
Kuppusamy P, Yusoff MM, Maniam GP, Ichwan SJ, Soundharrajan I, Govindan N. Nutraceuticals as potential therapeutic agents for colon cancer: A review. Acta Pharm Sin B 2014; 4(3): 173-81.
[http://dx.doi.org/10.1016/j.apsb.2014.04.002] [PMID: 26579381]
[10]
Verma G, Mishra MK. A review on nutraceuticals: Classification and its role in various diseases. Int J Pharm Ther 2016; 7(4)
[11]
Ehrlich SD. Ginger, private practice specializing in complementary and alternative medicine. AZ, USA: VeriMed Healthcare Network 2008.
[12]
Gupta S, Chauhan D, Mehla K, Sood P, Nair A. An overview of nutraceuticals: Current scenario. J Basic Clin Pharm 2010; 1(2): 55-62.
[PMID: 24825966]
[13]
Ehrlich SD. Peppermint (Mentha Piperita), private practice specializing in complementary and alternative medicine, review. Phoenix, AZ, USA: VeriMed Healthcare Network 2009.
[14]
Quigley EM. Prebiotics and probiotics; modifying and mining the microbiota. Pharmacol Res 2010; 61(3): 213-8.
[http://dx.doi.org/10.1016/j.phrs.2010.01.004] [PMID: 20080184]
[15]
Hanif R, Iqbal Z, Iqbal M, Hanif S, Rasheed M. Use of vegetables as nutritional food: Role in human health. J Agric Biol Sci 2006; 1(1): 18-22.
[16]
Khan AU, Dagur HS, Khan M, Malik N, Alam M, Mushtaque M. Therapeutic role of flavonoids and flavones in cancer prevention: Current trends and future perspectives. Eur J Med Chem 2021; 3: 100010.
[17]
Holzapfel WH, Haberer P, Geisen R, Björkroth J, Schillinger U. Taxonomy and important features of probiotic microorganisms in food and nutrition. Am J Clin Nutr 2001; 73(2): 365S-73S.
[http://dx.doi.org/10.1093/ajcn/73.2.365s] [PMID: 11157343]
[18]
Zommiti M, Feuilloley MGJ, Connil N. Update of probiotics in human world: A nonstop source of benefactions till the end of time. Microorganisms 2020; 8(12): 1907.
[http://dx.doi.org/10.3390/microorganisms8121907] [PMID: 33266303]
[19]
Casey CF, Slawson DC, Neal LR. VItamin D supplementation in infants, children, and adolescents. Am Fam Physician 2010; 81(6): 745-8.
[PMID: 20229973]
[20]
I.Raut H. N. Lodhi G, P. Kalode D. A general review on nutraceuticals: Its golden health impact over human community. Int J Adv Res (Indore) 2021; 9(01): 1121-5.
[http://dx.doi.org/10.21474/IJAR01/12399]
[21]
Avrelija C, Walter C. Antimicrobial agents deriving from indigenous plants. Recent Pat Food Nutr Agric 2010; 2(1): 83-92.
[http://dx.doi.org/10.2174/1876142911002010083] [PMID: 20653553]
[22]
Bala M, Troja R, Dalanaj N. Antioxidant effects of natural bioactive compounds. J Hyg Eng Des 2017; 18: 59-62.
[http://dx.doi.org/10.2174/138161209789058084]
[23]
Pan MH, Ghai G, Ho CT. Food bioactives, apoptosis, and cancer. Mol Nutr Food Res 2008; 52(1): 43-52.
[http://dx.doi.org/10.1002/mnfr.200700380] [PMID: 18080242]
[24]
Ganapathy M, Bhunia S. Nutraceuticals: The new generation therapeutics. Adv Tech Biol Med 2016; 4(2): 1-5.
[http://dx.doi.org/10.4172/2379-1764.1000179]
[25]
Ferrucci V, Boffa I, De Masi G, Zollo M. Natural compounds for pediatric cancer treatment. Naunyn Schmiedebergs Arch Pharmacol 2016; 389(2): 131-49.
[http://dx.doi.org/10.1007/s00210-015-1191-5] [PMID: 26650503]
[26]
Winters M. Ancient medicine, modern use: Withania somnifera and its potential role in integrative oncology. Altern Med Rev 2006; 11(4): 269-77.
[PMID: 17176166]
[27]
Palliyaguru DL, Singh SV, Kensler TW. Withania somnifera: From prevention to treatment of cancer. Mol Nutr Food Res 2016; 60(6): 1342-53.
[http://dx.doi.org/10.1002/mnfr.201500756] [PMID: 26718910]
[28]
Assi M, Derbré F, Lefeuvre-Orfila L, Rébillard A. Antioxidant supplementation accelerates cachexia development by promoting tumor growth in C26 tumor-bearing mice. Free Radic Biol Med 2016; 91: 204-14.
[http://dx.doi.org/10.1016/j.freeradbiomed.2015.12.019] [PMID: 26708754]
[29]
Bahar MA, Andoh T, Ogura K, Hayakawa Y, Saiki I, Kuraishi Y. Herbal medicine goshajinkigan prevents paclitaxel-induced mechanical allodynia without impairing antitumor activity of paclitaxel. Evid Based Complement Alternat Med 2013; 2013: 849754.
[http://dx.doi.org/10.1155/2013/849754] [PMID: 24198846]
[30]
Kuriyama A, Endo K. Goshajinkigan for prevention of chemotherapy-induced peripheral neuropathy: A systematic review and meta-analysis. Support Care Cancer 2018; 26(4): 1051-9.
[http://dx.doi.org/10.1007/s00520-017-4028-6] [PMID: 29280005]
[31]
Bin Sayeed MS, Ameen SS. Beta-sitosterol: A promising but orphan nutraceutical to fight against cancer. Nutr Cancer 2015; 67(8): 1214-20.
[http://dx.doi.org/10.1080/01635581.2015.1087042] [PMID: 26473555]
[32]
Manral C, Roy S, Singh M, et al. Effect of β-sitosterol against methyl nitrosourea-induced mammary gland carcinoma in Albino rats. BMC Complement Altern Med 2016; 16(1): 260.
[http://dx.doi.org/10.1186/s12906-016-1243-5] [PMID: 27473871]
[33]
Biernacka KM, Holly JMP, Martin RM, et al. Effect of green tea and lycopene on the insulin-like growth factor system: The ProDiet randomized controlled trial. Eur J Cancer Prev 2019; 28(6): 569-75.
[http://dx.doi.org/10.1097/CEJ.0000000000000502] [PMID: 30921005]
[34]
Lane JA, Er V, Avery KNL, et al. ProDiet: A phase II randomized placebo-controlled trial of green tea catechinsand lycopene in men at increased risk of prostate cancer. Cancer Prev Res (Phila) 2018; 11(11): 687-96.
[http://dx.doi.org/10.1158/1940-6207.CAPR-18-0147] [PMID: 30309839]
[35]
Calvani M, Pasha A, Favre C. Nutraceutical boom in cancer: Inside the labyrinth of reactive oxygen species. Int J Mol Sci 2020; 21(6): 1936.
[http://dx.doi.org/10.3390/ijms21061936] [PMID: 32178382]
[36]
Vue B, Zhang S, Chen QH. Synergistic effects of dietary natural products as anti-prostate cancer agents. Nat Prod Commun 2015; 10(12): 2179-88.
[http://dx.doi.org/10.1177/1934578X1501001241] [PMID: 26882694]
[37]
Gülçin I, Mshvildadze V, Gepdiremen A, Elias R. The antioxidant activity of a triterpenoid glycoside isolated from the berries of Hedera colchica: 3-O-(β-D-glucopyranosyl)-hederagenin. Phytother Res 2006; 20(2): 130-4.
[http://dx.doi.org/10.1002/ptr.1821] [PMID: 16444666]
[38]
Lotha RO, Sivasubramanian AR. Flavonoids nutraceuticals in prevention and treatment of cancer: A review. Asian J Pharm Clin Res 2018; 11: 42-7.
[http://dx.doi.org/10.22159/ajpcr.2018.v11i1.23410]
[39]
Dillard CJ, German JB. Phytochemicals: Nutraceuticals and human health. J Sci Food Agric 2000; 80(12): 1744-56.
[http://dx.doi.org/10.1002/1097-0010(20000915)80:12<1744::AIDJSFA725>3.0.CO;2-W]
[40]
Hollman PC, Katan MB. Dietary flavonoids: Intake, health effects and bioavailability. Food Chem Toxicol 1999; 37(9-10): 937-42.
[http://dx.doi.org/10.1016/S0278-6915(99)00079-4] [PMID: 10541448]
[41]
Mulholland PJ, Ferry DR, Anderson D, et al. Pre-clinical and clinical study of QC12, a water-soluble, pro-drug of quercetin. Ann Oncol 2001; 12(2): 245-8.
[http://dx.doi.org/10.1023/A:1008372017097] [PMID: 11300332]
[42]
Wang D, He X, Wang D, et al. Quercetin suppresses apoptosis and attenuates intervertebral disc degeneration via the SIRT1-autophagy pathway. Front Cell Dev Biol 2020; 8: 613006.
[http://dx.doi.org/10.3389/fcell.2020.613006] [PMID: 33363176]
[43]
Ozpolat B, Akar U, Steiner M, et al. Programmed cell death-4 tumor suppressor protein contributes to retinoic acid-induced terminal granulocytic differentiation of human myeloid leukemia cells. Mol Cancer Res 2007; 5(1): 95-108.
[http://dx.doi.org/10.1158/1541-7786.MCR-06-0125] [PMID: 17259349]
[44]
Kumar S, Pandey AK. Chemistry and biological activities of flavonoids: An overview. Sci World J 2013; 2013: 162750.
[45]
Halliwell B. Free radicals and antioxidants: A personal view. Nutr Rev 1994; 52(8 Pt 1): 253-65.
[http://dx.doi.org/10.1111/j.1753-4887.1994.tb01453.x] [PMID: 7970288]
[46]
Valko M, Rhodes CJ, Moncol J, Izakovic M, Mazur M. Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem Biol Interact 2006; 160(1): 1-40.
[http://dx.doi.org/10.1016/j.cbi.2005.12.009] [PMID: 16430879]
[47]
Kioka N, Hosokawa N, Komano T, Hirayoshi K, Nagata K, Ueda K. Quercetin, a bioflavonoid, inhibits the increase of human Multidrug Resistance Gene (MDR1) expression caused by arsenite. FEBS Lett 1992; 301(3): 307-9.
[http://dx.doi.org/10.1016/0014-5793(92)80263-G] [PMID: 1349537]
[48]
Nijveldt RJ, van Nood E, Van Hoorn DE, Boelens PG, Van Norren K, Van Leeuwen PA. Flavonoids: A review of probable mechanisms of action and potential applications. Am J Clin Nutr 2001; 74(4): 418-25.
[http://dx.doi.org/10.1093/ajcn/74.4.418] [PMID: 11566638]
[49]
Tosetti F, Ferrari N, De Flora S, Albini A. Angioprevention’: Angiogenesis is a common and key target for cancer chemopreventive agents. FASEB J 2002; 16(1): 2-14.
[http://dx.doi.org/10.1096/fj.01-0300rev] [PMID: 11772931]
[50]
Senderowicz AM. Flavopiridol: The first cyclin-dependent kinase inhibitor in human clinical trials. Invest New Drugs 1999; 17(3): 313-20.
[http://dx.doi.org/10.1023/A:1006353008903] [PMID: 10665481]
[51]
Senderowicz AM. Development of cyclin-dependent kinase modulators as novel therapeutic approaches for hematological malignancies. Leukemia 2001; 15(1): 1-9.
[http://dx.doi.org/10.1038/sj.leu.2401994] [PMID: 11243375]
[52]
Malik N, Dhiman P, Sobarzo-Sanchez E, Khatkar A. Flavonoids and anthranquinones as xanthine oxidase and monoamine oxidase inhibitors: A new approach towards inflammation and oxidative stress. Curr Top Med Chem 2018; 18(25): 2154-64.
[http://dx.doi.org/10.2174/1568026619666181120143050] [PMID: 30465507]
[53]
Karimi G, Vahabzadeh M, Lari P, Rashedinia M, Moshiri M. “Silymarin”, a promising pharmacological agent for treatment of diseases. Iran J Basic Med Sci 2011; 14(4): 308-17.
[http://dx.doi.org/10.22038/ijbms.2011.5019] [PMID: 23492971]
[54]
Zhao C, Feng X, Tang T, Qiu L. Isolation and expression analysis of CYP9A11 and cytochrome P450 reductase gene in the beet armyworm (Lepidoptera: Noctuidae). J Insect Sci 2015; 15(1): 122.
[http://dx.doi.org/10.1093/jisesa/iev100] [PMID: 26320261]
[55]
Wang IK, Lin-Shiau SY, Lin JK. Induction of apoptosis by apigenin and related flavonoids through cytochrome c release and activation of caspase-9 and caspase-3 in leukaemia HL-60 cells. Eur J Cancer 1999; 35(10): 1517-25.
[http://dx.doi.org/10.1016/S0959-8049(99)00168-9] [PMID: 10673981]
[56]
Markovits J, Linassier C, Fossé P, et al. Inhibitory effects of the tyrosine kinase inhibitor genistein on mammalian DNA topoisomerase II. Cancer Res 1989; 49(18): 5111-7.
[PMID: 2548712]
[57]
Yoon G, Kang BY, Cheon SH. Topoisomerase I inhibition and cytotoxicity of licochalcones A and E from Glycyrrhiza inflata. Arch Pharm Res 2007; 30(3): 313-6.
[http://dx.doi.org/10.1007/BF02977611] [PMID: 17424936]
[58]
Yu JS, Kim AK. Wogonin induces apoptosis by activation of ERK and p38 MAPKs signaling pathways and generation of reactive oxygen species in human breast cancer cells. Mol Cells 2011; 31(4): 327-35.
[http://dx.doi.org/10.1007/s10059-011-0041-7] [PMID: 21448585]
[59]
Du GJ, Zhang Z, Wen XD, et al. Epigallocatechin Gallate (EGCG) is the most effective cancer chemopreventive polyphenol in green tea. Nutrients 2012; 4(11): 1679-91.
[http://dx.doi.org/10.3390/nu4111679] [PMID: 23201840]
[60]
Kiessling R, Klein E, Wigzell H. “Natural” killer cells in the mouse. I. Cytotoxic cells with specificity for mouse moloney leukemia cells. Specificity and distribution according to genotype. Eur J Immunol 1975; 5(2): 112-7.
[http://dx.doi.org/10.1002/eji.1830050208] [PMID: 1234049]
[61]
Sutlu T, Alici E. Natural killer cell-based immunotherapy in cancer: Current insights and future prospects. J Intern Med 2009; 266(2): 154-81.
[http://dx.doi.org/10.1111/j.1365-2796.2009.02121.x] [PMID: 19614820]
[62]
Russo GL, Tedesco I, Spagnuolo C, Russo M. Antioxidant polyphenols in cancer treatment: Friend, foe or foil? Semin Cancer Biol 2017; 46: 1-13.
[http://dx.doi.org/10.1016/j.semcancer.2017.05.005] [PMID: 28511887]
[63]
Amawi H, Ashby CR, Tiwari AK. Cancer chemoprevention through dietary flavonoids: What’s limiting? Chin J Cancer 2017; 36(1): 1-3.
[http://dx.doi.org/10.1186/s40880-017-0217-4] [PMID: 28061892]
[64]
Sudhakaran M, Sardesai S, Doseff AI. Flavonoids: New frontier for immuno-regulation and breast cancer control. Antioxidants 2019; 8(4): 103.
[http://dx.doi.org/10.3390/antiox8040103] [PMID: 30995775]
[65]
Meiyanto E, Hermawan A, Anindyajati A. Natural products for cancer-targeted therapy: Citrus flavonoids as potent chemopreventive agents. Asian Pac J Cancer Prev 2012; 13(2): 427-36.
[http://dx.doi.org/10.7314/APJCP.2012.13.2.427] [PMID: 22524801]
[66]
So FV, Guthrie N, Chambers AF, Moussa M, Carroll KK. Inhibition of human breast cancer cell proliferation and delay of mammary tumorigenesis by flavonoids and citrus juices. Nutr Cancer 1996; 26(2): 167-81.
[http://dx.doi.org/10.1080/01635589609514473] [PMID: 8875554]
[67]
Abotaleb M, Samuel SM, Varghese E, et al. Flavonoids in cancer and apoptosis. Cancers (Basel) 2018; 11(1): 28.
[http://dx.doi.org/10.3390/cancers11010028] [PMID: 30597838]
[68]
Rafiq RA, Quadri A, Nazir LA, Peerzada K, Ganai BA, Tasduq SA. A potent inhibitor of Phosphoinositide 3-Kinase (PI3K) and Mitogen Activated Protein (MAP) kinase signalling, quercetin (3, 3′ 4′ 5, 7-Pentahydroxyflavone) promotes cell death in ultraviolet (UV)-B-irradiated B16F10 melanoma cells. PLoS One 2015; 10(7): e0131253.
[http://dx.doi.org/10.1371/journal.pone.0131253] [PMID: 26148186]
[69]
Tedesco I, Russo M, Bilotto S, et al. Dealcoholated red wine induces autophagic and apoptotic cell death in an osteosarcoma cell line. Food Chem Toxicol 2013; 60: 377-84.
[http://dx.doi.org/10.1016/j.fct.2013.07.078] [PMID: 23933363]
[70]
Raina K, Agarwal C, Wadhwa R, Serkova NJ, Agarwal R. Energy deprivation by silibinin in colorectal cancer cells: A double-edged sword targeting both apoptotic and autophagic machineries. Autophagy 2013; 9(5): 697-713.
[http://dx.doi.org/10.4161/auto.23960] [PMID: 23445752]
[71]
Khan HY, Zubair H, Faisal M, et al. Plant polyphenol induced cell death in human cancer cells involves mobilization of intracellular copper ions and reactive oxygen species generation: A mechanism for cancer chemopreventive action. Mol Nutr Food Res 2014; 58(3): 437-46.
[http://dx.doi.org/10.1002/mnfr.201300417] [PMID: 24123728]
[72]
Dai F, Liu GY, Li Y, et al. Insights into the importance for designing curcumin-inspired anticancer agents by a prooxidant strategy: The case of diarylpentanoids. Free Radic Biol Med 2015; 85: 127-37.
[http://dx.doi.org/10.1016/j.freeradbiomed.2015.04.017] [PMID: 25912482]
[73]
Jing X, Cheng W, Wang S, Li P, He L. Resveratrol induces cell cycle arrest in human gastric cancer MGC803 cells via the PTEN-regulated PI3K/Akt signaling pathway. Oncol Rep 2016; 35(1): 472-8.
[http://dx.doi.org/10.3892/or.2015.4384] [PMID: 26530632]
[74]
Xie J, Yun JP, Yang YN, et al. A novel ECG analog 4-(S)-(2,4,6-trimethylthiobenzyl)-epigallocatechin gallate selectively induces apoptosis of B16-F10 melanoma via activation of autophagy and ROS. Sci Rep 2017; 7(1): 42194.
[http://dx.doi.org/10.1038/srep42194] [PMID: 28186123]
[75]
Shin SY, Lee JM, Lee MS, et al. Targeting cancer cells via the reactive oxygen species-mediated unfolded protein response with a novel synthetic polyphenol conjugate. Clin Cancer Res 2014; 20(16): 4302-13.
[http://dx.doi.org/10.1158/1078-0432.CCR-14-0424] [PMID: 24938523]
[76]
Dong Y, Cao A, Shi J, et al. Tangeretin, a citrus polymethoxyflavonoid, induces apoptosis of human gastric cancer AGS cells through extrinsic and intrinsic signaling pathways. Oncol Rep 2014; 31(4): 1788-94.
[http://dx.doi.org/10.3892/or.2014.3034] [PMID: 24573532]
[77]
Vishnu Varthan VJ, Srividya AR, Sathish Kumar MN. Role of naringin and naringenin in various diseased conditions-a review. Int J Pharm Res Scholars 2013; 2(4): 198-212.
[78]
Langi P, Kiokias S, Varzakas T, Proestos C. Carotenoids: From plants to food and feed industries. Microb Carotenoids 2018; 57-71.
[79]
Koklesova L, Liskova A, Samec M, et al. Carotenoids in cancer apoptosis—The road from bench to bedside and back. Cancers (Basel) 2020; 12(9): 2425.
[http://dx.doi.org/10.3390/cancers12092425] [PMID: 32859058]
[80]
Maoka T. Carotenoids as natural functional pigments. J Nat Med 2020; 74(1): 1-16.
[http://dx.doi.org/10.1007/s11418-019-01364-x] [PMID: 31588965]
[81]
Fernández-García E, Carvajal-Lérida I, Jarén-Galán M, Garrido-Fernández J, Pérez-Gálvez A, Hornero-Méndez D. Carotenoids bioavailability from foods: From plant pigments to efficient biological activities. Food Res Int 2012; 46(2): 438-50.
[http://dx.doi.org/10.1016/j.foodres.2011.06.007]
[82]
Nishino H, Murakosh M, Ii T, et al. Carotenoids in cancer chemoprevention. Cancer Metastasis Rev 2002; 21(3-4): 257-64.
[http://dx.doi.org/10.1023/A:1021206826750] [PMID: 12549764]
[83]
Chatterjee M, Roy K, Janarthan M, Das S, Chatterjee M. Biological activity of carotenoids: Its implications in cancer risk and prevention. Curr Pharm Biotechnol 2012; 13(1): 180-90.
[http://dx.doi.org/10.2174/138920112798868683] [PMID: 21466428]
[84]
Cai X, Hu X, Tan X, et al. Metformin induced AMPK activation, G0/G1 phase cell cycle arrest and the inhibition of growth of esophageal squamous cell carcinomas in vitro and in vivo. PLoS One 2015; 10(7): e0133349.
[http://dx.doi.org/10.1371/journal.pone.0133349] [PMID: 26196392]
[85]
Chen HY, Huang SM, Yang CM, Hu ML. Diverse effects of β-carotene on secretion and expression of VEGF in human hepatocarcinoma and prostate tumor cells. Molecules 2012; 17(4): 3981-8.
[http://dx.doi.org/10.3390/molecules17043981] [PMID: 22469593]
[86]
Chryssanthi DG, Lamari FN, Iatrou G, Pylara A, Karamanos NK, Cordopatis P. Inhibition of breast cancer cell proliferation by style constituents of different Crocus species. Anticancer Res 2007; 27(1A): 357-62.
[PMID: 17352254]
[87]
Kim YS, Lee HA, Lim JY, et al. β-Carotene inhibits neuroblastoma cell invasion and metastasis in vitro and in vivo by decreasing level of hypoxia-inducible factor-1α J Nutr Biochem 2014; 25(6): 655-64.
[http://dx.doi.org/10.1016/j.jnutbio.2014.02.006] [PMID: 24746828]
[88]
Tang L, Jin T, Zeng X, Wang JS. Lycopene inhibits the growth of human androgen-independent prostate cancer cells in vitro and in BALB/c nude mice. J Nutr 2005; 135(2): 287-90.
[http://dx.doi.org/10.1093/jn/135.2.287] [PMID: 15671228]
[89]
Guo L, Zhu H, Lin C, et al. Associations between antioxidant vitamins and the risk of invasive cervical cancer in Chinese women: A case-control study. Sci Rep 2015; 5(1): 13607.
[http://dx.doi.org/10.1038/srep13607] [PMID: 26337940]
[90]
Jeong Y, Lim JW, Kim H. Lycopene inhibits reactive oxygen species-mediated NF-κB signaling and induces apoptosis in pancreatic cancer cells. Nutr 2019; 11(4): 762.
[http://dx.doi.org/10.3390/nu11040762]
[91]
Malla RR, Deepak K, Merchant N, Dasari VR. Breast tumor microenvironment: Emerging target of therapeutic phytochemicals. Phytomedicine 2020; 70: 153227.
[http://dx.doi.org/10.1016/j.phymed.2020.153227] [PMID: 32339885]
[92]
Mollaei H, Safaralizadeh R, Babaei E, Abedini MR, Hoshyar R. The anti-proliferative and apoptotic effects of crocin on chemosensitive and chemoresistant cervical cancer cells. Biomed Pharmacother 2017; 94: 307-16.
[http://dx.doi.org/10.1016/j.biopha.2017.07.052] [PMID: 28763753]
[93]
Ishijima N, Kanki K, Shimizu H, Shiota G. Activation of AMP-activated protein kinase by retinoic acid sensitizes hepatocellular carcinoma cells to apoptosis induced by sorafenib. Cancer Sci 2015; 106(5): 567-75.
[http://dx.doi.org/10.1111/cas.12633] [PMID: 25683251]
[94]
World Cancer Research Fund. Diet, nutrition, physical activity and cancer: A global perspective — The third expert report World Cancer Research Fund. 2018. Available from: https://www.wcrf.org/dietandcancer
[95]
Key TJ, Appleby PN, Travis RC, et al. Carotenoids, retinol, tocopherols, and prostate cancer risk: Pooled analysis of 15 studies. Am J Clin Nutr 2015; 102(5): 1142-57.
[http://dx.doi.org/10.3945/ajcn.115.114306] [PMID: 26447150]
[96]
Molnár J, Gyémánt N, Mucsi I, et al. Modulation of multidrug resistance and apoptosis of cancer cells by selected carotenoids. In Vivo 2004; 18(2): 237-44.
[97]
Pfeffer CM, Singh ATK. Apoptosis: A target for anticancer therapy. Int J Mol Sci 2018; 19(2): 448.
[http://dx.doi.org/10.3390/ijms19020448] [PMID: 29393886]
[98]
Wu HL, Fu XY, Cao WQ, et al. Induction of apoptosis in human glioma cells by fucoxanthin via triggering of ROS-mediated oxidative damage and regulation of MAPKs and PI3K–AKT pathways. J Agric Food Chem 2019; 67(8): 2212-9.
[http://dx.doi.org/10.1021/acs.jafc.8b07126] [PMID: 30688446]
[99]
Sowmya Shree G, Yogendra Prasad K, Arpitha HS, et al. βcarotene at physiologically attainable concentration induces apoptosis and down-regulates cell survival and antioxidant markers in human breast cancer (MCF-7) cells. Mol Cell Biochem 2017; 436(1-2): 1-12.
[http://dx.doi.org/10.1007/s11010-017-3071-4] [PMID: 28550445]
[100]
Zhu X, Zhang Y, Li Q, et al. β-Carotene induces apoptosis in human esophageal squamous cell carcinoma cell lines via the Cav‐1/AKT/NF‐κB signaling pathway. J Biochem Mol Toxicol 2016; 30(3): 148-57.
[http://dx.doi.org/10.1002/jbt.21773] [PMID: 26733226]
[101]
Naz H, Khan P, Tarique M, et al. Binding studies and biological evaluation of β-carotene as a potential inhibitor of human calcium/calmodulin-dependent protein kinase IV. Int J Biol Macromol 2017; 96: 161-70.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.12.024] [PMID: 27956097]
[102]
Park Y, Choi J, Lim JW, Kim H. β-Carotene-induced apoptosis is mediated with loss of Ku proteins in gastric cancer AGS cells. Genes Nutr 2015; 10(4): 467.
[http://dx.doi.org/10.1007/s12263-015-0467-1] [PMID: 25981694]
[103]
Xu J, Li Y, Hu H. Effects of lycopene on ovarian cancer cell line SKOV3 in vitro: Suppressed proliferation and enhanced apoptosis. Mol Cell Probes 2019; 46: 101419.
[http://dx.doi.org/10.1016/j.mcp.2019.07.002] [PMID: 31279748]
[104]
Poyton RO, Ball KA, Castello PR. Mitochondrial generation of free radicals and hypoxic signaling. Trends Endocrinol Metab 2009; 20(7): 332-40.
[http://dx.doi.org/10.1016/j.tem.2009.04.001] [PMID: 19733481]
[105]
Han H, Lim JW, Kim H. Lycopene inhibits activation of epidermal growth factor receptor and expression of cyclooxygenase-2 in gastric cancer cells. Nutrients 2019; 11(9): 2113.
[http://dx.doi.org/10.3390/nu11092113] [PMID: 31491956]
[106]
Qiu X, Yuan Y, Vaishnav A, Tessel MA, Nonn L, van Breemen RB. Effects of lycopene on protein expression in human primary prostatic epithelial cells. Cancer Prev Res (Phila) 2013; 6(5): 419-27.
[http://dx.doi.org/10.1158/1940-6207.CAPR-12-0364] [PMID: 23483004]
[107]
Gao M, Dang F, Deng C. β-Cryptoxanthin induced antiproliferation and apoptosis by G0/G1 arrest and AMPK signal inactivation in gastric cancer. Eur J Pharmacol 2019; 859: 172528.
[http://dx.doi.org/10.1016/j.ejphar.2019.172528] [PMID: 31288004]
[108]
Gong X, Smith JR, Swanson HM, Rubin LP. Carotenoid lutein selectively inhibits breast cancer cell growth and potentiates the effect of chemotherapeutic agents through ROS-mediated mechanisms. Molecules 2018; 23(4): 905.
[http://dx.doi.org/10.3390/molecules23040905] [PMID: 29662002]
[109]
Zhang WL, Zhao YN, Shi ZZ, Cong D, Bai YS. Lutein inhibits cell growth and activates apoptosis via the PI3K/AKT/mTOR signaling pathway in A549 human non-small-cell lung cancer cells. J Environ Pathol Toxicol Oncol 2018; 37(4): 341-50.
[http://dx.doi.org/10.1615/JEnvironPatholToxicolOncol.2018027418] [PMID: 30806240]
[110]
Li Y, Zhang Y, Liu X, et al. Lutein inhibits proliferation, invasion and migration of hypoxic breast cancer cells via downregulation of HES1. Int J Oncol 2018; 52(6): 2119-29.
[http://dx.doi.org/10.3892/ijo.2018.4332] [PMID: 29620169]
[111]
Kavalappa YP, Gopal SS, Ponesakki G. Lutein inhibits breast cancer cell growth by suppressing antioxidant and cell survival signals and induces apoptosis. J Cell Physiol 2021; 236(3): 1798-809.
[http://dx.doi.org/10.1002/jcp.29961] [PMID: 32710479]
[112]
Hormozi M, Ghoreishi S, Baharvand P. Astaxanthin induces apoptosis and increases activity of antioxidant enzymes in LS-180 cells. Artif Cells Nanomed Biotechnol 2019; 47(1): 891-5.
[http://dx.doi.org/10.1080/21691401.2019.1580286] [PMID: 30873887]
[113]
Ni X, Yu H, Wang S, Zhang C, Shen S. Astaxanthin inhibits PC-3 xenograft prostate tumor growth in nude mice. Mar Drugs 2017; 15(3): 66.
[http://dx.doi.org/10.3390/md15030066] [PMID: 28282880]
[114]
Shao Y, Ni Y, Yang J, Lin X, Li J, Zhang L. Astaxanthin inhibits proliferation and induces apoptosis and cell cycle arrest of mice H22 hepatoma cells. Medical science monitor. Med Sci Monit 2016; 22: 2152-60.
[http://dx.doi.org/10.12659/MSM.899419] [PMID: 27333866]
[115]
Chen W, Zhang H, Liu Y. Anti-inflammatory and apoptotic signaling effect of fucoxanthin on benzo (A) pyrene-induced lung cancer in mice. J Environ Pathol Toxicol Oncol 2019; 38(3): 239-51.
[http://dx.doi.org/10.1615/JEnvironPatholToxicolOncol.2019030301] [PMID: 31679311]
[116]
Zhu Y, Cheng J, Min Z, et al. Effects of fucoxanthin on autophagy and apoptosis in SGC-7901cells and the mechanism. J Cell Biochem 2018; 119(9): 7274-84.
[http://dx.doi.org/10.1002/jcb.27022] [PMID: 29761894]
[117]
Liu Y, Zheng J, Zhang Y, et al. Fucoxanthin activates apoptosis via inhibition of PI3K/Akt/mTOR pathway and suppresses invasion and migration by restriction of p38-MMP-2/9 pathway in human glioblastoma cells. Neurochem Res 2016; 41(10): 2728-51.
[http://dx.doi.org/10.1007/s11064-016-1989-7] [PMID: 27394418]
[118]
Yu RX, Yu RT, Liu Z. Inhibition of two gastric cancer cell lines induced by fucoxanthin involves downregulation of Mcl-1 and STAT3. Hum Cell 2018; 31(1): 50-63.
[http://dx.doi.org/10.1007/s13577-017-0188-4] [PMID: 29110251]
[119]
Tamura S, Narita T, Fujii G, et al. Inhibition of NF-kappaB transcriptional activity enhances fucoxanthinol-induced apoptosis in colorectal cancer cells. Genes Environ 2019; 41(1): 1-8.
[http://dx.doi.org/10.1186/s41021-018-0116-1] [PMID: 30693059]
[120]
Choi YJ, Hur JM, Lim S, Jo M, Kim DH, Choi JI. Induction of apoptosis by deinoxanthin in human cancer cells. Anticancer Res 2014; 34(4): 1829-35.
[PMID: 24692716]
[121]
Dong HW, Wang K, Chang XX, et al. Beta-ionone-inhibited proliferation of breast cancer cells by inhibited COX-2 activity. Arch Toxicol 2019; 93(10): 2993-3003.
[http://dx.doi.org/10.1007/s00204-019-02550-2] [PMID: 31506784]
[122]
Li S, Qu Y, Shen XY, et al. Multiple signal pathways involved in crocetin-induced apoptosis in KYSE-150 Cells. Pharmacology 2019; 103(5-6): 263-72.
[http://dx.doi.org/10.1159/000487956] [PMID: 30783055]
[123]
Ray P, Guha D, Chakraborty J, et al. Crocetin exploits P3-Induced Death Domain (PIDD) and FAS-Associated Death Domain (FADD) proteins to induce apoptosis in colorectal cancer. Sci Rep 2016; 6(1): 32979.
[http://dx.doi.org/10.1038/srep32979] [PMID: 27622714]
[124]
Wang G, Zhang B, Wang Y, Han S, Wang C. Crocin promotes apoptosis of human skin cancer cells by inhibiting the JAK/STAT pathway. Exp Ther Med 2018; 16(6): 5079-84.
[http://dx.doi.org/10.3892/etm.2018.6865] [PMID: 30542463]
[125]
Deng L, Li J, Lu S, Su Y. Crocin inhibits proliferation and induces apoptosis through suppressing MYCN expression in retinoblastoma. J Biochem Mol Toxicol 2019; 33(5): e22292.
[http://dx.doi.org/10.1002/jbt.22292] [PMID: 30672053]
[126]
Bakshi HA, Hakkim FL, Sam S. Molecular mechanism of crocin induced caspase mediated MCF-7 cell death: In vivo toxicity profiling and ex vivo macrophage activation. Asian Pac J Cancer Prev 2016; 17(3): 1499-506.
[http://dx.doi.org/10.7314/APJCP.2016.17.3.1499] [PMID: 27039797]
[127]
Yu L, Li J, Xiao M. Picrocrocin exhibits growth inhibitory effects against SKMEL- 2 human malignant melanoma cells by targeting JAK/STAT5 signaling pathway, cell cycle arrest and mitochondrial mediated apoptosis. J BUON 2018; 23(4): 1163-8.
[PMID: 30358226]
[128]
Kumar Y, Phaniendra A, Periyasamy L. Bixin triggers apoptosis of human Hep3B hepatocellular carcinoma cells: An insight to molecular and in silico approach. Nutr Cancer 2018; 70(6): 971-83.
[http://dx.doi.org/10.1080/01635581.2018.1490445] [PMID: 30204479]
[129]
Leong HY, Show PL, Lim MH, Ooi CW, Ling TC. Natural red pigments from plants and their health benefits: A review. Food Rev Int 2018; 34(5): 463-82.
[http://dx.doi.org/10.1080/87559129.2017.1326935]
[130]
Hecht SS. Chemoprevention of cancer by isothiocyanates, modifiers of carcinogen metabolism. J Nutr 1999; 129(3): 768S-74S.
[http://dx.doi.org/10.1093/jn/129.3.768S] [PMID: 10082787]
[131]
Shapiro TA, Fahey JW, Wade KL, Stephenson KK, Talalay P. Human metabolism and excretion of cancer chemoprotective glucosinolates and isothiocyanates of cruciferous vegetables. Cancer Epidemiol Biomarkers Prev 1998; 7(12): 1091-100.
[PMID: 9865427]
[132]
Telang NT, Katdare M, Bradlow HL, Osborne MP, Fishman J. Inhibition of proliferation and modulation of estradiol metabolism: Novel mechanisms for breast cancer prevention by the phytochemical indole-3-carbinol. Proc Soc Exp Biol Med 1997; 216(2): 246-52.
[http://dx.doi.org/10.3181/00379727-216-44174] [PMID: 9349693]
[133]
Shin Low S, Nong Lim C, Yew M, et al. Recent ultrasound advancements for the manipulation of nanobiomaterials and nanoformulations for drug delivery. Ultrason Sonochem 2021; 80: 105805.
[http://dx.doi.org/10.1016/j.ultsonch.2021.105805] [PMID: 34706321]
[134]
Kelloff GJ, Boone CW, Crowell JA, et al. Strategies for phase II cancer chemoprevention trials: Cervix, endometrium, and ovary. J Cell Biochem Suppl 1995; 23(S23): 1-9.
[http://dx.doi.org/10.1002/jcb.240590902] [PMID: 8747372]
[135]
Jin L, Qi M, Chen DZ, et al. Indole-3-carbinol prevents cervical cancer in Human Papilloma Virus type 16 (HPV16) transgenic mice. Cancer Res 1999; 59(16): 3991-7.
[PMID: 10463597]
[136]
Yuan F, Chen DZ, Liu K, Sepkovic DW, Bradlow HL, Auborn K. Anti-estrogenic activities of indole-3-carbinol in cervical cells: Implication for prevention of cervical cancer. Anticancer Res 1999; 19(3A): 1673-80.
[PMID: 10470100]
[137]
Dwivedi A, Singh S, Kumar S, Mittal PC. Organosulfur phytochemicals against metabolic and neurodegenerative diseases: Benefits and risks. In: Phytochemicals as Lead Compounds for New Drug Discovery. Amsterdam, Netherlands: Elsevier 2020; pp. 179-94.
[http://dx.doi.org/10.1016/B978-0-12-817890-4.00011-1]
[138]
Bhilare NV, Dhaneshwar SS, Mahadik KR. Amelioration of hepatotoxicity by biocleavable aminothiol chimeras of isoniazid: Design, synthesis, kinetics and pharmacological evaluation. World J Hepatol 2018; 10(7): 496-508.
[http://dx.doi.org/10.4254/wjh.v10.i7.496] [PMID: 30079136]
[139]
Bianchini F, Vainio H. Allium vegetables and organosulfur compounds: Do they help prevent cancer? Environ Health Perspect 2001; 109(9): 893-902.
[http://dx.doi.org/10.1289/ehp.01109893] [PMID: 11673117]
[140]
Bhilare NV, Dhaneshwar SS, Mahadik KR, Dasgupta A. Co-drug of isoniazid and sulfur containing antioxidant for attenuation of hepatotoxicity and treatment of tuberculosis. Drug Chem Toxicol 2022; 45(2): 850-60.
[http://dx.doi.org/10.1080/01480545.2020.17780] [PMID: 32543916]
[141]
Augustin MA, Hemar Y. Nano- and micro-structured assemblies for encapsulation of food ingredients. Chem Soc Rev 2009; 38(4): 902-12.
[http://dx.doi.org/10.1039/B801739P] [PMID: 19421570]
[142]
Sharma D, Mishra S, Rajput A, Raj K, Malviya R. Pathophysiology and biomarkers for breast cancer: Management using herbal medicines. Curr Nutr Food Sci 2021; 17(9): 974-84.
[http://dx.doi.org/10.2174/1573401317666210713114216]
[143]
Tiede K, Boxall AB, Tear SP, Lewis J, David H, Hassellöv M. Detection and characterization of engineered nanoparticles in food and the environment. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2008; 25(7): 795-821.
[http://dx.doi.org/10.1080/02652030802007553] [PMID: 18569000]
[144]
McClements DJ. Advances in fabrication of emulsions with enhanced functionality using structural design principles. Curr Opin Colloid Interface Sci 2012; 17(5): 235-45.
[http://dx.doi.org/10.1016/j.cocis.2012.06.002]
[145]
Paolino D, Mancuso A, Cristiano MC, et al. Nanonutraceuticals: The new frontier of supplementary food. Nanomaterials (Basel) 2021; 11(3): 792.
[http://dx.doi.org/10.3390/nano11030792] [PMID: 33808823]
[146]
Martínez-Ballesta M, Gil-Izquierdo Á, García-Viguera C, Domínguez-Perles R. Nanoparticles and controlled delivery for bioactive compounds: Outlining challenges for new “smart-foods” for health. Foods 2018; 7(5): 72.
[147]
Abad MF, Rajabzadeh G, Ganjali ST, Tavakoli R. Preparing allicinnanocapsules and determining the factors controlling their particle size through artificial intelligence. Int J Food Eng 2016; 12(3): 257-64.
[http://dx.doi.org/10.1515/ijfe-2015-0251]
[148]
Krausz AE, Adler BL, Cabral V, et al. Curcumin-encapsulated nanoparticles as innovative antimicrobial and wound healing agent. Nanomedicine 2015; 11(1): 195-206.
[http://dx.doi.org/10.1016/j.nano.2014.09.004] [PMID: 25240595]
[149]
Jourghanian P, Ghaffari S, Ardjmand M, Haghighat S, Mohammadnejad M. Sustained release curcumin loaded solid lipid nanoparticles. Adv Pharm Bull 2016; 6(1): 17-21.
[http://dx.doi.org/10.15171/apb.2016.04] [PMID: 27123413]
[150]
Joung HJ, Choi MJ, Kim JT, Park SH, Park HJ, Shin GH. Development of foodÁgrade curcumin nanoemulsion and its potential application to food beverage system: Antioxidant property and in vitro digestion. J Food Sci 2016; 81(3): N745-53.
[http://dx.doi.org/10.1111/1750-3841.13224] [PMID: 26807662]
[151]
Bernela M, Ahuja M, Thakur R. Enhancement of anti-inflammatory activity of glycyrrhizic acid by encapsulation in chitosan-katira gum nanoparticles. Eur J Pharm Biopharm 2016; 105: 141-7.
[http://dx.doi.org/10.1016/j.ejpb.2016.06.003] [PMID: 27287555]
[152]
Rani R, Dilbaghi N, Dhingra D, Kumar S. Optimization and evaluation of bioactive drug-loaded polymeric nanoparticles for drug delivery. Int J Biol Macromol 2015; 78: 173-9.
[http://dx.doi.org/10.1016/j.ijbiomac.2015.03.070] [PMID: 25881957]
[153]
Hong DY, Lee JS, Lee HG. Chitosan/poly-γ-glutamic acid nanoparticles improve the solubility of lutein. Int J Biol Macromol 2016; 85: 9-15.
[http://dx.doi.org/10.1016/j.ijbiomac.2015.12.044] [PMID: 26712702]
[154]
Chaiyasan WA, Srinivas SP, Tiyaboonchai WA. Development and characterization of topical ophthalmic formulations containing lutein-loaded mucoadhesive nanoparticles. Int J Pharm Pharm Sci 2016; 8(3): 261-6.
[155]
Lightfoot VS, Claudio R, Rebeca BP, et al. Synthesis and characterization of polyhydroxybutyrate-co-hydroxyvalerate nanoparticles for encapsulation of quercetin. J Bioact Compat Polym 2016; 31: 439-52.
[http://dx.doi.org/10.1177/0883911516635839]
[156]
Antônio E, Khalil NM, Mainardes RM. Bovine serum albumin nanoparticles containing quercetin: Characterization and antioxidant activity. J Nanosci Nanotechnol 2016; 16(2): 1346-53.
[http://dx.doi.org/10.1166/jnn.2016.11672] [PMID: 27433585]
[157]
Guan X, Gao M, Xu H, et al. Quercetin-loaded poly (lactic-co-glycolic acid)-d-α-tocopheryl polyethylene glycol 1000 succinate nanoparticles for the targeted treatment of liver cancer. Drug Deliv 2016; 23(9): 3307-18.
[http://dx.doi.org/10.1080/10717544.2016.1176087] [PMID: 27067032]
[158]
Neves AR, Martins S, Segundo MA, Reis S. Nanoscale delivery of resveratrol towards enhancement of supplements and nutraceuticals. Nutrients 2016; 8(3): 131.
[http://dx.doi.org/10.3390/nu8030131] [PMID: 26950147]
[159]
Vijayakumar MR, Kumari L, Patel KK, et al. Intravenous administration of trans-resveratrol-loaded TPGS-coated solid lipid nanoparticles for prolonged systemic circulation, passive brain targeting and improved in vitro cytotoxicity against C6 glioma cell lines. RSC Advances 2016; 6(55): 50336-48.
[http://dx.doi.org/10.1039/C6RA10777J]
[160]
Kim JH, Park EY, Ha HK, et al. Resveratrol-loaded nanoparticles induce antioxidant activity against oxidative stress. Asian-Australas J Anim Sci 2016; 29(2): 288-98.
[http://dx.doi.org/10.5713/ajas.15.0774] [PMID: 26732454]
[161]
Fakhoury I, Saad W. Thymoquinone nanoparticle formulation and in vitro efficacy. TechConnect Briefs 2014; 367-70.
[162]
Manea AM, Vasile BS, Meghea A. Antioxidant and antimicrobial activities of green tea extract loaded into nanostructured lipid carriers. C R Chim 2014; 17(4): 331-41.
[http://dx.doi.org/10.1016/j.crci.2013.07.015]
[163]
Dombe S, Shirote P. Nanosponges encapsulated phytochemicals for targeting cancer: A review. Curr Drug Targets 2021; 22(4): 443-62.
[http://dx.doi.org/10.2174/1389450121999201012201455] [PMID: 33045959]
[164]
Al-Habian A, Harikumar PE, Stocker CJ, Langlands K, Selway JL. Histochemical and immunohistochemical evaluation of mouse skin histology: Comparison of fixation with neutral buffered formalin and alcoholic formalin. J Histotechnol 2014; 37(4): 115-24.
[http://dx.doi.org/10.1179/2046023614Y.0000000050]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy