Review Article

STAT3抑制剂的发现:近期进展和未来展望

卷 30, 期 16, 2023

发表于: 04 October, 2022

页: [1824 - 1847] 页: 24

弟呕挨: 10.2174/0929867329666220819093117

价格: $65

摘要

背景:STAT3(信号转导子和转录激活子3)是STAT家族蛋白的一员,起信号转导子及转录因子的作用。先前的研究已经证明了它在细胞增殖、分化、凋亡以及免疫和炎症反应中的重要性。靶向STAT3蛋白最近被誉为一种可行的癌症治疗方法。尽管这些抑制剂中没有一种在临床癌症治疗中得到开发,但有一小部分已经进入临床试验,这导致研究人员探索更有前景的抑制剂。 方法:从STAT3激活机制出发,根据STAT3抑制剂的来源、结构、生物活性和作用机制,对几种类型的STAT3抑制剂进行了描述和总结。STAT3的直接抑制主要针对蛋白质的三个不同结构区域之一,即SH2结构域、DNA结合结构域和螺旋线圈结构域。 结果:综述了2010年至2021 STAT3抑制剂发现的进展。STAT3抑制剂主要分为小分子抑制剂、天然产物抑制剂和肽/肽抑制剂。此外,它还涵盖了相关的类似物及其核心框架。 结论:STAT3小分子抑制剂如BP-1-102和BTP类似物对各种癌症显示出巨大的潜力,而天然产物以及肽和肽模拟物也显示出有前景的应用。因此,STAT3已成为极具研究价值的靶点,STAT3抑制剂的开发可能为STAT3相关疾病提供更多的治疗策略。

关键词: STAT3(信号转导和转录激活因子3),结构域,小分子抑制剂,天然产物,抗癌治疗,细胞增殖。

[1]
Darnell, J.E., Jr; Kerr, I.M.; Stark, G.R. Jak-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins. Science, 1994, 264(5164), 1415-1421.
[http://dx.doi.org/10.1126/science.8197455] [PMID: 8197455]
[2]
Ihle, J.N. The Stat family in cytokine signaling. Curr. Opin. Cell Biol., 2001, 13(2), 211-217.
[http://dx.doi.org/10.1016/S0955-0674(00)00199-X] [PMID: 11248555]
[3]
Hevehan, D.L.M.; Miller, W.M.; Papoutsakis, E.T. Differential expression and phosphorylation of distinct STAT3 proteins during granulocytic differentiation. Blood, 2002, 99(5), 1627-1637.
[http://dx.doi.org/10.1182/blood.V99.5.1627] [PMID: 11861277]
[4]
Johnson, D.E.; O’Keefe, R.A.; Grandis, J.R. Targeting the IL-6/JAK/STAT3 signalling axis in cancer. Nat. Rev. Clin. Oncol., 2018, 15(4), 234-248.
[http://dx.doi.org/10.1038/nrclinonc.2018.8] [PMID: 29405201]
[5]
Villarino, A.V.; Kanno, Y.; Ferdinand, J.R.; O’Shea, J.J. Mechanisms of Jak/STAT signaling in immunity and disease. J. Immunol., 2015, 194(1), 21-27.
[http://dx.doi.org/10.4049/jimmunol.1401867] [PMID: 25527793]
[6]
Mankan, A.K.G.; Greten, F.R. Inhibiting signal transducer and activator of transcription 3: Rationality and rationale design of inhibitors. Expert Opin. Investig. Drugs, 2011, 20(9), 1263-1275.
[http://dx.doi.org/10.1517/13543784.2011.601739] [PMID: 21751940]
[7]
Yu, H.; Pardoll, D.; Jove, R. STATs in cancer inflammation and immunity: A leading role for STAT3. Nat. Rev. Cancer, 2009, 9(11), 798-809.
[http://dx.doi.org/10.1038/nrc2734] [PMID: 19851315]
[8]
Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Žídek, A.; Potapenko, A.; Bridgland, A.; Meyer, C.; Kohl, S.A.A.; Ballard, A.J.; Cowie, A.; Romera-Paredes, B.; Nikolov, S.; Jain, R.; Adler, J.; Back, T.; Petersen, S.; Reiman, D.; Clancy, E.; Zielinski, M.; Steinegger, M.; Pacholska, M.; Berghammer, T.; Bodenstein, S.; Silver, D.; Vinyals, O.; Senior, A.W.; Kavukcuoglu, K.; Kohli, P.; Hassabis, D. Highly accurate protein structure prediction with AlphaFold. Nature, 2021, 596(7873), 583-589.
[http://dx.doi.org/10.1038/s41586-021-03819-2] [PMID: 34265844]
[9]
Bai, L.; Zhou, H.; Xu, R.; Zhao, Y.; Chinnaswamy, K.; McEachern, D.; Chen, J.; Yang, C.Y.; Liu, Z.; Wang, M.; Liu, L.; Jiang, H.; Wen, B.; Kumar, P.; Meagher, J.L.; Sun, D.; Stuckey, J.A.; Wang, S. A potent and selective small-molecule degrader of STAT3 achieves complete tumor regression in vivo. Cancer Cell, 2019, 36(5), 498-511.e17.
[http://dx.doi.org/10.1016/j.ccell.2019.10.002] [PMID: 31715132]
[10]
Belo, Y.; Mielko, Z.; Nudelman, H.; Afek, A.; Ben-David, O.; Shahar, A.; Zarivach, R.; Gordan, R.; Arbely, E. Unexpected implications of STAT3 acetylation revealed by genetic encoding of acetyl-lysine. Biochim. Biophys. Acta Gen. Subj., 2019, 1863(9), 1343-1350.
[http://dx.doi.org/10.1016/j.bbagen.2019.05.019] [PMID: 31170499]
[11]
La Sala, G.; Michiels, C.; Kükenshöner, T.; Brandstoetter, T.; Maurer, B.; Koide, A.; Lau, K.; Pojer, F.; Koide, S.; Sexl, V.; Dumoutier, L.; Hantschel, O. Selective inhibition of STAT3 signaling using monobodies targeting the coiled-coil and N-terminal domains. Nat. Commun., 2020, 11(1), 4115.
[http://dx.doi.org/10.1038/s41467-020-17920-z] [PMID: 32807795]
[12]
Xiong, A.; Yang, Z.; Shen, Y.; Zhou, J.; Shen, Q. Transcription factor STAT3 as a novel molecular target for cancer prevention. Cancers (Basel), 2014, 6(2), 926-957.
[http://dx.doi.org/10.3390/cancers6020926] [PMID: 24743778]
[13]
Fagard, R.; Metelev, V.; Souissi, I.; Baran-Marszak, F. STAT3 inhibitors for cancer therapy: Have all roads been explored? JAK-STAT, 2013, 2(1), e22882.
[http://dx.doi.org/10.4161/jkst.22882] [PMID: 24058788]
[14]
Gronowski, A.M.; Zhong, Z.; Wen, Z.; Thomas, M.J.; Darnell, J.E., Jr; Rotwein, P. In vivo growth hormone treatment rapidly stimulates the tyrosine phosphorylation and activation of Stat3. Mol. Endocrinol., 1995, 9(2), 171-177.
[PMID: 7776967]
[15]
Campbell, G.S.; Meyer, D.J.; Raz, R.; Levy, D.E.; Schwartz, J.; Carter-Su, C. Activation of acute phase response factor (APRF)/Stat3 transcription factor by growth hormone. J. Biol. Chem., 1995, 270(8), 3974-3979.
[http://dx.doi.org/10.1074/jbc.270.8.3974] [PMID: 7876144]
[16]
Gibbs, C.P.; Kukekov, V.G.; Reith, J.D.; Tchigrinova, O.; Suslov, O.N.; Scott, E.W.; Ghivizzani, S.C.; Ignatova, T.N.; Steindler, D.A. Stem-like cells in bone sarcomas: Implications for tumorigenesis. Neoplasia, 2005, 7(11), 967-976.
[http://dx.doi.org/10.1593/neo.05394] [PMID: 16331882]
[17]
Page, B.D.; Fletcher, S.; Yue, P.; Li, Z.; Zhang, X.; Sharmeen, S.; Datti, A.; Wrana, J.L.; Trudel, S.; Schimmer, A.D.; Turkson, J.; Gunning, P.T. Identification of a non-phosphorylated, cell permeable, small molecule ligand for the Stat3 SH2 domain. Bioorg. Med. Chem. Lett., 2011, 21(18), 5605-5609.
[http://dx.doi.org/10.1016/j.bmcl.2011.06.056] [PMID: 21788134]
[18]
Zhang, X.; Yue, P.; Page, B.D.; Li, T.; Zhao, W.; Namanja, A.T.; Paladino, D.; Zhao, J.; Chen, Y.; Gunning, P.T.; Turkson, J. Orally bioavailable small-molecule inhibitor of transcription factor Stat3 regresses human breast and lung cancer xenografts. Proc. Natl. Acad. Sci. USA, 2012, 109(24), 9623-9628.
[http://dx.doi.org/10.1073/pnas.1121606109] [PMID: 22623533]
[19]
Page, B.D.; Croucher, D.C.; Li, Z.H.; Haftchenary, S.; Jimenez-Zepeda, V.H.; Atkinson, J.; Spagnuolo, P.A.; Wong, Y.L.; Colaguori, R.; Lewis, A.M.; Schimmer, A.D.; Trudel, S.; Gunning, P.T. Inhibiting aberrant signal transducer and activator of transcription protein activation with tetrapodal, small molecule Src homology 2 domain binders: Promising agents against multiple myeloma. J. Med. Chem., 2013, 56(18), 7190-7200.
[http://dx.doi.org/10.1021/jm3017255] [PMID: 23968501]
[20]
Yue, P.; Lopez-Tapia, F.; Paladino, D.; Li, Y.; Chen, C.H.; Namanja, A.T.; Hilliard, T.; Chen, Y.; Tius, M.A.; Turkson, J. Hydroxamic acid and benzoic acid-based STAT3 inhibitors suppress human glioma and breast cancer phenotypes in vitro and in vivo. Cancer Res., 2016, 76(3), 652-663.
[http://dx.doi.org/10.1158/0008-5472.CAN-14-3558] [PMID: 26088127]
[21]
Lopez-Tapia, F.; Brotherton-Pleiss, C.; Yue, P.; Murakami, H.; Costa Araujo, A.C.; Reis Dos Santos, B.; Ichinotsubo, E.; Rabkin, A.; Shah, R.; Lantz, M.; Chen, S.; Tius, M.A.; Turkson, J. Linker variation and structure-activity relationship analyses of carboxylic acid-based small molecule STAT3 inhibitors. ACS Med. Chem. Lett., 2018, 9(3), 250-255.
[http://dx.doi.org/10.1021/acsmedchemlett.7b00544] [PMID: 29541369]
[22]
Brotherton-Pleiss, C.; Yue, P.; Zhu, Y.; Nakamura, K.; Chen, W.; Fu, W.; Kubota, C.; Chen, J.; Alonso-Valenteen, F.; Mikhael, S.; Medina-Kauwe, L.; Tius, M.A.; Lopez-Tapia, F.; Turkson, J. Discovery of novel azetidine amides as potent small-molecule STAT3 inhibitors. J. Med. Chem., 2021, 64(1), 695-710.
[http://dx.doi.org/10.1021/acs.jmedchem.0c01705] [PMID: 33352047]
[23]
Lin, L.; Hutzen, B.; Li, P.K.; Ball, S.; Zuo, M.; DeAngelis, S.; Foust, E.; Sobo, M.; Friedman, L.; Bhasin, D.; Cen, L.; Li, C.; Lin, J. A novel small molecule, LLL12, inhibits STAT3 phosphorylation and activities and exhibits potent growth-suppressive activity in human cancer cells. Neoplasia, 2010, 12(1), 39-50.
[http://dx.doi.org/10.1593/neo.91196] [PMID: 20072652]
[24]
Xiao, H.; Bid, H.K.; Jou, D.; Wu, X.; Yu, W.; Li, C.; Houghton, P.J.; Lin, J. A novel small molecular STAT3 inhibitor, LY5, inhibits cell viability, cell migration, and angiogenesis in medulloblastoma cells. J. Biol. Chem., 2015, 290(6), 3418-3429.
[http://dx.doi.org/10.1074/jbc.M114.616748] [PMID: 25313399]
[25]
Yu, W.; Li, C.; Zhang, W.; Xia, Y.; Li, S.; Lin, J.Y.; Yu, K.; Liu, M.; Yang, L.; Luo, J.; Chen, Y.; Sun, H.; Kong, L. Discovery of an orally selective inhibitor of signal transducer and activator of transcription 3 using advanced multiple ligand simultaneous docking. J. Med. Chem., 2017, 60(7), 2718-2731.
[http://dx.doi.org/10.1021/acs.jmedchem.6b01489] [PMID: 28245116]
[26]
Lai, M.J.; Lee, H.Y.; Chuang, H.Y.; Chang, L.H.; Tsai, A.C.; Chen, M.C.; Huang, H.L.; Wu, Y.W.; Teng, C.M.; Pan, S.L.; Liu, Y.M.; Mehndiratta, S.; Liou, J.P. N-sulfonyl-aminobiaryls as antitubulin agents and inhibitors of signal transducers and activators of transcription 3 (STAT3) signaling. J. Med. Chem., 2015, 58(16), 6549-6558.
[http://dx.doi.org/10.1021/acs.jmedchem.5b00659] [PMID: 26241032]
[27]
Leung, K.H.; Liu, L.J.; Lin, S.; Lu, L.; Zhong, H.J.; Susanti, D.; Rao, W.; Wang, M.; Che, W.I.; Chan, D.S.; Leung, C.H.; Chan, P.W.; Ma, D.L. Discovery of a small-molecule inhibitor of STAT3 by ligand-based pharmacophore screening. Methods, 2015, 71, 38-43.
[http://dx.doi.org/10.1016/j.ymeth.2014.07.010] [PMID: 25160651]
[28]
Guo, J.; Yu, W.; Cai, G.; Zhang, W.; Li, S.; Zhu, J.; Song, D.; Kong, L. Discovery of new benzensulfonamide derivatives as tripedal STAT3 inhibitors. Eur. J. Med. Chem., 2018, 151, 752-764.
[http://dx.doi.org/10.1016/j.ejmech.2018.03.053] [PMID: 29674294]
[29]
Schust, J.; Sperl, B.; Hollis, A.; Mayer, T.U.; Berg, T. Stattic: A small-molecule inhibitor of STAT3 activation and dimerization. Chem. Biol., 2006, 13(11), 1235-1242.
[http://dx.doi.org/10.1016/j.chembiol.2006.09.018] [PMID: 17114005]
[30]
Chen, H.; Zhou, X.; Wang, A.; Zheng, Y.; Gao, Y.; Zhou, J. Evolutions in fragment-based drug design: The deconstruction-reconstruction approach. Drug Discov. Today, 2015, 20(1), 105-113.
[http://dx.doi.org/10.1016/j.drudis.2014.09.015] [PMID: 25263697]
[31]
Chen, H.; Yang, Z.; Ding, C.; Chu, L.; Zhang, Y.; Terry, K.; Liu, H.; Shen, Q.; Zhou, J. Fragment-based drug design and identification of HJC0123, a novel orally bioavailable STAT3 inhibitor for cancer therapy. Eur. J. Med. Chem., 2013, 62, 498-507.
[http://dx.doi.org/10.1016/j.ejmech.2013.01.023] [PMID: 23416191]
[32]
Chen, H.; Yang, Z.; Ding, C.; Xiong, A.; Wild, C.; Wang, L.; Ye, N.; Cai, G.; Flores, R.M.; Ding, Y.; Shen, Q.; Zhou, J. Discovery of potent anticancer agent HJC0416, an orally bioavailable small molecule inhibitor of signal transducer and activator of transcription 3 (STAT3). Eur. J. Med. Chem., 2014, 82, 195-203.
[http://dx.doi.org/10.1016/j.ejmech.2014.05.049] [PMID: 24904966]
[33]
Ji, P.; Xu, X.; Ma, S.; Fan, J.; Zhou, Q.; Mao, X.; Qiao, C. Novel 2-Carbonylbenzo[b]thiophene 1,1-Dioxide derivatives as potent inhibitors of STAT3 signaling pathway. ACS Med. Chem. Lett., 2015, 6(9), 1010-1014.
[http://dx.doi.org/10.1021/acsmedchemlett.5b00228] [PMID: 26396689]
[34]
Zhang, W.; Ma, T.; Li, S.; Yang, Y.; Guo, J.; Yu, W.; Kong, L. Antagonizing STAT3 activation with benzo[b]thiophene 1, 1-dioxide based small molecules. Eur. J. Med. Chem., 2017, 125, 538-550.
[http://dx.doi.org/10.1016/j.ejmech.2016.09.068] [PMID: 27718470]
[35]
Zhang, X.; Ba, Q.; Gu, Z.; Guo, D.; Zhou, Y.; Xu, Y.; Wang, H.; Ye, D.; Liu, H. Fluorescent coumarin-artemisinin conjugates as mitochondria-targeting theranostic probes for enhanced anticancer activities. Chemistry, 2015, 21(48), 17415-17421.
[http://dx.doi.org/10.1002/chem.201502543] [PMID: 26458147]
[36]
Yao, H.; Wei, G.; Liu, Y.; Yao, H.; Zhu, Z.; Ye, W.; Wu, X.; Xu, J.; Xu, S. Synthesis, biological evaluation of fluorescent 23-hydroxybetulinic acid probes, and their cellular localization studies. ACS Med. Chem. Lett., 2018, 9(10), 1030-1034.
[http://dx.doi.org/10.1021/acsmedchemlett.8b00321] [PMID: 30344912]
[37]
Cai, G.; Yu, W.; Song, D.; Zhang, W.; Guo, J.; Zhu, J.; Ren, Y.; Kong, L. Discovery of fluorescent coumarin-benzo[b]thiophene 1, 1-dioxide conjugates as mitochondria-targeting antitumor STAT3 inhibitors. Eur. J. Med. Chem., 2019, 174, 236-251.
[http://dx.doi.org/10.1016/j.ejmech.2019.04.024] [PMID: 31048139]
[38]
Ren, X.; Duan, L.; He, Q.; Zhang, Z.; Zhou, Y.; Wu, D.; Pan, J.; Pei, D.; Ding, K. Identification of niclosamide as a new small-molecule inhibitor of the STAT3 signaling pathway. ACS Med. Chem. Lett., 2010, 1(9), 454-459.
[http://dx.doi.org/10.1021/ml100146z] [PMID: 24900231]
[39]
Thilakasiri, P.S.; Dmello, R.S.; Nero, T.L.; Parker, M.W.; Ernst, M.; Chand, A.L. Repurposing of drugs as STAT3 inhibitors for cancer therapy. Semin. Cancer Biol., 2021, 68, 31-46.
[http://dx.doi.org/10.1016/j.semcancer.2019.09.022] [PMID: 31711994]
[40]
Wang, X.; Wu, K.; Fang, L.; Yang, X.; Zheng, N.; Du, Z.; Lu, Y.; Xie, Z.; Liu, Z.; Zuo, Z.; Ye, F. Discovery of N-substituted sulfamoylbenzamide derivatives as novel inhibitors of STAT3 signaling pathway based on Niclosamide. Eur. J. Med. Chem., 2021, 218, 113362.
[http://dx.doi.org/10.1016/j.ejmech.2021.113362] [PMID: 33774344]
[41]
Blechacz, B.R.; Smoot, R.L.; Bronk, S.F.; Werneburg, N.W.; Sirica, A.E.; Gores, G.J. Sorafenib inhibits signal transducer and activator of transcription-3 signaling in cholangiocarcinoma cells by activating the phosphatase shatterproof 2. Hepatology, 2009, 50(6), 1861-1870.
[http://dx.doi.org/10.1002/hep.23214] [PMID: 19821497]
[42]
Yang, F.; Brown, C.; Buettner, R.; Hedvat, M.; Starr, R.; Scuto, A.; Schroeder, A.; Jensen, M.; Jove, R. Sorafenib induces growth arrest and apoptosis of human glioblastoma cells through the dephosphorylation of signal transducers and activators of transcription 3. Mol. Cancer Ther., 2010, 9(4), 953-962.
[http://dx.doi.org/10.1158/1535-7163.MCT-09-0947] [PMID: 20371721]
[43]
Chen, K.F.; Tai, W.T.; Huang, J.W.; Hsu, C.Y.; Chen, W.L.; Cheng, A.L.; Chen, P.J.; Shiau, C.W. Sorafenib derivatives induce apoptosis through inhibition of STAT3 independent of Raf. Eur. J. Med. Chem., 2011, 46(7), 2845-2851.
[http://dx.doi.org/10.1016/j.ejmech.2011.04.007] [PMID: 21531053]
[44]
Li, H.; Liu, A.; Zhao, Z.; Xu, Y.; Lin, J.; Jou, D.; Li, C. Fragment-based drug design and drug repositioning using multiple ligand simultaneous docking (MLSD): Identifying celecoxib and template compounds as novel inhibitors of signal transducer and activator of transcription 3 (STAT3). J. Med. Chem., 2011, 54(15), 5592-5596.
[http://dx.doi.org/10.1021/jm101330h] [PMID: 21678971]
[45]
Li, Y.; Rogoff, H.A.; Keates, S.; Gao, Y.; Murikipudi, S.; Mikule, K.; Leggett, D.; Li, W.; Pardee, A.B.; Li, C.J. Suppression of cancer relapse and metastasis by inhibiting cancer stemness. Proc. Natl. Acad. Sci. USA, 2015, 112(6), 1839-1844.
[http://dx.doi.org/10.1073/pnas.1424171112] [PMID: 25605917]
[46]
Hubbard, J.M.; Grothey, A. Napabucasin: An update on the first-in-class cancer stemness inhibitor. Drugs, 2017, 77(10), 1091-1103.
[http://dx.doi.org/10.1007/s40265-017-0759-4] [PMID: 28573435]
[47]
Bi, S.; Chen, K.; Feng, L.; Fu, G.; Yang, Q.; Deng, M.; Zhao, H.; Li, Z.; Yu, L.; Fang, Z.; Xu, B. Napabucasin (BBI608) eliminate AML cells in vitro and in vivo via inhibition of Stat3 pathway and induction of DNA damage. Eur. J. Pharmacol., 2019, 855, 252-261.
[http://dx.doi.org/10.1016/j.ejphar.2019.05.020] [PMID: 31085238]
[48]
Feng, K.R.; Wang, F.; Shi, X.W.; Tan, Y.X.; Zhao, J.Y.; Zhang, J.W.; Li, Q.H.; Lin, G.Q.; Gao, D.; Tian, P. Design, synthesis and biological evaluation of novel potent STAT3 inhibitors based on BBI608 for cancer therapy. Eur. J. Med. Chem., 2020, 201, 112428.
[http://dx.doi.org/10.1016/j.ejmech.2020.112428] [PMID: 32603980]
[49]
Kim, K.; Kim, S.J.; Han, Y.T.; Hong, S.J.; An, H.; Chang, D.J.; Kim, T.; Lim, B.; Lee, J.; Surh, Y.J.; Suh, Y.G. Identification of small molecule inhibitors of the STAT3 signaling pathway: Insights into their structural features and mode of action. Bioorg. Med. Chem. Lett., 2015, 25(22), 5444-5448.
[http://dx.doi.org/10.1016/j.bmcl.2015.07.063] [PMID: 26392052]
[50]
Park, S.K.; Byun, W.S.; Lee, S.; Han, Y.T.; Jeong, Y.S.; Jang, K.; Chung, S.J.; Lee, J.; Suh, Y.G.; Lee, S.K. A novel small molecule STAT3 inhibitor SLSI-1216 suppresses proliferation and tumor growth of triple-negative breast cancer cells through apoptotic induction. Biochem. Pharmacol., 2020, 178, 114053.
[http://dx.doi.org/10.1016/j.bcp.2020.114053] [PMID: 32450253]
[51]
Poli, G.; Gelain, A.; Porta, F.; Asai, A.; Martinelli, A.; Tuccinardi, T. Identification of a new STAT3 dimerization inhibitor through a pharmacophore-based virtual screening approach. J. Enzyme Inhib. Med. Chem., 2016, 31(6), 1011-1017.
[http://dx.doi.org/10.3109/14756366.2015.1079184] [PMID: 26308397]
[52]
Beshay, B.Y.; Abdellatef, A.A.; Loksha, Y.M.; Fahmy, S.M.; Habib, N.S.; Bekhit, A.E.A.; Georghiou, P.E.; Hayakawa, Y.; Bekhit, A.A. Design and synthesis of 2-Substituted-4-benzyl-5-methylimidazoles as new potential Anti-breast cancer agents to inhibit oncogenic STAT3 functions. Bioorg. Chem., 2021, 113, 105033.
[http://dx.doi.org/10.1016/j.bioorg.2021.105033] [PMID: 34089945]
[53]
Huang, M.; Song, K.; Liu, X.; Lu, S.; Shen, Q.; Wang, R.; Gao, J.; Hong, Y.; Li, Q.; Ni, D.; Xu, J.; Chen, G.; Zhang, J. AlloFinder: A strategy for allosteric modulator discovery and allosterome analyses. Nucleic Acids Res., 2018, 46(W1), W451-W458.
[http://dx.doi.org/10.1093/nar/gky374] [PMID: 29757429]
[54]
Huang, W.; Dong, Z.; Wang, F.; Peng, H.; Liu, J.Y.; Zhang, J.T. A small molecule compound targeting STAT3 DNA-binding domain inhibits cancer cell proliferation, migration, and invasion. ACS Chem. Biol., 2014, 9(5), 1188-1196.
[http://dx.doi.org/10.1021/cb500071v] [PMID: 24661007]
[55]
Hou, S.; Yi, Y.W.; Kang, H.J.; Zhang, L.; Kim, H.J.; Kong, Y.; Liu, Y.; Wang, K.; Kong, H.S.; Grindrod, S.; Bae, I.; Brown, M.L. Novel carbazole inhibits phospho-STAT3 through induction of protein-tyrosine phosphatase PTPN6. J. Med. Chem., 2014, 57(15), 6342-6353.
[http://dx.doi.org/10.1021/jm4018042] [PMID: 24978112]
[56]
Shahani, V.M.; Yue, P.; Haftchenary, S.; Zhao, W.; Lukkarila, J.L.; Zhang, X.; Ball, D.; Nona, C.; Gunning, P.T.; Turkson, J. Identification of purine-scaffold small-molecule inhibitors of stat3 activation by QSAR studies. ACS Med. Chem. Lett., 2011, 2(1), 79-84.
[http://dx.doi.org/10.1021/ml100224d] [PMID: 21243039]
[57]
Pallandre, J.R.; Borg, C.; Rognan, D.; Boibessot, T.; Luzet, V.; Yesylevskyy, S.; Ramseyer, C.; Pudlo, M. Novel aminotetrazole derivatives as selective STAT3 non-peptide inhibitors. Eur. J. Med. Chem., 2015, 103, 163-174.
[http://dx.doi.org/10.1016/j.ejmech.2015.08.054] [PMID: 26352675]
[58]
Xu, L.; Shi, L.; Qiu, S.; Chen, S.; Lin, M.; Xiang, Y.; Zhao, C.; Zhu, J.; Shen, L.; Zuo, Z. Design, synthesis, and evaluation of cyanopyridines as anti-colorectal cancer agents via inhibiting stat3 pathway. Drug Des. Devel. Ther., 2019, 13, 3369-3381.
[http://dx.doi.org/10.2147/DDDT.S217800] [PMID: 31576111]
[59]
Huang, R.; Jing, X.; Huang, X.; Pan, Y.; Fang, Y.; Liang, G.; Liao, Z.; Wang, H.; Chen, Z.; Zhang, Y. Bifunctional naphthoquinone aromatic amide-oxime derivatives exert combined immunotherapeutic and antitumor effects through simultaneous targeting of indoleamine-2,3-dioxygenase and signal transducer and activator of transcription 3. J. Med. Chem., 2020, 63(4), 1544-1563.
[http://dx.doi.org/10.1021/acs.jmedchem.9b01386] [PMID: 31999451]
[60]
Peng, T.; Wonganan, O.; Zhang, Z.; Yu, J.; Xi, R.; Cao, Y.; Suksamrarn, A.; Zhang, G.; Wang, F. A 2-benzylmalonate derivative as STAT3 inhibitor suppresses tumor growth in hepatocellular carcinoma by upregulating β-TrCP E3 ubiquitin ligase. Int. J. Mol. Sci., 2021, 22(7), 3354.
[http://dx.doi.org/10.3390/ijms22073354] [PMID: 33805945]
[61]
Aggarwal, B.B.; Shishodia, S. Molecular targets of dietary agents for prevention and therapy of cancer. Biochem. Pharmacol., 2006, 71(10), 1397-1421.
[http://dx.doi.org/10.1016/j.bcp.2006.02.009] [PMID: 16563357]
[62]
Hatcher, H.; Planalp, R.; Cho, J.; Torti, F.M.; Torti, S.V. Curcumin: From ancient medicine to current clinical trials. Cell. Mol. Life Sci., 2008, 65(11), 1631-1652.
[http://dx.doi.org/10.1007/s00018-008-7452-4] [PMID: 18324353]
[63]
Lin, L.; Deangelis, S.; Foust, E.; Fuchs, J.; Li, C.; Li, P-K.; Schwartz, E.B.; Lesinski, G.B.; Benson, D.; Lü, J.; Hoyt, D.; Lin, J. A novel small molecule inhibits STAT3 phosphorylation and DNA binding activity and exhibits potent growth suppressive activity in human cancer cells. Mol. Cancer, 2010, 9, 217.
[http://dx.doi.org/10.1186/1476-4598-9-217] [PMID: 20712901]
[64]
Zhang, W.; Guo, J.; Li, S.; Ma, T.; Xu, D.; Han, C.; Liu, F.; Yu, W.; Kong, L. Discovery of monocarbonyl curcumin-BTP hybrids as STAT3 inhibitors for drug-sensitive and drug-resistant breast cancer therapy. Sci. Rep., 2017, 7, 46352.
[http://dx.doi.org/10.1038/srep46352] [PMID: 28397855]
[65]
Sandur, S.K.; Pandey, M.K.; Sung, B.; Aggarwal, B.B. 5-hydroxy-2-methyl-1,4-naphthoquinone, a vitamin K3 analogue, suppresses STAT3 activation pathway through induction of protein tyrosine phosphatase, SHP-1: Potential role in chemosensitization. Mol. Cancer Res., 2010, 8(1), 107-118.
[http://dx.doi.org/10.1158/1541-7786.MCR-09-0257] [PMID: 20068065]
[66]
Li, N.; Ou, J.; Bao, N.; Chen, C.; Shi, Z.; Chen, L.; Sun, J. Design, synthesis and biological evaluation of novel plumbagin derivatives as potent antitumor agents with STAT3 inhibition. Bioorg. Chem., 2020, 104, 104208.
[http://dx.doi.org/10.1016/j.bioorg.2020.104208] [PMID: 32919131]
[67]
Zhang, E.H.; Wang, R.F.; Guo, S.Z.; Liu, B. An update on antitumor activity of naturally occurring chalcones. Evid. Based Complement. Alternat. Med., 2013, 2013, 815621.
[http://dx.doi.org/10.1155/2013/815621] [PMID: 23690855]
[68]
Al-Masoudi, N.A.; Kadhim, R.A.; Abdul-Rida, N.A.; Saeed, B.A.; Engel, M. New biaryl-chalcone derivatives of pregnenolone via Suzuki-Miyaura cross-coupling reaction. Synthesis, CYP17 hydroxylase inhibition activity, QSAR, and molecular docking study. Steroids, 2015, 101, 43-50.
[http://dx.doi.org/10.1016/j.steroids.2015.05.011] [PMID: 26051784]
[69]
Liu, Y.C.; Hsieh, C.W.; Wu, C.C.; Wung, B.S. Chalcone inhibits the activation of NF-kappaB and STAT3 in endothelial cells via endogenous electrophile. Life Sci., 2007, 80(15), 1420-1430.
[http://dx.doi.org/10.1016/j.lfs.2006.12.040] [PMID: 17320913]
[70]
Fathi, M.A.A.; Abd El-Hafeez, A.A.; Abdelhamid, D.; Abbas, S.H.; Montano, M.M.; Abdel-Aziz, M. 1,3,4-oxadiazole/chalcone hybrids: Design, synthesis, and inhibition of leukemia cell growth and EGFR, Src, IL-6 and STAT3 activities. Bioorg. Chem., 2019, 84, 150-163.
[http://dx.doi.org/10.1016/j.bioorg.2018.11.032] [PMID: 30502626]
[71]
Lamie, P.F.; Philoppes, J.N. 2-Thiopyrimidine/chalcone hybrids: Design, synthesis, ADMET prediction, and anticancer evaluation as STAT3/STAT5a inhibitors. J. Enzyme Inhib. Med. Chem., 2020, 35(1), 864-879.
[http://dx.doi.org/10.1080/14756366.2020.1740922] [PMID: 32208772]
[72]
Shin, D.S.; Kim, H.N.; Shin, K.D.; Yoon, Y.J.; Kim, S.J.; Han, D.C.; Kwon, B.M. Cryptotanshinone inhibits constitutive signal transducer and activator of transcription 3 function through blocking the dimerization in DU145 prostate cancer cells. Cancer Res., 2009, 69(1), 193-202.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-2575] [PMID: 19118003]
[73]
Lu, L.; Zhang, S.; Li, C.; Zhou, C.; Li, D.; Liu, P.; Huang, M.; Shen, X. Cryptotanshinone inhibits human glioma cell proliferation in vitro and in vivo through SHP-2-dependent inhibition of STAT3 activation. Cell Death Dis., 2017, 8(5), e2767.
[http://dx.doi.org/10.1038/cddis.2017.174] [PMID: 28492557]
[74]
Wang, Y.; Lu, H.L.; Liu, Y.D.; Yang, L.Y.; Jiang, Q.K.; Zhu, X.J.; Fan, H.N.; Qian, Y. Cryptotanshinone sensitizes antitumor effect of paclitaxel on tongue squamous cell carcinoma growth by inhibiting the JAK/STAT3 signaling pathway. Biomed. Pharmacother., 2017, 95, 1388-1396.
[http://dx.doi.org/10.1016/j.biopha.2017.09.062] [PMID: 28946186]
[75]
Lin, W.S.; Leland, J.V.; Ho, C.T.; Pan, M.H. Occurrence, bioavailability, anti-inflammatory, and anticancer effects of Pterostilbene. J. Agric. Food Chem., 2020, 68(46), 12788-12799.
[http://dx.doi.org/10.1021/acs.jafc.9b07860] [PMID: 32064876]
[76]
Wen, W.; Lowe, G.; Roberts, C.M.; Finlay, J.; Han, E.S.; Glackin, C.A.; Dellinger, T.H. Pterostilbene suppresses ovarian cancer growth via induction of apoptosis and blockade of cell cycle progression involving inhibition of the STAT3 pathway. Int. J. Mol. Sci., 2018, 19(7), E1983.
[http://dx.doi.org/10.3390/ijms19071983] [PMID: 29986501]
[77]
Riche, D.M.; McEwen, C.L.; Riche, K.D.; Sherman, J.J.; Wofford, M.R.; Deschamp, D.; Griswold, M. Analysis of safety from a human clinical trial with pterostilbene. J. Toxicol., 2013, 2013, 463595.
[http://dx.doi.org/10.1155/2013/463595] [PMID: 23431291]
[78]
Lai, C.S.; Yang, G.; Li, S.; Lee, P.S.; Wang, B.N.; Chung, M.C.; Nagabhushanam, K.; Ho, C.T.; Pan, M.H. 3′-Hydroxypterostilbene suppresses colitis-associated tumorigenesis by inhibition of IL-6/STAT3 signaling in mice. J. Agric. Food Chem., 2017, 65(44), 9655-9664.
[http://dx.doi.org/10.1021/acs.jafc.7b03712] [PMID: 29032686]
[79]
Ren, Y.; Li, S.; Zhu, R.; Wan, C.; Song, D.; Zhu, J.; Cai, G.; Long, S.; Kong, L.; Yu, W. Discovery of STAT3 and Histone Deacetylase (HDAC) dual-pathway inhibitors for the treatment of solid cancer. J. Med. Chem., 2021, 64(11), 7468-7482.
[http://dx.doi.org/10.1021/acs.jmedchem.1c00136] [PMID: 34043359]
[80]
Miklossy, G.; Youn, U.J.; Yue, P.; Zhang, M.; Chen, C.H.; Hilliard, T.S.; Paladino, D.; Li, Y.; Choi, J.; Sarkaria, J.N.; Kawakami, J.K.; Wongwiwatthananukit, S.; Chen, Y.; Sun, D.; Chang, L.C.; Turkson, J. Hirsutinolide Series Inhibit Stat3 Activity, Alter GCN1, MAP1B, Hsp105, G6PD, Vimentin, TrxR1, and Importin α-2 expression, and induce antitumor effects against human glioma. J. Med. Chem., 2015, 58(19), 7734-7748.
[http://dx.doi.org/10.1021/acs.jmedchem.5b00686] [PMID: 26331426]
[81]
Lis, C.; Rubner, S.; Roatsch, M.; Berg, A.; Gilcrest, T.; Fu, D.; Nguyen, E.; Schmidt, A.M.; Krautscheid, H.; Meiler, J.; Berg, T. Development of Erasin: A chromone-based STAT3 inhibitor which induces apoptosis in Erlotinib-resistant lung cancer cells. Sci. Rep., 2017, 7(1), 17390.
[http://dx.doi.org/10.1038/s41598-017-17600-x] [PMID: 29234062]
[82]
Wu, K.J.; Huang, J.M.; Zhong, H.J.; Dong, Z.Z.; Vellaisamy, K.; Lu, J.J.; Chen, X.P.; Chiu, P.; Kwong, D.W.J.; Han, Q.B.; Ma, D.L.; Leung, C.H. A natural product-like JAK2/STAT3 inhibitor induces apoptosis of malignant melanoma cells. PLoS One, 2017, 12(6), e0177123.
[http://dx.doi.org/10.1371/journal.pone.0177123] [PMID: 28570563]
[83]
Wei, M.; Xie, M.; Zhang, Z.; Wei, Y.; Zhang, J.; Pan, H.; Li, B.; Wang, J.; Song, Y.; Chong, C.; Zhao, R.; Wang, J.; Yu, L.; Yang, G.; Yang, C. Design and synthesis of novel Flavone-based histone deacetylase inhibitors antagonizing activation of STAT3 in breast cancer. Eur. J. Med. Chem., 2020, 206, 112677.
[http://dx.doi.org/10.1016/j.ejmech.2020.112677] [PMID: 32823005]
[84]
Li, S.; Zhang, W.; Yang, Y.; Ma, T.; Guo, J.; Wang, S.; Yu, W.; Kong, L. Discovery of oral-available resveratrol-caffeic acid based hybrids inhibiting acetylated and phosphorylated STAT3 protein. Eur. J. Med. Chem., 2016, 124, 1006-1018.
[http://dx.doi.org/10.1016/j.ejmech.2016.10.028] [PMID: 27783972]
[85]
Zeng, B.; Cheng, Y.; Zheng, K.; Liu, S.; Shen, L.; Hu, J.; Li, Y.; Pan, X. Design, synthesis and in vivo anticancer activity of novel parthenolide and micheliolide derivatives as NF-κB and STAT3 inhibitors. Bioorg. Chem., 2021, 111, 104973.
[http://dx.doi.org/10.1016/j.bioorg.2021.104973] [PMID: 34004586]
[86]
Chen, J.; Bai, L.; Bernard, D.; Nikolovska-Coleska, Z.; Gomez, C.; Zhang, J.; Yi, H.; Wang, S. Structure-based design of conformationally constrained, cell-permeable STAT3 inhibitors. ACS Med. Chem. Lett., 2010, 1(2), 85-89.
[http://dx.doi.org/10.1021/ml100010j] [PMID: 20596242]
[87]
Zhou, H.; Bai, L.; Xu, R.; Zhao, Y.; Chen, J.; McEachern, D.; Chinnaswamy, K.; Wen, B.; Dai, L.; Kumar, P.; Yang, C.Y.; Liu, Z.; Wang, M.; Liu, L.; Meagher, J.L.; Yi, H.; Sun, D.; Stuckey, J.A.; Wang, S. Structure-based discovery of sd-36 as a potent, selective, and efficacious PROTAC Degrader of STAT3 Protein. J. Med. Chem., 2019, 62(24), 11280-11300.
[http://dx.doi.org/10.1021/acs.jmedchem.9b01530] [PMID: 31747516]
[88]
Shahani, V.M.; Yue, P.; Fletcher, S.; Sharmeen, S.; Sukhai, M.A.; Luu, D.P.; Zhang, X.; Sun, H.; Zhao, W.; Schimmer, A.D.; Turkson, J.; Gunning, P.T. Design, synthesis, and in vitro characterization of novel hybrid peptidomimetic inhibitors of STAT3 protein. Bioorg. Med. Chem., 2011, 19(5), 1823-1838.
[http://dx.doi.org/10.1016/j.bmc.2010.12.010] [PMID: 21216604]
[89]
Escobar, Z.; Bjartell, A.; Canesin, G.; Evans-Axelsson, S.; Sterner, O.; Hellsten, R.; Johansson, M.H. Preclinical Characterization of 3β-(N-Acetyl l-cysteine methyl ester)-2aβ,3-dihydrogaliellalactone (GPA512), a prodrug of a direct STAT3 inhibitor for the treatment of prostate cancer. J. Med. Chem., 2016, 59(10), 4551-4562.
[http://dx.doi.org/10.1021/acs.jmedchem.5b01814] [PMID: 27111731]
[90]
Liu, A.; Liu, Y.; Xu, Z.; Yu, W.; Wang, H.; Li, C.; Lin, J. Novel small molecule, XZH-5, inhibits constitutive and interleukin-6-induced STAT3 phosphorylation in human rhabdomyosarcoma cells. Cancer Sci., 2011, 102(7), 1381-1387.
[http://dx.doi.org/10.1111/j.1349-7006.2011.01932.x] [PMID: 21435102]
[91]
Daka, P.; Liu, A.; Karunaratne, C.; Csatary, E.; Williams, C.; Xiao, H.; Lin, J.; Xu, Z.; Page, R.C.; Wang, H. Design, synthesis and evaluation of XZH-5 analogues as STAT3 inhibitors. Bioorg. Med. Chem., 2015, 23(6), 1348-1355.
[http://dx.doi.org/10.1016/j.bmc.2015.01.025] [PMID: 25698618]
[92]
Ma, D.L.; Liu, L.J.; Leung, K.H.; Chen, Y.T.; Zhong, H.J.; Chan, D.S.; Wang, H.M.; Leung, C.H. Antagonizing STAT3 dimerization with a rhodium(III) complex. Angew. Chem. Int. Ed. Engl., 2014, 53(35), 9178-9182.
[http://dx.doi.org/10.1002/anie.201404686] [PMID: 24889897]
[93]
Dong, J.; Cheng, X.D.; Zhang, W.D.; Qin, J.J. Recent update on development of small-molecule stat3 inhibitors for cancer therapy: From phosphorylation inhibition to protein degradation. J. Med. Chem., 2021, 64(13), 8884-8915.
[http://dx.doi.org/10.1021/acs.jmedchem.1c00629] [PMID: 34170703]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy