Generic placeholder image

Current Diabetes Reviews

Editor-in-Chief

ISSN (Print): 1573-3998
ISSN (Online): 1875-6417

Review Article

MicroRNA 155, Factor XIII and Type 2 Diabetes Mellitus and Coronary Heart Disease

Author(s): Marry-Ann Ntanyane Phasha, Prashilla Soma, Mia-Jeanne Van Rooy and Alisa Phulukdaree*

Volume 19, Issue 6, 2023

Published on: 27 September, 2022

Article ID: e190822207740 Pages: 10

DOI: 10.2174/1573399819999220819144402

Price: $65

conference banner
Abstract

There is a rise in the number of individuals diagnosed with type 2 diabetes mellitus (T2DM) in South Africa. Cardiovascular disease is among the macrovascular complication of type 2 diabetes mellitus and accounts for the high mortality rate in patients with T2DM. The disease is characterized by insulin resistance, hyperglycaemia, oxidative stress, inflammation, hypofibrinolysis and hypercoagulation. The impairment of fibrinolysis, hyperactivation of coagulation and the inflammatory pathways result in an increased risk of developing coronary heart disease. Factor XIII-A is one of the key coagulation factors that play a crucial role in the last stage of the coagulation cascade, and it has been shown to play a critical role in the development of thrombotic diseases. In addition, several studies show the influence of FXIII-A polymorphisms on thrombotic diseases. The influence of genetic variations such as single nucleotide variants and gene expression regulators (micro-RNAs) are important factors involved in the hyperactivation of coagulation and hypofibrinolysis. Thus, this review aims to summarise key aspects of coagulation, FXIII-A expression, potential FXIII-A genetic variations and epigenetic mediators (micro-RNA-155) in T2DM and patients with coronary artery disease.

Keywords: FXIII-A, miRNA-155, Val34Leu, coronary artery disease, type 2 diabetes mellitus, PON1, ROS.

[1]
Ahmad OS, Morris JA, Mujammami M, et al. A mendelian randomization study of the effect of type-2 diabetes on coronary heart disease. Nat Commun 2015; 6(1): 7060.
[http://dx.doi.org/10.1038/ncomms8060] [PMID: 26017687]
[2]
Demir Y. The behaviour of some antihypertension drugs on human serum paraoxonase-1: An important protector enzyme against athero-sclerosis. J Pharm Pharmacol 2019; 71(10): 1576-83.
[http://dx.doi.org/10.1111/jphp.13144] [PMID: 31347707]
[3]
Caglayan C, Demir Y, Kucukler S, Taslimi P, Kandemir FM, Gulçin İ. The effects of hesperidin on sodium arsenite-induced different organ toxicity in rats on metabolic enzymes as antidiabetic and anticholinergics potentials: A biochemical approach. J Food Biochem 2019; 43(2): e12720.
[http://dx.doi.org/10.1111/jfbc.12720] [PMID: 31353640]
[4]
Türkeş C, Söyüt H, Beydemir Ş. In vitro inhibitory effects of palonosetron hydrochloride, bevacizumab and cyclophosphamide on puri-fied paraoxonase-I (hPON1) from human serum. Environ Toxicol Pharmacol 2016; 42: 252-7.
[http://dx.doi.org/10.1016/j.etap.2015.11.024] [PMID: 26915059]
[5]
Ekı̇ncı̇ D, Beydemi̇r Ş. Effect of some analgesics on Paraoxonase-1 purified from human serum. J Enzyme Inhib Med Chem 2009; 24(4): 1034-9.
[http://dx.doi.org/10.1080/14756360802608351] [PMID: 19548782]
[6]
Demir Y, Işık M, Gülçin İ, Beydemir Ş. Phenolic compounds inhibit the aldose reductase enzyme from the sheep kidney. J Biochem Mol Toxicol 2017; 31(9): e21936.
[http://dx.doi.org/10.1002/jbt.21935] [PMID: 28557170]
[7]
Işık M, Demir Y, Kırıcı M, Demir R, Şimşek F, Beydemir Ş. Changes in the anti-oxidant system in adult epilepsy patients receiving anti-epileptic drugs. Arch Physiol Biochem 2015; 121(3): 97-102.
[http://dx.doi.org/10.3109/13813455.2015.1026912] [PMID: 26120045]
[8]
Rozenberg O, Shih DM, Aviram M. Paraoxonase 1 (PON1) attenuates macrophage oxidative status: Studies in PON1 transfected cells and in PON1 transgenic mice. Atherosclerosis 2005; 181(1): 9-18.
[http://dx.doi.org/10.1016/j.atherosclerosis.2004.12.030] [PMID: 15939049]
[9]
MacKness M, Arrol S, Abbott C, Durrington P. Protection of low-density lipoprotein against oxidative modification by high-density lipoprotein associated paraoxonase. Atherosclerosis 1993; 104(1-2): 129-35.
[http://dx.doi.org/10.1016/0021-9150(93)90183-U] [PMID: 8141836]
[10]
Aviram M, Hardak E, Vaya J, et al. Human serum paraoxonases (PON1) Q and R selectively decrease lipid peroxides in human coronary and carotid atherosclerotic lesions: PON1 esterase and peroxidase-like activities. Circulation 2000; 101(21): 2510-7.
[http://dx.doi.org/10.1161/01.CIR.101.21.2510] [PMID: 10831526]
[11]
Demir Y. Naphthoquinones, benzoquinones, and anthraquinones: Molecular docking, ADME and inhibition studies on human serum paraoxonase‐1 associated with cardiovascular diseases. Drug Dev Res 2020; 81(5): 628-36.
[http://dx.doi.org/10.1002/ddr.21667] [PMID: 32232985]
[12]
Wilson PWF, D’Agostino RB, Levy D, Belanger AM, Silbershatz H, Kannel WB. Prediction of coronary heart disease using risk factor categories. Circulation 1998; 97(18): 1837-47.
[http://dx.doi.org/10.1161/01.CIR.97.18.1837] [PMID: 9603539]
[14]
Türkeş C, Demir Y, Beydemir Ş. Some calcium-channel blockers: Kinetic and in silico studies on paraoxonase-I. J Biomol Struct Dyn 2022; 40(1): 77-85.
[http://dx.doi.org/10.1080/07391102.2020.1806927] [PMID: 32783605]
[15]
Reaven G. Type 2 diabetes and coronary heart disease: We keep learning how little we know. Arterioscler Thromb Vasc Biol 2003; 23(6): 917-8.
[http://dx.doi.org/10.1161/01.ATV.0000077249.35122.19] [PMID: 12807711]
[16]
Nordestgaard BG, Palmer TM, Benn M, et al. The effect of elevated body mass index on ischemic heart disease risk: Causal estimates from a Mendelian randomisation approach. PLoS Med 2012; 9(5): e1001212.
[http://dx.doi.org/10.1371/journal.pmed.1001212] [PMID: 22563304]
[17]
Whitlock G, Lewington S, Sherliker P, et al. Body-mass index and cause-specific mortality in 900 000 adults: Collaborative analyses of 57 prospective studies. Lancet 2009; 373(9669): 1083-96.
[http://dx.doi.org/10.1016/S0140-6736(09)60318-4] [PMID: 19299006]
[18]
Emdin CA, Khera AV, Natarajan P, et al. Genetic association of waist-to-hip ratio with cardiometabolic traits, type 2 diabetes, and coronary heart disease. JAMA 2017; 317(6): 626-34.
[http://dx.doi.org/10.1001/jama.2016.21042] [PMID: 28196256]
[19]
Nordestgaard BG, Varbo A. Triglycerides and cardiovascular disease. Lancet 2014; 384(9943): 626-35.
[http://dx.doi.org/10.1016/S0140-6736(14)61177-6] [PMID: 25131982]
[20]
Domingueti CP, Dusse LMSA, Carvalho MG, de Sousa LP, Gomes KB, Fernandes AP. Diabetes mellitus: The linkage between oxidative stress, inflammation, hypercoagulability and vascular complications. J Diabetes Complicat 2016; 30(4): 738-45.
[http://dx.doi.org/10.1016/j.jdiacomp.2015.12.018] [PMID: 26781070]
[21]
Demir Y, Özaslan MS, Duran HE, Küfrevioğlu Öİ, Beydemir Ş. Inhibition effects of quinones on aldose reductase: Antidiabetic proper-ties. Environ Toxicol Pharmacol 2019; 70: 103195.
[http://dx.doi.org/10.1016/j.etap.2019.103195] [PMID: 31125830]
[22]
Sever B, Altıntop MD, Demir Y, Akalın Çiftçi G, Beydemir Ş, Özdemir A. Design, synthesis, in vitro and in silico investigation of aldose reductase inhibitory effects of new thiazole-based compounds. Bioorg Chem 2020; 102: 104110.
[http://dx.doi.org/10.1016/j.bioorg.2020.104110] [PMID: 32739480]
[23]
Demir Y, Duran HE, Durmaz L, Taslimi P, Beydemir Ş, Gulçin İ. The influence of some nonsteroidal anti-inflammatory drugs on metabolic enzymes of aldose reductase, sorbitol dehydrogenase, and α-glycosidase: A perspective for metabolic disorders. Appl Biochem Biotechnol 2020; 190(2): 437-47.
[http://dx.doi.org/10.1007/s12010-019-03099-7] [PMID: 31378842]
[24]
Behl T, Velpandian T, Kotwani A. Role of altered coagulation-fibrinolytic system in the pathophysiology of diabetic retinopathy. Vascul Pharmacol 2017; 92: 1-5.
[http://dx.doi.org/10.1016/j.vph.2017.03.005] [PMID: 28366840]
[25]
Ding Y, Sun X, Shan PF. MicroRNAs and cardiovascular disease in diabetes mellitus. BioMed Res Int 2017; 2017: 1-8.
[http://dx.doi.org/10.1155/2017/4080364] [PMID: 28299324]
[26]
Ceylan H, Demir Y, Beydemir Ş. Inhibitory effects of usnic and carnosic acid on some metabolic enzymes: An in vitro study. Protein Pept Lett 2019; 26(5): 364-70.
[http://dx.doi.org/10.2174/0929866526666190301115122] [PMID: 30827223]
[27]
Işık M, Beydemir Ş, Demir Y, et al. Benzenesulfonamide derivatives containing imine and amine groups: Inhibition on human paraoxonase and molecular docking studies. Int J Biol Macromol 2020; 146: 1111-23.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.09.237] [PMID: 31739032]
[28]
Santhakumar AB, Bulmer AC, Singh I. A review of the mechanisms and effectiveness of dietary polyphenols in reducing oxidative stress and thrombotic risk. J Hum Nutr Diet 2014; 27(1): 1-21.
[http://dx.doi.org/10.1111/jhn.12177] [PMID: 24205990]
[29]
Holman RR, Paul SK, Bethel MA, Matthews DR, Neil HAW. 10-year follow-up of intensive glucose control in type 2 diabetes. N Engl J Med 2008; 359(15): 1577-89.
[http://dx.doi.org/10.1056/NEJMoa0806470] [PMID: 18784090]
[30]
Phasha MN, Soma P, Pretorius E, Phulukdaree A. Coagulopathy in type 2 diabetes mellitus: Pathological mechanisms and the role of Factor XIII-A single nucleotide polymorphisms. Curr Diabetes Rev 2019; 15(6): 446-55.
[http://dx.doi.org/10.2174/1573399815666190130113328] [PMID: 30706822]
[31]
Kool RO, Kohler HP, Coutiinho JM, Meijers CM, Schroedor V. Coagulation factor XIII-A subunit and activation peptide levels in individuals with established symptomatic acute deep vein thrombosis. Thromb Res 2017; 159: 96-9.
[http://dx.doi.org/10.1016/j.thromres.2017.10.009] [PMID: 29054013]
[33]
Pitkänen HH, Jouppila A, Lemponen M, Ilmakunnas M, Ahonen J, Lassila R. Factor XIII deficiency enhances thrombin generation due to impaired fibrin polymerization - An effect corrected by Factor XIII replacement. Thromb Res 2017; 149: 56-61.
[http://dx.doi.org/10.1016/j.thromres.2016.11.012] [PMID: 27902939]
[34]
Bereczky Z, Balogh E, Katona E, Czuriga I, Edes I, Muszbek L. Elevated factor XIII level and the risk of myocardial infarction in women. Haematologica 2007; 92(2): 287-8.
[http://dx.doi.org/10.3324/haematol.10647] [PMID: 17296595]
[35]
Shemirani AH, Szomják E, Csiki Z, Katona E, Bereczky Z, Muszbek L. Elevated factor XIII level and the risk of peripheral artery disease. Haematologica 2008; 93(9): 1430-2.
[http://dx.doi.org/10.3324/haematol.12708] [PMID: 18603559]
[36]
Bagoly Z, Muszbek L. Factor XIII: What does it look like? J Thromb Haemost 2019; 17(5): 714-6.
[http://dx.doi.org/10.1111/jth.14431] [PMID: 30884069]
[37]
Shi DY, Wang SJ. Advances of coagulation factor XIII. Chin Med J (Engl) 2017; 130(2): 219-23.
[PMID: 28091415]
[38]
Alshehri FSM, Whyte CS, Mutch NJ. Factor XIII-A: An indispensable “Factor” in haemostasis and wound healing. Int J Mol Sci 2021; 22(6): 3055.
[http://dx.doi.org/10.3390/ijms22063055] [PMID: 33802692]
[39]
Souri M, Ichinose A. Impaired protein folding, dimer formation, and heterotetramer assembly cause intra- and extracellular instability of a Y283C mutant of the A subunit for coagulation factor XIII. Biochemistry 2001; 40(45): 13413-20.
[http://dx.doi.org/10.1021/bi0111449] [PMID: 11695887]
[40]
Kohler H, Schroeder V. Factor XIII: Structure and function. Semin Thromb Hemost 2016; 42(4): 422-8.
[http://dx.doi.org/10.1055/s-0036-1571341] [PMID: 27019464]
[41]
Smith KA, Pease RJ, Avery CA, et al. The activation peptide cleft exposed by thrombin cleavage of FXIII-A2 contains a recognition site for the fibrinogen α chain. Blood 2013; 121(11): 2117-26.
[http://dx.doi.org/10.1182/blood-2012-07-446393] [PMID: 23303819]
[42]
Akdağ M, Özçelik AB, Demir Y, Beydemir Ş. Design, synthesis, and aldose reductase inhibitory effect of some novel carboxylic acid derivatives bearing 2-substituted-6-aryloxo-pyridazinone moiety. J Mol Struct 2022; 1258: 132675.
[http://dx.doi.org/10.1016/j.molstruc.2022.132675]
[43]
Sever B, Altıntop MD, Demir Y, et al. A new series of 2,4-thiazolidinediones endowed with potent aldose reductase inhibitory activity. Open Chem 2021; 19(1): 347-57.
[http://dx.doi.org/10.1515/chem-2021-0032]
[44]
Sever B, Altıntop MD, Demir Y, et al. Identification of a new class of potent aldose reductase inhibitors: Design, microwave-assisted synthesis, in vitro and in silico evaluation of 2-pyrazolines. Chem Biol Interact 2021; 345: 109576.
[http://dx.doi.org/10.1016/j.cbi.2021.109576] [PMID: 34252406]
[45]
Frazer KA, Murray SS, Schork NJ, Topol EJ. Human genetic variation and its contribution to complex traits. Nat Rev Genet 2009; 10(4): 241-51.
[http://dx.doi.org/10.1038/nrg2554] [PMID: 19293820]
[46]
Tinholt M, Sandset PM, Inversen N. Polymorphisms of the coagulation system and risk of cancer Thromb Res 2016; 140s1: s49-54.
[http://dx.doi.org/10.1016/S0049-3848(16)30098-6]
[47]
Naderi M, Tabibian S, Alizadeh S, Abtahi ZS, Dorgalaleh A. Coagulation factor XIII-A A614T gene variation is suggestive of founder effect in Iranian patients with severe congenital factor XIII deficiency. J Cell Mol Anesth 2016; 1(1): 19-22.
[48]
Anwar R, Gallivan L, Miloszewski KJA, Markham AF. Splicing and missense mutations in the human FXIIIA gene causing FXIII defi-ciency: Effects of these mutations on FXIIIA RNA processing and protein structure. Br J Haematol 1998; 103(2): 425-8.
[http://dx.doi.org/10.1046/j.1365-2141.1998.01017.x] [PMID: 9827915]
[49]
de Lange M, Andrew T, Snieder H, et al. Joint linkage and association of six single-nucleotide polymorphisms in the factor XIII-A subunit gene point to V34L as the main functional locus. Arterioscler Thromb Vasc Biol 2006; 26(8): 1914-9.
[http://dx.doi.org/10.1161/01.ATV.0000231538.60223.92] [PMID: 16763156]
[50]
Shanbhag S, Ghosh K, Shetty S. Genetic basis of severe factor XIII deficiency in a large cohort of Indian patients: Identification of fourteen novel mutations. Blood Cells Mol Dis 2016; 57: 81-4.
[http://dx.doi.org/10.1016/j.bcmd.2016.01.002] [PMID: 26852661]
[51]
Ivaškevičius V, Biswas A, Garly ML, Oldenburg J. Comparison of F13A1 gene mutations in 73 patients treated with recombinant FXIII-A 2. Haemophilia 2017; 23(3): e194-203.
[http://dx.doi.org/10.1111/hae.13233] [PMID: 28520207]
[52]
Biswas A, Ivaskevicius V, Seitz R, Thomas A, Oldenburg J. An update of the mutation profile of factor 13 A and B genes. Blood Rev 2011; 25(5): 193-204.
[http://dx.doi.org/10.1016/j.blre.2011.03.001] [PMID: 21640452]
[53]
Mikkola H, Syrjälä M, Rasi V, et al. Deficiency in the A-subunit of coagulation factor XIII: Two novel point mutations demonstrate different effects on transcript levels. Blood 1994; 84(2): 517-25.
[http://dx.doi.org/10.1182/blood.V84.2.517.517] [PMID: 8025280]
[54]
Coggan M, Baker R, Miloszewski K, Woodfield G, Board P. Mutations causing coagulation factor XIII subunit A deficiency: Characterization of the mutant proteins after expression in yeast. Blood 1995; 85(9): 2455-60.
[http://dx.doi.org/10.1182/blood.V85.9.2455.bloodjournal8592455] [PMID: 7727776]
[55]
Jung JH, Song GG, Kim JH, Seo YH, Choi SJ. Association of factor XIII Val34Leu polymorphism and coronary artery disease: A meta-analysis. Cardiol J 2017; 24(1): 74-84.
[http://dx.doi.org/10.5603/CJ.a2016.0070] [PMID: 27665853]
[56]
Carreras-Torres R, Athanasiadis G, Via M, et al. Allele-allele interaction within the F13A1 gene: A risk factor for ischaemic heart disease in Spanish population. Thromb Res 2010; 126(3): e241-5.
[http://dx.doi.org/10.1016/j.thromres.2010.04.021] [PMID: 20553949]
[57]
Gallivan L, Markham A, Anwar R. The Leu564 factor XIIIA variant results in significantly lower plasma factor XIII levels than the Pro564 variant. Thromb Haemost 1999; 82(10): 1368-70.
[http://dx.doi.org/10.1055/s-0037-1614399] [PMID: 10544937]
[58]
Reiner AP, Schwartz SM, Frank MB, et al. Polymorphisms of coagulation factor XIII subunit A and risk of nonfatal hemorrhagic stroke in young white women. Stroke 2001; 32(11): 2580-7.
[http://dx.doi.org/10.1161/hs1101.098150] [PMID: 11692020]
[59]
Reiner AP, Frank MB, Schwartz SM, et al. Coagulation factor XIII polymorphisms and the risk of myocardial infarction and ischaemic stroke in young women. Br J Haematol 2002; 116(2): 376-82.
[http://dx.doi.org/10.1046/j.1365-2141.2002.03265.x] [PMID: 11841441]
[60]
Ha M, Kim VN. Regulation of microRNA biogenesis. Nat Rev Mol Cell Biol 2012; 15(8): 605-10.
[61]
Jiménez-Lucena R, Rangel-Zúñiga OA, Alcalá-Díaz JF, et al. Circulating miRNA as predictive biomarkers of type 2 diabetes mellitus development in coronary heart disease patients from the CORDIOPREV study. Mol Ther Nucleic Acids 2018; 12: 146-57.
[http://dx.doi.org/10.1016/j.omtn.2018.05.002] [PMID: 30195754]
[62]
Tavintharan S, Chi L, Fang S, Arunmozhiarasi A, Jeyaseelan K. Riboregulators and metabolic disorders: Getting closer towards understanding the pathogenesis of diabetes mellitus? Curr Mol Med 2009; 9(3): 281-6.
[http://dx.doi.org/10.2174/156652409787847245] [PMID: 19355910]
[63]
Karolina DS, Armugam A, Tavintharan S, et al. MicroRNA 144 impairs insulin signaling by inhibiting the expression of insulin receptor substrate 1 in type 2 diabetes mellitus. PLoS One 2011; 6(8): e22839.
[http://dx.doi.org/10.1371/journal.pone.0022839] [PMID: 21829658]
[64]
Regazzi R. Diabetes mellitus reveals its micro-signature. Circ Res 2010; 107(6): 686-8.
[http://dx.doi.org/10.1161/CIRCRESAHA.110.228841] [PMID: 20847323]
[65]
Dueck A, Eichner A, Sixt M, Meister G. A miR-155-dependent microRNA hierarchy in dendritic cell maturation and macrophage activation. FEBS Lett 2014; 588(4): 632-40.
[http://dx.doi.org/10.1016/j.febslet.2014.01.009] [PMID: 24444604]
[66]
Cai X, Yin Y, Li N, et al. Re-polarization of tumor-associated macrophages to pro-inflammatory M1 macrophages by microRNA-155. J Mol Cell Biol 2012; 4(5): 341-3.
[http://dx.doi.org/10.1093/jmcb/mjs044] [PMID: 22831835]
[67]
Liu S, Yang Y, Wu J. TNFα-induced up-regulation of miR-155 inhibits adipogenesis by down-regulating early adipogenic transcription factors. Biochem Biophys Res Commun 2011; 414(3): 618-24.
[http://dx.doi.org/10.1016/j.bbrc.2011.09.131] [PMID: 21986534]
[68]
Gulyaeva LF, Kushlinskiy NE. Regulatory mechanisms of microRNA expression. J Transl Med 2016; 14(1): 143.
[http://dx.doi.org/10.1186/s12967-016-0893-x] [PMID: 27197967]
[69]
Weber M, Baker MB, Moore JP, Searles CD. MiR-21 is induced in endothelial cells by shear stress and modulates apoptosis and eNOS activity. Biochem Biophys Res Commun 2010; 393(4): 643-8.
[http://dx.doi.org/10.1016/j.bbrc.2010.02.045] [PMID: 20153722]
[70]
Zhu N, Zhang D, Chen S, et al. Endothelial enriched microRNAs regulate angiotensin II-induced endothelial inflammation and migration. Atherosclerosis 2011; 215(2): 286-93.
[http://dx.doi.org/10.1016/j.atherosclerosis.2010.12.024] [PMID: 21310411]
[71]
Zheng L, Xu CC, Chen WD, et al. MicroRNA-155 regulates angiotensin II type 1 receptor expression and phenotypic differentiation in vascular adventitial fibroblasts. Biochem Biophys Res Commun 2010; 400(4): 483-8.
[http://dx.doi.org/10.1016/j.bbrc.2010.08.067] [PMID: 20735984]
[72]
Rodriguez A, Vigorito E, Clare S, et al. Requirement of bic/microRNA-155 for normal immune function. Science 2007; 316(5824): 608-11.
[http://dx.doi.org/10.1126/science.1139253] [PMID: 17463290]
[73]
Zernecke A. MicroRNAs in the regulation of immune cell functions - implications for atherosclerotic vascular disease. Thromb Haemost 2012; 107(4): 626-33.
[http://dx.doi.org/10.1160/TH11-08-0603] [PMID: 22318366]
[74]
Busch M, Zernecke A. MicroRNAs in the regulation of dendritic cell functions in inflammation and atherosclerosis. J Mol Med (Berl) 2012; 90(8): 877-85.
[http://dx.doi.org/10.1007/s00109-012-0864-5] [PMID: 22307520]
[75]
Zhang Y, Zhang M, Zhong M, Suo Q, Lv K. Expression profiles of miRNAs in polarized macrophages. Int J Mol Med 2013; 31(4): 797-802.
[http://dx.doi.org/10.3892/ijmm.2013.1260] [PMID: 23443577]
[76]
Raitoharju E, Oksala N, Lehtimäki T. MicroRNAs in the atherosclerotic plaque. Clin Chem 2013; 59(12): 1708-21.
[http://dx.doi.org/10.1373/clinchem.2013.204917] [PMID: 23729638]
[77]
Chen T, Huang Z, Wang L, et al. MicroRNA-125a-5p partly regulates the inflammatory response, lipid uptake, and ORP9 expression in oxLDL-stimulated monocyte/macrophages. Cardiovasc Res 2009; 83(1): 131-9.
[http://dx.doi.org/10.1093/cvr/cvp121] [PMID: 19377067]
[78]
Huang R, Hu G, Lin B, Lin Z, Sun C. MicroRNA-155 silencing enhances inflammatory response and lipid uptake in oxidized low-density lipoprotein-stimulated human THP-1 macrophages. J Investig Med 2010; 58(8): 961-7.
[http://dx.doi.org/10.2310/JIM.0b013e3181ff46d7] [PMID: 21030878]
[79]
Fichtlscherer S, De Rosa S, Fox H, et al. Circulating microRNAs in patients with coronary artery disease. Circ Res 2010; 107(5): 677-84.
[http://dx.doi.org/10.1161/CIRCRESAHA.109.215566] [PMID: 20595655]
[80]
Marques FZ, Vizi D, Khammy O, Mariani JA, Kaye DM. The transcardiac gradient of cardio-microRNAs in the failing heart. Eur J Heart Fail 2016; 18(8): 1000-8.
[http://dx.doi.org/10.1002/ejhf.517] [PMID: 27072074]
[81]
Meng S, Zhang X, Meng S, Li Y. MicroRNAs in control of gene regulatory programs in diabetic vasculopathy. Front Biosci 2017; 22(3): 451-64.
[http://dx.doi.org/10.2741/4494] [PMID: 27814624]
[82]
Zampetaki A, Willeit P, Burr S, et al. Angiogenic microRNAs linked to incidence and progression of diabetic retinopathy in type 1 diabetes. Diabetes 2016; 65(1): 216-27.
[http://dx.doi.org/10.2337/db15-0389] [PMID: 26395742]
[83]
Zhu H, Leung SW. Identification of microRNA biomarkers in type 2 diabetes: A meta-analysis of controlled profiling studies. Diabetologia 2015; 58(5): 900-11.
[http://dx.doi.org/10.1007/s00125-015-3510-2] [PMID: 25677225]
[84]
Khamaneh AM, Alipour MR, Sheikhzadeh Hesari F, Ghadiri Soufi F. A signature of microRNA-155 in the pathogenesis of diabetic complications. J Physiol Biochem 2015; 71(2): 301-9.
[http://dx.doi.org/10.1007/s13105-015-0413-0] [PMID: 25929727]
[85]
Huang Y, Liu Y, Li L, et al. Involvement of inflammation-related miR-155 and miR-146a in diabetic nephropathy: Implications for glomerular endothelial injury. BMC Nephrol 2014; 15(1): 142.
[http://dx.doi.org/10.1186/1471-2369-15-142] [PMID: 25182190]
[86]
Choi S, Kim J, Kim JH, et al. Carbon monoxide prevents TNF-α-induced eNOS downregulation by inhibiting NF-κB-responsive miR-155-5p biogenesis. Exp Mol Med 2017; 49(11): e403.
[http://dx.doi.org/10.1038/emm.2017.193] [PMID: 29170479]
[87]
Awolesi MA, Sessa WC, Sumpio BE. Cyclic strain upregulates nitric oxide synthase in cultured bovine aortic endothelial cells. J Clin Invest 1995; 96(3): 1449-54.
[http://dx.doi.org/10.1172/JCI118181] [PMID: 7544806]
[88]
MacRitchie AN, Jun SS, Chen Z, et al. Estrogen upregulates endothelial nitric oxide synthase gene expression in fetal pulmonary artery endothelium. Circ Res 1997; 81(3): 355-62.
[http://dx.doi.org/10.1161/01.RES.81.3.355] [PMID: 9285637]
[89]
Lee KS, Kim J, Kwak SN, et al. Functional role of NF-κB in expression of human endothelial nitric oxide synthase. Biochem Biophys Res Commun 2014; 448(1): 101-7.
[http://dx.doi.org/10.1016/j.bbrc.2014.04.079] [PMID: 24769202]
[90]
Gaudet AD, Fonken LK, Gushchina LV, et al. miR-155 deletion in female mice prevents diet-induced obesity. Sci Rep 2016; 6(1): 22862.
[http://dx.doi.org/10.1038/srep22862] [PMID: 26953132]
[91]
Huang C, et al. Arg(9)(7)(2) insulin receptor substrate-1 inhibits endothelial nitric oxide synthase expression in human endothelial cells by upregulating microRNA-155. Int J Mol Med 2015; 36: 239-48.
[http://dx.doi.org/10.3892/ijmm.2015.2192] [PMID: 25902041]
[92]
Tseng YH, Butte AJ, Kokkotou E, et al. Prediction of preadipocyte differentiation by gene expression reveals role of insulin receptor substrates and necdin. Nat Cell Biol 2005; 7(6): 601-11.
[http://dx.doi.org/10.1038/ncb1259] [PMID: 15895078]
[93]
Hotamisligil GS, Shargill NS, Spiegelman BM. Adipose expression of tumor necrosis factor-alpha: Direct role in obesity-linked insulin resistance. Science 1993; 259(5091): 87-91.
[http://dx.doi.org/10.1126/science.7678183] [PMID: 7678183]
[94]
Agarwal V, Bell GW, Nam J-W, Bartel DP. Predicting effective microRNA target sites in mammalian mRNAs. Elife 2015; 4: e05005.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy