Research Article

血蓝蛋白处理后T24膀胱癌永久性细胞系的选择性细胞毒性和蛋白表达变化

卷 29, 期 42, 2022

发表于: 21 September, 2022

页: [6479 - 6498] 页: 20

弟呕挨: 10.2174/0929867329666220820095122

价格: $65

摘要

背景:一些软体动物血蓝蛋白(Hcs)具有显着的免疫和抗肿瘤潜力,使其能够在肿瘤学中应用。与多柔比星相比,在膀胱癌永久性 T24 细胞系和正常尿路上皮细胞系 HL 10/29 体外研究了来自海洋蜗牛 Rapana venosa (RvH)、巨型锁孔帽贝 Megathura crenulata (KLH) 和花园蜗牛螺旋 ( HlH) 的 HCS 及其不同衍生物的抗肿瘤活性。 方法: 使用WST-1测定法和BrdU ELISA测定法测定所测试的Hcs的抗增殖活性。两种尿路上皮细胞系的形态变化均通过荧光显微镜证实。使用二维聚丙烯酰胺凝胶电泳(2D-PAGE)和质谱法对膀胱癌细胞系在功能单位(FU)βc-HlH-h处理前后的蛋白质组学分析揭示了一些蛋白质表达的差异。 结果: 研究证明T24肿瘤细胞系具有剂量和时间依赖性,对被测亚型的作用敏感,并且它对这些血蓝蛋白的FU糖基化。在与结构亚基(βc-HlH,RvHI和RvHII)和FU(βc-HlH-h和RvHII-e)孵育后观察到T24细胞生长的选择性抑制。此外,荧光显微照片未显示正常尿路上皮细胞系HL 10/29的凋亡或坏死改变。FU βc-HlH-h表现出最高的抗增殖作用(类似于阿霉素),其中观察到肿瘤细胞中主要是凋亡和较少的晚期凋亡或坏死变化。通过蛋白质组分析鉴定的几种下调和上调蛋白可能与细胞凋亡途径有关。 结论: 本研究阐明了Hcs对Т24癌细胞系的细胞毒性作用的选择性。这是在FU βc-HlH-h影响下T24人膀胱癌细胞中蛋白质表达的第一篇报道。这可能是由于暴露在βc-HlH-h表面上的富含甲基化己糖的特定低聚糖结构。

关键词: 血蓝蛋白,细胞毒性作用,Т24膀胱癌永久性细胞系,蛋白质组学分析,细胞凋亡,蛋白表达。

[1]
Di Pierro, G.B.; Gulia, C.; Cristini, C.; Fraietta, G.; Marini, L.; Grande, P.; Gentile, V.; Piergentili, R. Bladder cancer: A simple model becomes complex. Curr. Genom., 2012, 13(5), 395-415.
[http://dx.doi.org/10.2174/138920212801619232] [PMID: 23372425]
[2]
Azevedo, R.; Peixoto, A.; Gaiteiro, C.; Fernandes, E.; Neves, M.; Lima, L.; Santos, L.L.; Ferreira, J.A. Over forty years of bladder cancer glycobiology: Where do glycans stand facing precision oncology? Oncotarget, 2017, 8(53), 91734-91764.
[http://dx.doi.org/10.18632/oncotarget.19433] [PMID: 29207682]
[3]
Cragg, G.M.; Pezzuto, J.M. Natural products as a vital source for the discovery of cancer chemotherapeutic and chemopreventive agents. Med. Princ. Pract., 2016, 25(Suppl. 2), 41-59.
[http://dx.doi.org/10.1159/000443404] [PMID: 26679767]
[4]
van Holde, K.E.; Miller, K.I.; Decker, H. Hemocyanins and invertebrate evolution. J. Biol. Chem., 2001, 276(19), 15563-15566.
[http://dx.doi.org/10.1074/jbc.R100010200] [PMID: 11279230]
[5]
Harris, J.R.; Markl, J. Keyhole limpet hemocyanin: Molecular structure of a potent marine immunoactivator. A review. Eur. Urol., 2000, 37(Suppl. 3), 24-33.
[http://dx.doi.org/10.1159/000052389] [PMID: 10828684]
[6]
Mora Román, J.J.; Del Campo, M.; Villar, J.; Paolini, F.; Curzio, G.; Venuti, A.; Jara, L.; Ferreira, J.; Murgas, P.; Lladser, A.; Manubens, A.; Becker, M.I. Immunotherapeutic potential of mollusk hemocyanins in combination with human vaccine adjuvants in murine models of oral cancer. J. Immunol. Res., 2019, 2019, 7076942.
[http://dx.doi.org/10.1155/2019/7076942] [PMID: 30847353]
[7]
Arancibia, S.; Salazar, F.; Becker, M.I. Hemocyanins in the immunotherapy of superficial bladder cancer. Bladder Cancer-From Basic to Robotic Surgery; Canda, A.E., Ed.; InTech: Rijeka, Croatia, 2012, pp. 221-242.
[http://dx.doi.org/10.5772/28281]
[8]
Coates, C.J.; Decker, H. Immunological properties of oxygen-transport proteins: Hemoglobin, hemocyanin and hemerythrin. Cell. Mol. Life Sci., 2017, 74(2), 293-317.
[http://dx.doi.org/10.1007/s00018-016-2326-7] [PMID: 27518203]
[9]
Georgieva, A.; Todorova, K.; Iliev, I.; Dilcheva, V.; Vladov, I.; Petkova, S.; Toshkova, R.; Velkova, L.; Dolashki, A.; Dolashka, P. Hemocyanins from Helix and Rapana snails exhibit in vitro antitumor effects in human colorectal adenocarcinoma. Biomedicines, 2020, 8(7), 194.
[http://dx.doi.org/10.3390/biomedicines8070194] [PMID: 32635655]
[10]
Miles, D.; Roché, H.; Martin, M.; Perren, T.J.; Cameron, D.A.; Glaspy, J.; Dodwell, D.; Parker, J.; Mayordomo, J.; Tres, A.; Murray, J.L.; Ibrahim, N.K. Phase III multicenter clinical trial of the sialyl-TN (STn)-keyhole limpet hemocyanin (KLH) vaccine for metastatic breast cancer. Oncologist, 2011, 16(8), 1092-1100.
[http://dx.doi.org/10.1634/theoncologist.2010-0307] [PMID: 21572124]
[11]
Musselli, C.; Livingston, P.O.; Ragupathi, G. Keyhole limpet hemocyanin conjugate vaccines against cancer: The Memorial Sloan Kettering experience. J. Cancer Res. Clin. Oncol., 2001, 127(Suppl. 2), R20-R26.
[http://dx.doi.org/10.1007/BF01470995] [PMID: 11768620]
[12]
Neelapu, S.S.; Baskar, S.; Kwak, L.W. Detection of keyhole limpet hemocyanin (KLH)-specific immune responses by intracellular cytokine assay in patients vaccinated with idiotype-KLH vaccine. J. Cancer Res. Clin. Oncol., 2001, 127(Suppl. 2), R14-R19.
[http://dx.doi.org/10.1007/BF01470994] [PMID: 11768619]
[13]
Lammers, R.J.; Witjes, W.P.; Janzing-Pastors, M.H.; Caris, C.T.; Witjes, J.A. Intracutaneous and intravesical immunotherapy with keyhole limpet hemocyanin compared with intravesical mitomycin in patients with non-muscle-invasive bladder cancer: Results from a prospective randomized phase III trial. J. Clin. Oncol., 2012, 30(18), 2273-2279.
[http://dx.doi.org/10.1200/JCO.2011.39.2936] [PMID: 22585689]
[14]
Kurokawa, T.; Wuhrer, M.; Lochnit, G.; Geyer, H.; Markl, J.; Geyer, R. Hemocyanin from the keyhole limpet Megathura crenulata (KLH) carries a novel type of N-glycans with Gal(β1-6)Man-motifs. Eur. J. Biochem., 2002, 269(22), 5459-5473.
[http://dx.doi.org/10.1046/j.1432-1033.2002.03244.x] [PMID: 12423344]
[15]
Wuhrer, M.; Robijn, M.L.M.; Koeleman, C.A.M.; Balog, C.I.A.; Geyer, R.; Deelder, A.M.; Hokke, C.H. A novel Gal(beta1-4)Gal(beta1-4)Fuc(alpha1-6)-core modification attached to the proximal N-acetylglucosamine of keyhole limpet haemocyanin (KLH) N-glycans. Biochem. J., 2004, 378(Pt 2), 625-632.
[http://dx.doi.org/10.1042/bj20031380] [PMID: 14613482]
[16]
Wirguin, I.; Suturkova-Milosević, L.; Briani, C.; Latov, N. Keyhole limpet hemocyanin contains Gal(beta 1-3)-GalNAc determinants that are cross-reactive with the T antigen. Cancer Immunol. Immunother., 1995, 40(5), 307-310.
[PMID: 7600562]
[17]
Moltedo, B.; Faunes, F.; Haussmann, D.; De Ioannes, P.; De Ioannes, A.E.; Puente, J.; Becker, M.I. Immunotherapeutic effect of Concholepas hemocyanin in the murine bladder cancer model: Evidence for conserved antitumor properties among hemocyanins. J. Urol., 2006, 176(6 Pt 1), 2690-2695.
[http://dx.doi.org/10.1016/j.juro.2006.07.136] [PMID: 17085197]
[18]
Becker, M.I.; Arancibia, S.; Salazar, F.; Del Campo, M.; De Ioannes, A. Mollusk hemocyanins as natural immunostimulants in biomedical applications. In: Immune Response Activation; Guy, H.T.D., Ed.; InTech: Rijeka, Croatia, 2014, pp. 45-72.
[http://dx.doi.org/10.5772/57552]
[19]
Dolashka, P.; Velkova, L.; Iliev, I.; Beck, A.; Dolashki, A.; Yossifova, L.; Toshkova, R.; Voelter, W.; Zacharieva, S. Antitumor activity of glycosylated molluscan hemocyanins viaGuerin ascites tumor. Immunol. Invest., 2011, 40(2), 130-149.
[http://dx.doi.org/10.3109/08820139.2010.513408] [PMID: 20923331]
[20]
Riggs, D.R.; Jackson, B.J.; Vona-Davis, L.; Nigam, A.; McFadden, D.W. In vitro effects of keyhole limpet hemocyanin in breast and pancreatic cancer in regards to cell growth, cytokine production, and apoptosis. Am. J. Surg., 2005, 189(6), 680-684.
[http://dx.doi.org/10.1016/j.amjsurg.2004.10.005] [PMID: 15910720]
[21]
Dolashki, A.; Dolashka, P.; Stenzl, A.; Stevanovic, S.; Aicher, W.K.; Velkova, L.; Velikova, R.; Voelter, W. Antitumour activity of Helix hemocyanin against bladder carcinoma permanent cell lines. Biotechnol. Biotechnol. Equip., 2019, 33(1), 20-32.
[http://dx.doi.org/10.1080/13102818.2018.1507755]
[22]
Zheng, L.; Zhao, X.; Zhang, P.; Chen, C.; Liu, S.; Huang, R.; Zhong, M.; Wei, C.; Zhang, Y. Hemocyanin from Shrimp Litopenaeus vannamei has antiproliferative effect against HeLa cell in vitro. PLoS One, 2016, 11(3), e0151801.
[http://dx.doi.org/10.1371/journal.pone.0151801] [PMID: 27007573]
[23]
Boyanova, O.; Dolashka, P.; Toncheva, D.; Rammensee, H.G.; Stevanović, S. In vitro effect of molluscan hemocyanins on CAL-29 and T-24 bladder cancer cell lines. Biomed. Rep., 2013, 1(2), 235-238.
[http://dx.doi.org/10.3892/br.2012.46] [PMID: 24648926]
[24]
Antonova, O.; Dolashka, P.; Toncheva, D.; Rammensee, H.G.; Floetenmeyer, M.; Stevanovic, S. In vitro antiproliferative effect of Helix aspersa hemocyanin on multiple malignant cell lines. Z. Naturforsch. C.J. Biosci, 2014, 69(7-8), 325-334.
[http://dx.doi.org/10.5560/znc.2013-0148] [PMID: 25265853]
[25]
Dolashka-Angelova, P.; Beck, A.; Dolashki, A.; Stevanovic, S.; Beltramini, M.; Salvato, B.; Hristova, R.; Velkova, L.; Voelter, W. Carbohydrate moieties of molluscan Rapana venosa hemocyanin. Micron, 2004, 35(1-2), 101-104.
[http://dx.doi.org/10.1016/j.micron.2003.10.032] [PMID: 15036306]
[26]
Sandra, K.; Dolashka-Angelova, P.; Devreese, B.; Van Beeumen, J. New insights in Rapana venosa hemocyanin N-glycosylation resulting from on-line mass spectrometric analyses. Glycobiology, 2007, 17(2), 141-156.
[http://dx.doi.org/10.1093/glycob/cwl063] [PMID: 17068122]
[27]
Dolashka-Angelova, P.; Lieb, B.; Velkova, L.; Heilen, N.; Sandra, K.; Nikolaeva-Glomb, L.; Dolashki, A.; Galabov, A.S.; Van Beeumen, J.; Stevanovic, S.; Voelter, W.; Devreese, B. Identification of glycosylated sites in Rapana hemocyanin by mass spectrometry and gene sequence, and their antiviral effect. Bioconjug. Chem., 2009, 20(7), 1315-1322.
[http://dx.doi.org/10.1021/bc900034k] [PMID: 19499947]
[28]
Dolashka, P.; Velkova, L.; Shishkov, S.; Kostova, K.; Dolashki, A.; Dimitrov, I.; Atanasov, B.; Devreese, B.; Voelter, W.; Van Beeumen, J. Glycan structures and antiviral effect of the structural subunit RvH2 of Rapana hemocyanin. Carbohydr. Res., 2010, 345(16), 2361-2367.
[http://dx.doi.org/10.1016/j.carres.2010.08.005] [PMID: 20863484]
[29]
Velkova, L.; Dolashka, P.; Van Beeumen, J.; Devreese, B. N-glycan structures of β-HlH subunit of Helix lucorum hemocyanin. Carbohydr. Res., 2017, 449, 1-10.
[http://dx.doi.org/10.1016/j.carres.2017.06.012] [PMID: 28672164]
[30]
Velkova, L.; Dimitrov, I.; Schwarz, H.; Stevanovic, S.; Voelter, W.; Salvato, B.; Dolashka-Angelova, P. Structure of hemocyanin from garden snail Helix lucorum. Comp. Biochem. Physiol. B Biochem. Mol. Biol., 2010, 157(1), 16-25.
[http://dx.doi.org/10.1016/j.cbpb.2010.04.012] [PMID: 20433940]
[31]
Dolashka-Angelova, P.; Schwarz, H.; Dolashki, A.; Stevanovic, S.; Fecker, M.; Saeed, M.; Voelter, W. Oligomeric stability of Rapana venosa hemocyanin (RvH) and its structural subunits. Biochim. Biophys. Acta, 2003, 1646(1-2), 77-85.
[http://dx.doi.org/10.1016/S1570-9639(02)00549-6] [PMID: 12637014]
[32]
Rosenfeld, J.; Capdevielle, J.; Guillemot, J.C.; Ferrara, P. In-gel digestion of proteins for internal sequence analysis after one- or two-dimensional gel electrophoresis. Anal. Biochem., 1992, 203(1), 173-179.
[http://dx.doi.org/10.1016/0003-2697(92)90061-B] [PMID: 1524213]
[33]
Liu, T.; Song, P.; Märcher, A.; Kjems, J.; Yang, C.; Gothelf, K.V. Selective delivery of doxorubicin to EGFR+ cancer cells by cetuximab-DNA conjugates. ChemBioChem, 2019, 20(8), 1014-1018.
[http://dx.doi.org/10.1002/cbic.201800685] [PMID: 30589193]
[34]
Latosinska, A.; Makridakis, M.; Frantzi, M.; Borràs, D.M.; Janssen, B.; Mullen, W.; Zoidakis, J.; Merseburger, A.S.; Jankowski, V.; Mischak, H.; Vlahou, A. Integrative analysis of extracellular and intracellular bladder cancer cell line proteome with transcriptome: Improving coverage and validity of–omics findings. Sci. Rep., 2016, 6(1), 1-12.
[http://dx.doi.org/10.1038/srep25619] [PMID: 28442746]
[35]
Lei, T.; Zhao, X.; Jin, S.; Meng, Q.; Zhou, H.; Zhang, M. Discovery of potential bladder cancer biomarkers by comparative urine proteomics and analysis. Clin. Genitourin. Cancer, 2013, 11(1), 56-62.
[http://dx.doi.org/10.1016/j.clgc.2012.06.003] [PMID: 22982111]
[36]
Tisdale, E.J. Glyceraldehyde-3-phosphate dehydrogenase is phosphorylated by protein kinase Ciota /λ and plays a role in microtubule dynamics in the early secretory pathway. J. Biol. Chem., 2002, 277(5), 3334-3341.
[http://dx.doi.org/10.1074/jbc.M109744200] [PMID: 11724794]
[37]
Rahmat, J.N.; Esuvaranathan, K.; Mahendran, R. Bacillus Calmette-Guérin induces rapid gene expression changes in human bladder cancer cell lines that may modulate its survival. Oncol. Lett., 2018, 15(6), 9231-9241.
[PMID: 29844825]
[38]
Hwang, N.R.; Yim, S.H.; Kim, Y.M.; Jeong, J.; Song, E.J.; Lee, Y.; Lee, J.H.; Choi, S.; Lee, K.J. Oxidative modifications of glyceraldehyde-3-phosphate dehydrogenase play a key role in its multiple cellular functions. Biochem. J., 2009, 423(2), 253-264.
[http://dx.doi.org/10.1042/BJ20090854] [PMID: 19650766]
[39]
Bogaards, J.J.; Venekamp, J.C.; van Bladeren, P.J. Stereoselective conjugation of prostaglandin A2 and prostaglandin J2 with glutathione, catalyzed by the human glutathione S-transferases A1-1, A2-2, M1a-1a, and P1-1. Chem. Res. Toxicol., 1997, 10(3), 310-317.
[http://dx.doi.org/10.1021/tx9601770] [PMID: 9084911]
[40]
Sun, K.H.; Chang, K.H.; Clawson, S.; Ghosh, S.; Mirzaei, H.; Regnier, F.; Shah, K. Glutathione-S-transferase P1 is a critical regulator of CDK5 kinase activity. J. Neurochem., 2011, 118(5), 902-914.
[http://dx.doi.org/10.1111/j.1471-4159.2011.07343.x] [PMID: 21668448]
[41]
Almeida-Souza, L.; Goethals, S.; de Winter, V.; Dierick, I.; Gallardo, R.; Van Durme, J.; Irobi, J.; Gettemans, J.; Rousseau, F.; Schymkowitz, J.; Timmerman, V.; Janssens, S. Increased monomerization of mutant HSPB1 leads to protein hyperactivity in Charcot-Marie-Tooth neuropathy. J. Biol. Chem., 2010, 285(17), 12778-12786.
[http://dx.doi.org/10.1074/jbc.M109.082644] [PMID: 20178975]
[42]
Kostenko, S.; Johannessen, M.; Moens, U. PKA-induced F-actin rearrangement requires phosphorylation of Hsp27 by the MAPKAP kinase MK5. Cell. Signal., 2009, 21(5), 712-718.
[http://dx.doi.org/10.1016/j.cellsig.2009.01.009] [PMID: 19166925]
[43]
Holmgren, A.; Bouhy, D.; De Winter, V.; Asselbergh, B.; Timmermans, J.P.; Irobi, J.; Timmerman, V. Charcot-Marie-Tooth causing HSPB1 mutations increase Cdk5-mediated phosphorylation of neurofilaments. Acta Neuropathol., 2013, 126(1), 93-108.
[http://dx.doi.org/10.1007/s00401-013-1133-6] [PMID: 23728742]
[44]
Winn, S.I.; Watson, H.C.; Harkins, R.N.; Fothergill, L.A. Structure and activity of phosphoglycerate mutase. Philos. Trans. R. Soc. Lond. B Biol. Sci., 1981, 293(1063), 121-130.
[http://dx.doi.org/10.1098/rstb.1981.0066] [PMID: 6115412]
[45]
Peng, X.C.; Gong, F.M.; Chen, Y.; Qiu, M.; Cheng, K.; Tang, J.; Ge, J.; Chen, N.; Zeng, H.; Liu, J.Y. Proteomics identification of PGAM1 as a potential therapeutic target for urothelial bladder cancer. J. Proteomics, 2016, 132, 85-92.
[http://dx.doi.org/10.1016/j.jprot.2015.11.027] [PMID: 26655504]
[46]
Richard, J.P. Kinetic parameters for the elimination reaction catalyzed by triosephosphate isomerase and an estimation of the reaction’s physiological significance. Biochemistry, 1991, 30(18), 4581-4585.
[http://dx.doi.org/10.1021/bi00232a031] [PMID: 2021650]
[47]
Rodríguez-Almazán, C.; Arreola, R.; Rodríguez-Larrea, D.; Aguirre-López, B.; de Gómez-Puyou, M.T.; Pérez-Montfort, R.; Costas, M.; Gómez-Puyou, A.; Torres-Larios, A. Structural basis of human triosephosphate isomerase deficiency: Mutation E104D is related to alterations of a conserved water network at the dimer interface. J. Biol. Chem., 2008, 283(34), 23254-23263.
[http://dx.doi.org/10.1074/jbc.M802145200] [PMID: 18562316]
[48]
Shao, G.; Zhou, H.; Zhang, Q.; Jin, Y.; Fu, C. Advancements of Annexin A1 in inflammation and tumorigenesis. OncoTargets Ther., 2019, 12, 3245-3254.
[http://dx.doi.org/10.2147/OTT.S202271] [PMID: 31118675]
[49]
Yu, S.; Meng, Q.; Hu, H.; Zhang, M. Correlation of ANXA1 expression with drug resistance and relapse in bladder cancer. Int. J. Clin. Exp. Pathol., 2014, 7(9), 5538-5548.
[PMID: 25337195]
[50]
Challa, A.A.; Stefanovic, B. A novel role of vimentin filaments: Binding and stabilization of collagen mRNAs. Mol. Cell. Biol., 2011, 31(18), 3773-3789.
[http://dx.doi.org/10.1128/MCB.05263-11] [PMID: 21746880]
[51]
Partridge, A.H.; Burstein, H.J.; Winer, E.P. Side effects of chemotherapy and combined chemohormonal therapy in women with early-stage breast cancer. J. Natl. Cancer Inst. Monogr., 2001, 2001(30), 135-142.
[http://dx.doi.org/10.1093/oxfordjournals.jncimonographs.a003451] [PMID: 11773307]
[52]
Bayat Mokhtari, R.; Homayouni, T.S.; Baluch, N.; Morgatskaya, E.; Kumar, S.; Das, B.; Yeger, H. Combination therapy in combating cancer. Oncotarget, 2017, 8(23), 38022-38043.
[http://dx.doi.org/10.18632/oncotarget.16723] [PMID: 28410237]
[53]
Roh, Y.G.; Mun, M.H.; Jeong, M.S.; Kim, W.T.; Lee, S.R.; Chung, J.W.; Kim, S.I.; Kim, T.N.; Nam, J.K.; Leem, S.H. Drug resistance of bladder cancer cells through activation of ABCG2 by FOXM1. BMB Rep., 2018, 51(2), 98-103.
[http://dx.doi.org/10.5483/BMBRep.2018.51.2.222] [PMID: 29397866]
[54]
Chen, Y.; Zhu, G.; Wu, K.; Gao, Y.; Zeng, J.; Shi, Q.; Guo, P.; Wang, X.; Chang, L.S.; Li, L.; He, D. FGF2-mediated reciprocal tumor cell-endothelial cell interplay contributes to the growth of chemoresistant cells: A potential mechanism for superficial bladder cancer recurrence. Tumour Biol., 2016, 37(4), 4313-4321.
[http://dx.doi.org/10.1007/s13277-015-4214-4] [PMID: 26493998]
[55]
Toshkova, R.; Ivanova, E.; Hristova, R.; Voelter, W.; Dolashka-Angelova, P. Effect of Rapana venosa hemocyanin on antibody-dependent cell cytotoxicicity (ADCC) and mitogen responsibility of lymphocytes from hamsters with progressing myeloid tumors. World J. Med. Sci., 2009, 4(2), 135-142.
[56]
Kobata, A. A journey to the world of glycobiology. Glycoconj. J., 2000, 17(7-9), 443-464.
[http://dx.doi.org/10.1023/A:1011006122704] [PMID: 11421342]
[57]
Gorelik, E.; Galili, U.; Raz, A. On the role of cell surface carbohydrates and their binding proteins (lectins) in tumor metastasis. Cancer Metastasis Rev., 2001, 20(3-4), 245-277.
[http://dx.doi.org/10.1023/A:1015535427597] [PMID: 12085965]
[58]
Pocheć, E.; Lityńska, A.; Amoresano, A.; Casbarra, A. Glycosylation profile of integrin α 3 β 1 changes with melanoma progression. Biochim. Biophys. Acta, 2003, 1643(1-3), 113-123.
[http://dx.doi.org/10.1016/j.bbamcr.2003.10.004] [PMID: 14654234]
[59]
Ben-Ze’ev, A. Cytoskeletal and adhesion proteins as tumor suppressors. Curr. Opin. Cell Biol., 1997, 9(1), 99-108.
[http://dx.doi.org/10.1016/S0955-0674(97)80158-5] [PMID: 9013672]
[60]
Becker, K.F.; Höfler, H. Mutant cell surface receptors as targets for individualized cancer diagnosis and therapy. Curr. Cancer Drug Targets, 2001, 1(2), 121-128.
[http://dx.doi.org/10.2174/1568009013334205] [PMID: 12188885]
[61]
Lekka, M.; Laidler, P.; Labedź, M.; Kulik, A.J.; Lekki, J.; Zając, W.; Stachura, Z. Specific detection of glycans on a plasma membrane of living cells with atomic force microscopy. Chem. Biol., 2006, 13(5), 505-512.
[http://dx.doi.org/10.1016/j.chembiol.2006.03.006] [PMID: 16720271]
[62]
Przybyło, M.; Lityńska, A.; Pocheć, E. Different adhesion and migration properties of human HCV29 non-malignant urothelial and T24 bladder cancer cells: Role of glycosylation. Biochimie, 2005, 87(2), 133-142.
[http://dx.doi.org/10.1016/j.biochi.2004.12.003] [PMID: 15760705]
[63]
Geyer, H.; Wuhrer, M.; Resemann, A.; Geyer, R. Identification and characterization of keyhole limpet hemocyanin N-glycans mediating cross-reactivity with Schistosoma mansoni. J. Biol. Chem., 2005, 280(49), 40731-40748.
[http://dx.doi.org/10.1074/jbc.M505985200] [PMID: 16135511]
[64]
Antonova, O.; Yossifova, L.; Staneva, R.; Stevanovic, S.; Dolashka, P.; Toncheva, D. Changes in the gene expression profile of the bladder cancer cell lines after treatment with Helix lucorum and Rapana venosa hemocyanin. J. BUON, 2015, 20(1), 180-187.
[PMID: 25778314]
[65]
Stenzl, A.; Dolashki, A.; Stevanovic, S.; Voelter, W.; Aicher, W.; Dolashka, P. Cytotoxic effects of Rapana venosa hemocyanin on bladder cancer permanent cell lines. J. US. China Med. Sci., 2016, 13, 79-188.
[66]
Kaps, A.; Gwiazdoń, P.; Chodurek, E. Nanoformulations for delivery of pentacyclic triterpenoids in anticancer therapies. Molecules, 2021, 26(6), 1764.
[http://dx.doi.org/10.3390/molecules26061764] [PMID: 33801096]
[67]
Chaabane, W.; User, S.D.; El-Gazzah, M.; Jaksik, R.; Sajjadi, E.; Rzeszowska-Wolny, J.; Los, M.J. Autophagy, apoptosis, mitoptosis and necrosis: Interdependence between those pathways and effects on cancer. Arch. Immunol. Ther. Exp. (Warsz.), 2013, 61(1), 43-58.
[http://dx.doi.org/10.1007/s00005-012-0205-y] [PMID: 23229678]
[68]
El Ouar, I.; Braicu, C.; Naimi, D.; Irimie, A.; Berindan-Neagoe, I. Effect of Helix aspersa extract on TNFα, NF-κB and some tumor suppressor genes in breast cancer cell line Hs578T. Pharmacogn. Mag., 2017, 13(50), 281-285.
[http://dx.doi.org/10.4103/0973-1296.204618] [PMID: 28539722]
[69]
Somasundar, P.; Riggs, D.R.; Jackson, B.J.; McFadden, D.W. Inhibition of melanoma growth by hemocyanin occurs via early apoptotic pathways. Am. J. Surg., 2005, 190(5), 713-716.
[http://dx.doi.org/10.1016/j.amjsurg.2005.07.008] [PMID: 16226945]
[70]
Ischia, J.; So, A.I. The role of heat shock proteins in bladder cancer. Nat. Rev. Urol., 2013, 10(7), 386-395.
[http://dx.doi.org/10.1038/nrurol.2013.108] [PMID: 23670183]
[71]
Kamada, M.; So, A.; Muramaki, M.; Rocchi, P.; Beraldi, E.; Gleave, M. Hsp27 knockdown using nucleotide-based therapies inhibit tumor growth and enhance chemotherapy in human bladder cancer cells. Mol. Cancer Ther., 2007, 6(1), 299-308.
[http://dx.doi.org/10.1158/1535-7163.MCT-06-0417] [PMID: 17218637]
[72]
Bauer, K.; Nitsche, U.; Slotta-Huspenina, J.; Drecoll, E.; von Weyhern, C.H.; Rosenberg, R.; Höfler, H.; Langer, R. High HSP27 and HSP70 expression levels are independent adverse prognostic factors in primary resected colon cancer. Cell Oncol. (Dordr.), 2012, 35(3), 197-205.
[http://dx.doi.org/10.1007/s13402-012-0079-3] [PMID: 22535481]
[73]
Pavan, S.; Musiani, D.; Torchiaro, E.; Migliardi, G.; Gai, M.; Di Cunto, F.; Erriquez, J.; Olivero, M.; Di Renzo, M.F. HSP27 is required for invasion and metastasis triggered by hepatocyte growth factor. Int. J. Cancer, 2014, 134(6), 1289-1299.
[http://dx.doi.org/10.1002/ijc.28464] [PMID: 23996744]
[74]
Wang, X.; Chen, M.; Zhou, J.; Zhang, X. HSP27, 70 and 90, anti-apoptotic proteins, in clinical cancer therapy (Review). Int. J. Oncol., 2014, 45(1), 18-30.
[http://dx.doi.org/10.3892/ijo.2014.2399] [PMID: 24789222]
[75]
Kang, W.Y.; Chen, W.T.; Huang, Y.C.; Su, Y.C.; Chai, C.Y. Overexpression of annexin 1 in the development and differentiation of urothelial carcinoma. Kaohsiung J. Med. Sci., 2012, 28(3), 145-150.
[http://dx.doi.org/10.1016/j.kjms.2011.10.004] [PMID: 22385607]
[76]
Chen, T.; Huang, Z.; Tian, Y.; Lin, B.; He, R.; Wang, H.; Ouyang, P.; Chen, H.; Wu, L. Clinical significance and prognostic value of triosephosphate isomerase expression in gastric cancer. Medicine (Baltimore), 2017, 96(19), e6865.
[http://dx.doi.org/10.1097/MD.0000000000006865] [PMID: 28489783]
[77]
Montgomerie, J.Z.; Gracy, R.W.; Holshuh, H.J.; Keyser, A.J.; Bennett, C.J.; Schick, D.G. The 28K protein in urinary bladder, squamous metaplasia and urine is triosephosphate isomerase. Clin. Biochem., 1997, 30(8), 613-618.
[http://dx.doi.org/10.1016/S0009-9120(97)00115-X] [PMID: 9455614]
[78]
Liu, K.; Tang, Z.; Huang, A.; Chen, P.; Liu, P.; Yang, J.; Lu, W.; Liao, J.; Sun, Y.; Wen, S.; Hu, Y.; Huang, P. Glyceraldehyde-3-phosphate dehydrogenase promotes cancer growth and metastasis through upregulation of SNAIL expression. Int. J. Oncol., 2017, 50(1), 252-262.
[http://dx.doi.org/10.3892/ijo.2016.3774] [PMID: 27878251]
[79]
Ganapathy-Kanniappan, S.; Kunjithapatham, R.; Geschwind, J.F. Glyceraldehyde-3-phosphate dehydrogenase: A promising target for molecular therapy in hepatocellular carcinoma. Oncotarget, 2012, 3(9), 940-953.
[http://dx.doi.org/10.18632/oncotarget.623] [PMID: 22964488]
[80]
Krasnov, G.S.; Dmitriev, A.A.; Snezhkina, A.V.; Kudryavtseva, A.V. Deregulation of glycolysis in cancer: Glyceraldehyde-3-phosphate dehydrogenase as a therapeutic target. Expert Opin. Ther. Targets, 2013, 17(6), 681-693.
[http://dx.doi.org/10.1517/14728222.2013.775253] [PMID: 23445303]
[81]
Lazarev, V.F.; Guzhova, I.V.; Margulis, B.A. Glyceraldehyde-3-phosphate dehydrogenase is a multifaceted therapeutic target. Pharmaceutics, 2020, 12(5), 416.
[http://dx.doi.org/10.3390/pharmaceutics12050416] [PMID: 32370188]
[82]
Li, T.; Tan, X.; Yang, R.; Miao, Y.; Zhang, M.; Xi, Y.; Guo, R.; Zheng, M.; Li, B. Discovery of novel glyceraldehyde-3-phosphate dehydrogenase inhibitor via docking-based virtual screening. Bioorg. Chem., 2020, 96, 103620.
[http://dx.doi.org/10.1016/j.bioorg.2020.103620] [PMID: 32028064]
[83]
Tamada, M.; Suematsu, M.; Saya, H. Pyruvate kinase M2: Multiple faces for conferring benefits on cancer cells. Clin. Cancer Res., 2012, 18(20), 5554-5561.
[http://dx.doi.org/10.1158/1078-0432.CCR-12-0859] [PMID: 23071357]
[84]
Zhu, Q.; Hong, B.; Zhang, L.; Wang, J. Pyruvate kinase M2 inhibits the progression of bladder cancer by targeting MAKP pathway. J. Cancer Res. Ther., 2018, 14(10), S616-S621.
[http://dx.doi.org/10.4103/0973-1482.187302] [PMID: 30249877]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy