Generic placeholder image

Current Nutrition & Food Science

Editor-in-Chief

ISSN (Print): 1573-4013
ISSN (Online): 2212-3881

Mini-Review Article

High Risk of Metabolic Complications Due to High Consumption of Processed Foods

Author(s): Ankul Singh and Chitra Vellapandian*

Volume 19, Issue 3, 2023

Published on: 14 October, 2022

Page: [198 - 208] Pages: 11

DOI: 10.2174/1573401318666220622162038

Price: $65

conference banner
Abstract

The lack of knowledge among adolescents makes them more sensitive to engaging in unhealthy habits, which might harm their health and nutritional status. A high caloric diet and lack of physical activity generate reactive oxygen species, leading to neurological diseases. The gap in knowledge regarding junk food and its complications poses a significant threat to public health policy. Metabolic syndrome develops from high fat-induced chronic inflammation and leads to cognition disturbances, stroke, and neurological diseases like Alzheimer's. Adolescent age is the most devastating one, in which several lifestyle-associated diseases occur that are associated with chronic diseases, such as Alzheimer’s, non-alcoholic steatohepatitis, Type 2 diabetes mellitus, non-alcoholic fatty liver disease, obesity, hypertension, etc. The disordered eating behaviors should be prevented at the earliest to overcome the "fast food genocide" from eating processed foods, leading to obesity and nutritional deficiencies, which further cause neurological complications and destroy the brain cell. As we age, memory begins to decline. Thus, lowering our intake of high-calorie-rich foods and salt could reduce metabolic syndrome-related and agerelated issues like blood pressure, T2DM, obesity, etc. Thus, to curb diseases linked with junk foods, awareness about nutritional values among adolescents and higher tax slabs on junk foods should be imposed to reduce the purchase of such products.

Keywords: Obesity, junk foods, adolescents, metabolic syndrome, insulin resistance, nutritional deficiency.

Graphical Abstract
[1]
Mao XY, Yin XX, Guan QW, et al. Dietary nutrition for neurological disease therapy: Current status and future directions. Pharmacol Ther 2021; 226(107861): 107861.
[http://dx.doi.org/10.1016/j.pharmthera.2021.107861] [PMID: 33901506]
[2]
Fardet A, Rock E. Ultra-processed foods and food system sustainability: What are the links? Sustainability 2020; 12(15): 6280.
[http://dx.doi.org/10.3390/su12156280]
[3]
Qi L. Personalized nutrition and obesity. Ann Med 2014; 46(5): 247-52.
[http://dx.doi.org/10.3109/07853890.2014.891802] [PMID: 24716734]
[4]
Karki A, Shrestha A, Subedi N. Prevalence and associated factors of childhood overweight/obesity among primary school children in urban Nepal. BMC Public Health 2019; 19(1): 1055.
[http://dx.doi.org/10.1186/s12889-019-7406-9] [PMID: 31387571]
[5]
Singh DR, Sunuwar DR, Dahal B, Sah RK. The association of sleep problem, dietary habits and physical activity with weight status of adolescents in Nepal. BMC Public Health 2021; 21(1): 938.
[http://dx.doi.org/10.1186/s12889-021-10985-5] [PMID: 34001092]
[6]
Jain S, Pant B, Chopra H, Tiwari R. Obesity among adolescents of affluent public schools in Meerut. Indian J Public Health 2010; 54(3): 158-60.
[http://dx.doi.org/10.4103/0019-557X.75740] [PMID: 21245587]
[7]
Health effects of dietary risks in 195 countries, 1990-2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet 2019; 393(10184): 1958-72.
[http://dx.doi.org/10.1016/S0140-6736(19)30041-8] [PMID: 30954305]
[8]
King D. The future challenge of obesity. Lancet 2011; 378(9793): 743-4.
[http://dx.doi.org/10.1016/S0140-6736(11)61261-0] [PMID: 21872734]
[9]
Davidou S, Christodoulou A, Fardet A, Frank K. The holistico-reductionist siga classification according to the degree of food processing: An evaluation of ultra-processed foods in French supermarkets. Food Funct 2020; 11(3): 2026-39.
[http://dx.doi.org/10.1039/C9FO02271F] [PMID: 32083627]
[10]
Verstraeten R, Leroy JL, Pieniak Z, et al. Individual and environmental factors influencing adolescents’ dietary behavior in low and middle-income settings. PLoS One 2016; 11(7): e0157744.
[http://dx.doi.org/10.1371/journal.pone.0157744] [PMID: 27447169]
[11]
Lacko AM, Maselko J, Popkin B, Ng SW. Socio-economic and racial/ethnic disparities in the nutritional quality of packaged food purchases in the USA, 2008-2018. Public Health Nutr 2021; 24(17): 5730-42.
[http://dx.doi.org/10.1017/S1368980021000367] [PMID: 33500012]
[12]
Lestari A, Fakhira A, Ismiana A, Annisaa A. Fast food consumption behavior in adolescents. Muhammadiyah Int Public Health Med Proc 2021; 1(1): 607-16.
[http://dx.doi.org/10.53947/miphmp.v1i1.107]
[13]
Khan A, Dix C, Burton NW, Khan SR, Uddin R. Association of carbonated soft drink and fast food intake with stress-related sleep disturbance among adolescents: A global perspective from 64 countries. EClinMed 2020; 31(100681): 100681.
[http://dx.doi.org/10.1016/j.eclinm.2020.100681] [PMID: 33554082]
[14]
Alfonsi V, Scarpelli S, D’Atri A, Stella G, De Gennaro L. Later school start time: The impact of sleep on academic performance and health in the adolescent population. Int J Environ Res Public Health 2020; 17(7): 2574.
[http://dx.doi.org/10.3390/ijerph17072574] [PMID: 32283688]
[15]
Taheri E, Riahi R, Rafiei N, et al. Bisphenol a exposure and abnormal glucose tolerance during pregnancy: Systematic review and meta-analysis. Environ Sci Pollut Res Int 2021; 28(44): 62105-15.
[http://dx.doi.org/10.1007/s11356-021-16691-4] [PMID: 34590231]
[16]
Labayen Goñi I, Arenaza L, Medrano M, García N, Cadenas-Sanchez C, Ortega FB. Associations between the adherence to the Mediterranean diet and cardiorespiratory fitness with total and central obesity in preschool children: The PREFIT project. Eur J Nutr 2018; 57(8): 2975-83.
[http://dx.doi.org/10.1007/s00394-017-1571-3] [PMID: 29127475]
[17]
Johnson S, Sahu MR, Saxena MP, Mathur H, Agarwal HC. Environment, nutritional analysis of junk food. Centre Sci Environ 2012; 1: 1-23.
[18]
Duggal EV, Verma H. Intention to consume junk food: A study of drivers for control implications 2020.
[http://dx.doi.org/10.32890/mmj.22.2018.9674]
[19]
Ibrahim U, Ismail UF, Mohammed MJIJOS. Nutritional knowledge, attitudes and junk food consumption habits among students of Abubakar Tatari Polytechnic (ATAP). Bauchi 2014; 5: 26-8.
[20]
Khatoon S, Ahmed A, Zubair MJTPMJ. Dietary practics of school going children and their BMI may predict future health hazards. Prof Med J 2017; 24: 1392-7.
[21]
Boontem P, Yamashima T. Hydroxynonenal causes Langerhans cell degeneration in the pancreas of Japanese macaque monkeys. PLoS One 2021; 16(11): e0245702.
[http://dx.doi.org/10.1371/journal.pone.0245702] [PMID: 34748564]
[22]
Miller M, Oldewage-Theron W, Napier C. Eat clean and safe food: A food-based dietary guideline for the elderly in South Africa. South Afr J Clin Nutr 2021; 34 (Suppl.): S41-50.
[http://dx.doi.org/10.1080/16070658.2021.1947040]
[23]
Pirela SV, Bhattacharya K, Wang Y, et al. 21-day sub-acute, whole-body inhalation exposure to printer-emitted engineered nanoparticles in rats: Exploring pulmonary and systemic effects. NanoImpact 2019; 15(100176): 100176.
[http://dx.doi.org/10.1016/j.impact.2019.100176]
[24]
Mattson MP. Roles of the lipid peroxidation product 4-hydroxynonenal in obesity, the metabolic syndrome, and associated vascular and neurodegenerative disorders. Exp Gerontol 2009; 44(10): 625-33.
[http://dx.doi.org/10.1016/j.exger.2009.07.003] [PMID: 19622391]
[25]
Monteiro CA, Cannon G, Levy RB, et al. Ultra-processed foods: What they are and how to identify them. Public Health Nutr 2019; 22(5): 936-41.
[http://dx.doi.org/10.1017/S1368980018003762] [PMID: 30744710]
[26]
Mekkawy AM, Ahmed YH, Khalaf AA, El-Sakhawy MA. Ameliorative effect of Nigella sativa oil and vitamin C on the thyroid gland and cerebellum of adult male albino rats exposed to Monosodium glutamate (histological, immunohistochemical and biochemical studies). Tissue Cell 2020; 66(101391): 101391.
[http://dx.doi.org/10.1016/j.tice.2020.101391] [PMID: 32933714]
[27]
Hamza RZ, Al-Salmi FA, El-Shenawy NS. Evaluation of the effects of the green nanoparticles zinc oxide on monosodium glutamate-induced toxicity in the brain of rats. PeerJ 2019; 7(e7460): e7460.
[http://dx.doi.org/10.7717/peerj.7460] [PMID: 31579564]
[28]
Rosa SG, Chagas PM, Pesarico AP, Nogueira CW. Monosodium glutamate induced nociception and oxidative stress dependent on time of administration, age of rats and susceptibility of spinal cord and brain regions. Toxicol Appl Pharmacol 2018; 351: 64-73.
[http://dx.doi.org/10.1016/j.taap.2018.05.019] [PMID: 29782962]
[29]
Omogbiya AI, Ben-Azu B, Eduviere AT, et al. Monosodium glutamate induces memory and hepatic dysfunctions in mice: Ameliorative role of Jobelyn® through the augmentation of cellular antioxidant defense machineries. Toxicol Res 2020; 37(3): 323-35.
[http://dx.doi.org/10.1007/s43188-020-00068-9] [PMID: 34295796]
[30]
Pase CS, Metz VG, Roversi K, et al. Trans fat intake during pregnancy or lactation increases anxiety-like behavior and alters proinflammatory cytokines and glucocorticoid receptor levels in the hippocampus of adult offspring. Brain Res Bull 2021; 166: 110-7.
[http://dx.doi.org/10.1016/j.brainresbull.2020.11.016] [PMID: 33242520]
[31]
Noble EE, Hsu TM, Liang J, Kanoski SE. Early-life sugar consumption has long-term negative effects on memory function in male rats. Nutr Neurosci 2019; 22(4): 273-83.
[http://dx.doi.org/10.1080/1028415X.2017.1378851] [PMID: 28944721]
[32]
Alten B, Yesiltepe M, Bayraktar E, et al. High-fructose corn syrup consumption in adolescent rats causes bipolar-like behavioural phenotype with hyperexcitability in hippocampal CA3-CA1 synapses. Br J Pharmacol 2018; 175(24): 4450-63.
[http://dx.doi.org/10.1111/bph.14500] [PMID: 30221753]
[33]
Dufault R, Schnoll R, Lukiw WJ, et al. Correction to: Mercury exposure, nutritional deficiencies and metabolic disruptions may affect learning in children. Behav Brain Funct 2018; 14(1): 3.
[http://dx.doi.org/10.1186/s12993-018-0136-9] [PMID: 29415737]
[34]
Trevizol F, Dias VT, Roversi K, et al. Cross-generational trans fat intake modifies BDNF mRNA in the hippocampus: Impact on memory loss in a mania animal model. Hippocampus 2015; 25(5): 556-65.
[http://dx.doi.org/10.1002/hipo.22391] [PMID: 25394793]
[35]
Longhi R, Almeida RF, Machado L, et al. Effect of a trans fatty acid-enriched diet on biochemical and inflammatory parameters in Wistar rats. Eur J Nutr 2017; 56(3): 1003-16.
[http://dx.doi.org/10.1007/s00394-015-1148-y] [PMID: 26754301]
[36]
Longhi R, Almeida RF, Pettenuzzo LF, et al. Effect of a trans fatty acid-enriched diet on mitochondrial, inflammatory, and oxidative stress parameters in the cortex and hippocampus of Wistar rats. Eur J Nutr 2018; 57(5): 1913-24.
[http://dx.doi.org/10.1007/s00394-017-1474-3] [PMID: 28567576]
[37]
Olofinnade AT, Adeyeba A, Onaolapo AY, Onaolapo OJ. An assessment of the effects of azodicarbonamide-containing diet on neurobehaviour, brain antioxidant status and membrane lipid peroxidation status in rats. Cent Nerv Syst Agents Med Chem 2020; 20(1): 49-57.
[http://dx.doi.org/10.2174/1871524919666191104154009] [PMID: 31682213]
[38]
Afsah-Hejri L, Jinap S, Hajeb P, Radu S, Shakibazadeh S. A review on mycotoxins in food and feed: Malaysia case study. Compr Rev Food Sci Food Saf 2013; 12(6): 629-51.
[http://dx.doi.org/10.1111/1541-4337.12029] [PMID: 33412719]
[39]
Georgieva R, Momchilova A, Petkova D, Koumanov K, Staneva GJB, Equipment B. Effect of N-propyl gallate on lipid peroxidation in heterogenous model membranes. Biotechnol Biotechnol Equip 2013; 27: 4145-9.
[http://dx.doi.org/10.5504/BBEQ.2013.0061]
[40]
Seyoum A, Pradhan A. Effect of phthalates on development, reproduction, fat metabolism and lifespan in Daphnia magna. Sci Total Environ 2019; 654: 969-77.
[http://dx.doi.org/10.1016/j.scitotenv.2018.11.158] [PMID: 30453266]
[41]
Bhanumathy M, Harish MS, Shivaprasad HN, Sushma G. Nootropic activity of Celastrus paniculatus seed. Pharm Biol 2010; 48(3): 324-7.
[http://dx.doi.org/10.3109/13880200903127391] [PMID: 20645820]
[42]
Hamdan AM, Al-Gayyar MM, Shams MEE, et al. Author correction: Thymoquinone therapy remediates elevated brain tissue inflammatory mediators induced by chronic administration of food preservatives. Sci Rep 2019; 9(1): 16986.
[http://dx.doi.org/10.1038/s41598-019-50175-3] [PMID: 31723162]
[43]
Diaz Weinstein S, Villafane JJ, Juliano N, Bowman REJB. Adolescent exposure to Bisphenol-A increases anxiety and sucrose preference but impairs spatial memory in rats independent of sex. Brain Res 2013; 1529: 56-65.
[http://dx.doi.org/10.1016/j.brainres.2013.07.018] [PMID: 23872220]
[44]
Acaroz U, Ince S, Arslan-Acaroz D, et al. Bisphenol-A induced oxidative stress, inflammatory gene expression, and metabolic and histopathological changes in male Wistar albino rats: protective role of boron. Toxicol Res 2019; 8(2): 262-9.
[http://dx.doi.org/10.1039/C8TX00312B] [PMID: 30997025]
[45]
Gill S, Kumara VMR. Comparative neurodevelopment effects of bisphenol A and bisphenol F on rat fetal neural stem cell models. Cells 2021; 10(4): 793.
[http://dx.doi.org/10.3390/cells10040793] [PMID: 33918242]
[46]
Fan Y, Ding S, Ye X, et al. Does preconception paternal exposure to a physiologically relevant level of bisphenol A alter spatial memory in an adult rat? Horm Behav 2013; 64(4): 598-604.
[http://dx.doi.org/10.1016/j.yhbeh.2013.08.014] [PMID: 24005185]
[47]
Kobayashi K, Liu Y, Ichikawa H, Takemura S, Minamiyama Y. Effects of bisphenol a on oxidative stress in the rat brain. Antioxidants 2020; 9(3): 240.
[http://dx.doi.org/10.3390/antiox9030240] [PMID: 32187996]
[48]
Nardocci M, Polsky JY, Moubarac JC. Consumption of ultra-processed foods is associated with obesity, diabetes and hypertension in Canadian adults. Can J Public Health 2021; 112(3): 421-9.
[http://dx.doi.org/10.17269/s41997-020-00429-9] [PMID: 33174128]
[49]
Baraldi LG, Martinez Steele E, Canella DS, Monteiro CA. Consumption of ultra-processed foods and associated sociodemographic factors in the USA between 2007 and 2012: evidence from a nationally representative cross-sectional study. BMJ Open 2018; 8(3): e020574.
[http://dx.doi.org/10.1136/bmjopen-2017-020574] [PMID: 29525772]
[50]
Singh SA, Dhanasekaran D, Ganamurali N. L P, Sabarathinam S. Junk food-induced obesity- A growing threat to youngsters during the pandemic. Obes Med 2021; 26: 100364.
[http://dx.doi.org/10.1016/j.obmed.2021.100364] [PMID: 34580647]
[51]
Mauro C, De Rosa V, Marelli-Berg F, Solito E. Metabolic syndrome and the immunological affair with the blood-brain barrier. Front Immunol 2015; 5: 677.
[http://dx.doi.org/10.3389/fimmu.2014.00677] [PMID: 25601869]
[52]
Fardet A, Rock E. Ultra-processed foods: A new holistic paradigm? Trends Food Sci Technol 2019; 93: 174-84.
[http://dx.doi.org/10.1016/j.tifs.2019.09.016]
[53]
Michailidis M, Moraitou D, Tata DA, Kalinderi K, Papamitsou T, Papaliagkas V. Alzheimer’s disease as type 3 diabetes: Common pathophysiological mechanisms between Alzheimer’s disease and Type 2 Diabetes. Int J Mol Sci 2022; 23(5): 2687.
[http://dx.doi.org/10.3390/ijms23052687] [PMID: 35269827]
[54]
Chandran L, Singh A, Chitra V. Diagnostic dilemmas and current treatment approaches in latent onset autoimmune diabetes in adults: A concise review. Curr Diabetes Rev 2022.
[http://dx.doi.org/10.2174/1573399818666220324095918] [PMID: 35331118]
[55]
de la Monte SM, Wands JR. Alzheimer’s disease is type 3 diabetes-evidence reviewed. J Diabetes Sci Technol 2008; 2(6): 1101-13.
[http://dx.doi.org/10.1177/193229680800200619] [PMID: 19885299]
[56]
Mirabella F, Desiato G, Mancinelli S, et al. Prenatal interleukin 6 elevation increases glutamatergic synapse density and disrupts hippocampal connectivity in offspring. Immunity 2021; 54(11): 2611-2631.e8.
[http://dx.doi.org/10.1016/j.immuni.2021.10.006] [PMID: 34758338]
[57]
Chentli F, Azzoug S, Mahgoun SE. Metabolism, Diabetes Mellitus in Elderly. Indian J Endocrinol Metab 2015; 19(6): 744.
[58]
Agrawal R, Gomez-Pinilla F. ‘Metabolic syndrome’ in the brain: Deficiency in omega-3 fatty acid exacerbates dysfunctions in insulin receptor signalling and cognition. J Physiol 2012; 590(10): 2485-99.
[http://dx.doi.org/10.1113/jphysiol.2012.230078] [PMID: 22473784]
[59]
Barnes JN, Joyner MJ. Sugar highs and lows: The impact of diet on cognitive function. J Physiol 2012; 590(12): 2831.
[http://dx.doi.org/10.1113/jphysiol.2012.234328] [PMID: 22707590]
[60]
Dhaka V, Gulia N, Ahlawat KS, Khatkar BS. Trans fats-sources, health risks and alternative approach - A review. J Food Sci Technol 2011; 48(5): 534-41.
[http://dx.doi.org/10.1007/s13197-010-0225-8] [PMID: 23572785]
[61]
Barr SB, Wright JC. Postprandial energy expenditure in whole-food and processed-food meals: Implications for daily energy expenditure. Food Nutr Res 2010; 54(1): 5144.
[http://dx.doi.org/10.3402/fnr.v54i0.5144] [PMID: 20613890]
[62]
Passanha A, Benício MHD, Venâncio SI. Determinants of fruits, vegetables, and ultra-processed foods consumption among infants. Cien Saude Colet 2021; 26(1): 209-20.
[http://dx.doi.org/10.1590/1413-81232020261.06892019] [PMID: 33533842]
[63]
Fonseca PCA, Ribeiro SAV, Andreoli CS, et al. Association of exclusive breastfeeding duration with consumption of ultra-processed foods, fruit and vegetables in Brazilian children. Eur J Nutr 2019; 58(7): 2887-94.
[http://dx.doi.org/10.1007/s00394-018-1840-9] [PMID: 30293179]
[64]
Spaniol AM, da Costa THM, Bortolini GA, Gubert MB. Breastfeeding reduces ultra-processed foods and sweetened beverages consumption among children under two years old. BMC Public Health 2020; 20(1): 330.
[http://dx.doi.org/10.1186/s12889-020-8405-6] [PMID: 32171266]
[65]
Soares MM, Juvanhol LL, Ribeiro SA, Franceschini SD, Araújo RM. Nutrition, prevalence of processed and ultra-processed food intake in brazilian children (6-24 Months) is associated with maternal consumption and breastfeeding practices. Int J Food Sci Nutr 2021; 72(7): 978-88.
[66]
Petersen MC, Shulman GI. Mechanisms of insulin action and insulin resistance. Physiol Rev 2018; 98(4): 2133-223.
[http://dx.doi.org/10.1152/physrev.00063.2017] [PMID: 30067154]
[67]
De La Monte SM. Metabolic derangements mediate cognitive impairment and Alzheimer’s disease: Role of peripheral insulin-resistance diseases. Panminerva Med 2012; 54(3): 171-8.
[PMID: 22801434]
[68]
Dierssen M, Barone E. Editorial: Brain insulin resistance in neurodevelopmental and neurodegenerative disorders: Mind the Gap! Front Neurosci 2021; 15: 730378.
[http://dx.doi.org/10.3389/fnins.2021.730378] [PMID: 34447295]
[69]
Shaw KJPD. Type 3 Diabetes’: Linking a brain Insulin-Resistant state with dementia and Alzheimer’s disease. Pract Diabetes 2013; 30: 102-3.
[http://dx.doi.org/10.1002/pdi.1752]
[70]
Sharma G, Parihar A, Talaiya T, Dubey K, Porwal B, Parihar MS. Cognitive impairments in type 2 diabetes, risk factors and preventive strategies. J Basic Clin Physiol Pharmacol 2020; 31(2)
[http://dx.doi.org/10.1515/jbcpp-2019-0105] [PMID: 31967962]
[71]
Arnold SE, Arvanitakis Z, Macauley-Rambach SL, et al. Brain insulin resistance in type 2 diabetes and Alzheimer disease: Concepts and conundrums. Nat Rev Neurol 2018; 14(3): 168-81.
[http://dx.doi.org/10.1038/nrneurol.2017.185] [PMID: 29377010]
[72]
Labouesse MA, Lassalle O, Richetto J, et al. Hypervulnerability of the adolescent prefrontal cortex to nutritional stress via reelin deficiency. Mol Psychiatry 2017; 22(7): 961-71.
[http://dx.doi.org/10.1038/mp.2016.193] [PMID: 27843148]
[73]
Sims-Robinson C, Bakeman A, Bruno E, et al. Dietary reversal ameliorates short- and long-term memory deficits induced by high-fat diet early in life. PLoS One 2016; 11(9): e0163883.
[http://dx.doi.org/10.1371/journal.pone.0163883] [PMID: 27676071]
[74]
Tschöp M, Heiman ML. Rodent obesity models: An overview. Exp Clin Endocrinol Diabetes 2001; 109(6): 307-19.
[http://dx.doi.org/10.1055/s-2001-17297] [PMID: 11571668]
[75]
Buettner R, Schölmerich J, Bollheimer LC. High-fat diets: Modeling the metabolic disorders of human obesity in rodents. Obesity 2007; 15(4): 798-808.
[http://dx.doi.org/10.1038/oby.2007.608] [PMID: 17426312]
[76]
de Moura E, Dias M, Dos Reis SA, da Conceição LL, et al. Diet-induced obesity in animal models: Points to consider and influence on metabolic markers. Diabetol Metab Syndr 2021; 13(1): 32.
[http://dx.doi.org/10.1186/s13098-021-00647-2] [PMID: 33736684]
[77]
Chang G-Q, Gaysinskaya V, Karatayev O, Leibowitz SF. Maternal high-fat diet and fetal programming: Increased proliferation of hypothalamic peptide-producing neurons that increase risk for overeating and obesity. J Neurosci 2008; 28(46): 12107-19.
[http://dx.doi.org/10.1523/JNEUROSCI.2642-08.2008] [PMID: 19005075]
[78]
Christians JK, Lennie KI, Wild LK, Garcha R. Effects of high-fat diets on fetal growth in rodents: A systematic review. Reprod Biol Endocrinol 2019; 17(1): 39.
[http://dx.doi.org/10.1186/s12958-019-0482-y] [PMID: 30992002]
[79]
Tozuka Y, Wada E, Wada K. Diet-induced obesity in female mice leads to peroxidized lipid accumulations and impairment of hippocampal neurogenesis during the early life of their offspring. FASEB J 2009; 23(6): 1920-34.
[http://dx.doi.org/10.1096/fj.08-124784] [PMID: 19158155]
[80]
Zimmerman B, Kundu P, Rooney WD, Raber J. The effect of high fat diet on cerebrovascular health and pathology: A species comparative review. Molecules 2021; 26(11): 3406.
[http://dx.doi.org/10.3390/molecules26113406] [PMID: 34199898]
[81]
Chichger H, Cleasby ME, Srai SK, Unwin RJ, Debnam ES, Marks J. Experimental type II diabetes and related models of impaired glucose metabolism differentially regulate glucose transporters at the proximal tubule brush border membrane. Exp Physiol 2016; 101(6): 731-42.
[http://dx.doi.org/10.1113/EP085670] [PMID: 27164183]
[82]
Mitra A, Alvers KM, Crump EM, Rowland NE. Effect of high-fat diet during gestation, lactation, or postweaning on physiological and behavioral indexes in borderline hypertensive rats. Am J Physiol Regul Integr Comp Physiol 2009; 296(1): R20-8.
[http://dx.doi.org/10.1152/ajpregu.90553.2008] [PMID: 18971351]
[83]
Su M, Naderi K, Samson N, et al. Mechanisms associated with type 2 diabetes as a risk factor for Alzheimer-related pathology. Mol Neurobiol 2019; 56(8): 5815-34.
[http://dx.doi.org/10.1007/s12035-019-1475-8] [PMID: 30684218]
[84]
Li J, Deng J, Sheng W, Zuo Z. Metformin attenuates Alzheimer’s disease-like neuropathology in obese, leptin-resistant mice. Pharmacol Biochem Behav 2012; 101(4): 564-74.
[http://dx.doi.org/10.1016/j.pbb.2012.03.002] [PMID: 22425595]
[85]
Nuzzo D, Picone P, Baldassano S, et al. Insulin resistance as common molecular denominator linking obesity to Alzheimer’s disease. Curr Alzheimer Res 2015; 12(8): 723-35.
[http://dx.doi.org/10.2174/1567205012666150710115506] [PMID: 26159189]
[86]
Stolk RP, Breteler MM, Ott A, et al. Insulin and cognitive function in an elderly population. The rotterdam study. Diabetes Care 1997; 20(5): 792-5.
[http://dx.doi.org/10.2337/diacare.20.5.792] [PMID: 9135944]
[87]
Blázquez E, Velázquez E, Hurtado-Carneiro V, Ruiz-Albusac JM. Insulin in the brain: Its pathophysiological implications for States related with central insulin resistance, type 2 diabetes and Alzheimer’s disease. Front Endocrinol 2014; 5: 161.
[http://dx.doi.org/10.3389/fendo.2014.00161] [PMID: 25346723]
[88]
Zhao WQ, De Felice FG, Fernandez S, et al. Amyloid beta oligomers induce impairment of neuronal insulin receptors. FASEB J 2008; 22(1): 246-60.
[http://dx.doi.org/10.1096/fj.06-7703com] [PMID: 17720802]
[89]
Nguyen TT, Ta QTH, Nguyen TKO, Nguyen TTD, Giau VV. Type 3 diabetes and its role implications in Alzheimer’s disease. Int J Mol Sci 2020; 21(9): 3165.
[http://dx.doi.org/10.3390/ijms21093165] [PMID: 32365816]
[90]
Samuelsson J, Kern S, Zetterberg H, et al. A Western-style dietary pattern is associated with cerebrospinal fluid biomarker levels for preclinical Alzheimer’s disease-A population-based cross-sectional study among 70-year-olds. Alzheimers Dement (N Y) 2021; 7(1): e12183.
[http://dx.doi.org/10.1002/trc2.12183] [PMID: 34027029]
[91]
Steen E, Terry BM, Rivera EJ, et al. Impaired insulin and insulin-like growth factor expression and signaling mechanisms in Alzheimer’s disease is this type 3 diabetes? J Alzheimers Dis 2005; 7(1): 63-80.
[http://dx.doi.org/10.3233/JAD-2005-7107] [PMID: 15750215]
[92]
Thaler JP, Yi CX, Schur EA, et al. Obesity is associated with hypothalamic injury in rodents and humans. J Clin Invest 2012; 122(1): 153-62.
[http://dx.doi.org/10.1172/JCI59660] [PMID: 22201683]
[93]
Yamashima T, Ota T, Mizukoshi E, et al. Intake of ω-6 polyunsaturated fatty acid-rich vegetable oils and risk of lifestyle diseases. Adv Nutr 2020; 11(6): 1489-509.
[http://dx.doi.org/10.1093/advances/nmaa072] [PMID: 32623461]
[94]
Yamashima T. Dual effects of the non-esterified fatty acid receptor ‘GPR40’ for human health. Prog Lipid Res 2015; 58: 40-50.
[http://dx.doi.org/10.1016/j.plipres.2015.01.002] [PMID: 25615413]
[95]
Oginsky MF, Goforth PB, Nobile CW, Lopez-Santiago LF, Ferrario CR. Eating ‘Junk-Food’ produces rapid and long-lasting increases in NAc CP-AMPA receptors: Implications for enhanced cue-induced motivation and food addiction. Neuropsychopharmacology 2016; 41(13): 2977-86.
[http://dx.doi.org/10.1038/npp.2016.111] [PMID: 27383008]
[96]
Wolf ME, Tseng KY. Calcium-permeable AMPA receptors in the VTA and nucleus accumbens after cocaine exposure: When, how, and why? Front Mol Neurosci 2012; 5: 72.
[http://dx.doi.org/10.3389/fnmol.2012.00072] [PMID: 22754497]
[97]
Wolf ME. Synaptic mechanisms underlying persistent cocaine craving. Nat Rev Neurosci 2016; 17(6): 351-65.
[http://dx.doi.org/10.1038/nrn.2016.39] [PMID: 27150400]
[98]
Robinson MJF, Burghardt PR, Patterson CM, et al. Individual differences in Cue-induced motivation and striatal systems in rats susceptible to diet-induced obesity. Neuropsychopharmacology 2015; 40(9): 2113-23.
[http://dx.doi.org/10.1038/npp.2015.71] [PMID: 25761571]
[99]
Surya V, Arul M, Arockiaraj AJEE. Junk food is the danger of future generation-review for a decade. Indian J Public Health Res Dev 2011; 11(6): 1160-4.
[100]
Derman RC, Ferrario CR. Junk-food enhances conditioned food cup approach to a previously established food cue, but does not alter cue potentiated feeding; Implications for the effects of palatable diets on incentive motivation. Physiol Behav 2018; 192: 145-57.
[http://dx.doi.org/10.1016/j.physbeh.2018.03.012] [PMID: 29555195]
[101]
Wolf AM, Colditz GA. Current estimates of the economic cost of obesity in the United States. Obes Res 1998; 6(2): 97-106.
[http://dx.doi.org/10.1002/j.1550-8528.1998.tb00322.x] [PMID: 9545015]
[102]
Saklayen MG. The global epidemic of the metabolic syndrome. Curr Hypertens Rep 2018; 20(2): 12.
[http://dx.doi.org/10.1007/s11906-018-0812-z] [PMID: 29480368]
[103]
Beck AL, Iturralde E, Haya-Fisher J, Kim S, Keeton V, Fernandez A. Barriers and facilitators to healthy eating among low-income Latino adolescents. Appetite 2019; 138: 215-22.
[http://dx.doi.org/10.1016/j.appet.2019.04.004] [PMID: 30954634]
[104]
Matthes J, Naderer B. Sugary, fatty, and prominent: Food and beverage appearances in children’s movies from 1991 to 2015. Pediatr Obes 2019; 14(4): e12488.
[http://dx.doi.org/10.1111/ijpo.12488] [PMID: 30515987]
[105]
Harris JL, Graff SK. Protecting young people from junk food advertising: Implications of psychological research for first amendment law. Am J Public Health 2012; 102(2): 214-22.
[http://dx.doi.org/10.2105/AJPH.2011.300328] [PMID: 22390435]
[106]
Hemmingsson E. Early childhood obesity risk factors: Socioeconomic adversity, family dysfunction, offspring distress, and junk food self-medication. Curr Obes Rep 2018; 7(2): 204-9.
[http://dx.doi.org/10.1007/s13679-018-0310-2] [PMID: 29704182]
[107]
Liu J, Lee Y, Micha R, Li Y, Mozaffarian D. Trends in junk food consumption among US children and adults, 2001-2018. Am J Clin Nutr 2021; 114(3): 1039-48.
[http://dx.doi.org/10.1093/ajcn/nqab129] [PMID: 34020459]
[108]
Mingay E, Hart M, Yoong S, Hure A. Why we eat the way we do: A call to consider food culture in public health initiatives. Int J Environ Res Public Health 2021; 18(22): 11967.
[http://dx.doi.org/10.3390/ijerph182211967] [PMID: 34831723]
[109]
Montiel-Castro AJ, González-Cervantes RM, Bravo-Ruiseco G, Pacheco-López G. The microbiota-gut-brain axis: Neurobehavioral correlates, health and sociality. Front Integr Nuerosci 2013; 7: 70.
[http://dx.doi.org/10.3389/fnint.2013.00070] [PMID: 24109440]
[110]
Freeman AM, Pennings N. Insulin Resistance StatPearls. StatPearls Publishing 2021.
[111]
Anderson AS, Haynie KR, McMillan RP, et al. Early skeletal muscle adaptations to short-term high-fat diet in humans before changes in insulin sensitivity. Obesity (Silver Spring) 2015; 23(4): 720-4.
[http://dx.doi.org/10.1002/oby.21031] [PMID: 25820254]
[112]
Pereira MA, Kartashov AI, Ebbeling CB, et al. Fast-food habits, weight gain, and insulin resistance (the CARDIA study): 15-year prospective analysis. Lancet 2005; 365(9453): 36-42.
[http://dx.doi.org/10.1016/S0140-6736(04)17663-0] [PMID: 15639678]
[113]
Shaban L, Alkazemi D. Trends in fast-food consumption among Kuwaiti youth. Int J Prev Med 2019; 10(1): 44.
[http://dx.doi.org/10.4103/ijpvm.IJPVM_480_18] [PMID: 31143418]
[114]
Laster J, Frame LA. Beyond the calories-is the problem in the processing? Curr Treat Options Gastroenterol 2019; 17(4): 577-86.
[http://dx.doi.org/10.1007/s11938-019-00246-1] [PMID: 31786723]
[115]
Pagliai G, Dinu M, Madarena MP, Bonaccio M, Iacoviello L, Sofi F. Consumption of ultra-processed foods and health status: A systematic review and meta-analysis. Br J Nutr 2021; 125(3): 308-18.
[http://dx.doi.org/10.1017/S0007114520002688] [PMID: 32792031]
[116]
Poti JM, Braga B, Qin B. Ultra-processed food intake and obesity: What really matters for health-processing or nutrient content? Curr Obes Rep 2017; 6(4): 420-31.
[http://dx.doi.org/10.1007/s13679-017-0285-4] [PMID: 29071481]
[117]
Fazzino TL, Rohde K, Sullivan DK. Hyper-palatable foods: Development of a quantitative definition and application to the US food system database. Obesity 2019; 27(11): 1761-8.
[http://dx.doi.org/10.1002/oby.22639] [PMID: 31689013]
[118]
Landge JA, Khadkikar GD. Lifestyle and nutritional status of late adolescent in an urban area of Western Maharashtra: Cross sectional study. Int J Community Med Public Health 2020; 7(8): 3027.
[http://dx.doi.org/10.18203/2394-6040.ijcmph20203373]
[119]
Gray SM, Aylor KW, Barrett EJ. Unravelling the regulation of insulin transport across the brain endothelial cell. Diabetologia 2017; 60(8): 1512-21.
[http://dx.doi.org/10.1007/s00125-017-4285-4] [PMID: 28601906]
[120]
Corbin KD, Driscoll KA, Pratley RE, Smith SR, Maahs DM, Mayer-Davis EJ. Advancing care for Type 1 Diabetes and obesity network (ACT1ON). Obesity in Type 1 Diabetes: Pathophysiology, clinical impact, and mechanisms. Endocr Rev 2018; 39(5): 629-63.
[http://dx.doi.org/10.1210/er.2017-00191] [PMID: 30060120]
[121]
Bruins MJ, Van Dael P, Eggersdorfer M. The role of nutrients in reducing the risk for noncommunicable diseases during aging. Nutrients 2019; 11(1): 85.
[http://dx.doi.org/10.3390/nu11010085] [PMID: 30621135]
[122]
Fardet A, Rock E. Perspective: Reductionist nutrition research has meaning only within the framework of holistic and ethical thinking. Adv Nutr 2018; 9(6): 655-70.
[http://dx.doi.org/10.1093/advances/nmy044] [PMID: 30204836]
[123]
Ramachandran D, Kite J, Vassallo AJ, et al. Food trends and popular nutrition advice online - implications for public health. Online J Public Health Inform 2018; 10(2): e213.
[http://dx.doi.org/10.5210/ojphi.v10i2.9306] [PMID: 30349631]
[124]
Bergallo P, Castagnari V, Fernández A, Mejía R. Regulatory initiatives to reduce Sugar-Sweetened Beverages (SSBs) in Latin America. PLoS One 2018; 13(10): e0205694.
[http://dx.doi.org/10.1371/journal.pone.0205694] [PMID: 30339667]
[125]
Ertz M, Le Bouhart G. The other pandemic: A conceptual framework and future research directions of junk food marketing to children and childhood obesity. J Macromark 2022; 42(1): 30-50.
[http://dx.doi.org/10.1177/02761467211054354]
[126]
Jaffee S, Henson S, Unnevehr L, Grace D, Cassou E. The safe food imperative: Accelerating progress in low- and middle-income countries. Washington, D.C., DC: World Bank 2018.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy