Generic placeholder image

Current Chinese Science

Editor-in-Chief

ISSN (Print): 2210-2981
ISSN (Online): 2210-2914

Research Article Section: Applied Materials

Is it Photodegradation or other Electronic Mechanisms Responsible for Photoluminescence Quenching under Nonenvironmental Conditions in Poly(3-octyltiophene) Electrochemically Synthesised?

Author(s): Júlio Goulart dos Santos, Lenner Santos Rodrigues, Romildo Jerônimo Ramos, Alexandre Marletta and Eralci Moreira Therézio*

Volume 2, Issue 6, 2022

Published on: 19 September, 2022

Page: [408 - 415] Pages: 8

DOI: 10.2174/2210298102666220818161156

Open Access Journals Promotions 2
Abstract

Aims: This work investigates the photoluminescence properties of poly(3- octylthiophene), namely P3OT films, under excitation power and time light expositions. When exposed to monochromatic illumination, the degradation mechanism of P3OT films is precise in environmental conditions. However, in some environmental controlled or non-environmental conditions, the quenching luminescence of P3OT subject to monochromatic light excitation is not fully understood. In this context, it is necessary to understand what causes quenching luminescence of P3OT films under environmental conditions.

Methods: The P3OT was synthesized by chronocoulometry, using tetraethylammonium tetrafluoroborate and lithium perchlorate as supporting electrolytes, and after it is deposited on a conductive substrate of fluoride-doped tin oxide (FTO). The films were synthesized and maintained under an argon atmosphere, and their thickness is dependent on the charge. The characterisation was achieved by applying techniques like UV-Vis absorption spectroscopy, photoluminescence, and emission ellipsometry.

Results: The UV-Vis absorption measurements demonstrated a different interaction of polymer/ dopant due to the polaronic band. The results showed that photoluminescence quenching with time is a behaviour caused by energy transfer between quinone chains and pristine chains of the P3OT. The polarised emission measurements corroborate the hypothesis of energy transfer between chains. The emission ellipsometry technique was used to understand energy transfer processes and other properties. The self-absorption phenomenon and integrated PL investigation of the P3OT emission elucidated the mechanism involved in the observed properties.

Conclusion: Besides that, the results show that photoluminescence quenching happens in nonenvironmental and environmental conditions, corroborating the hypothesis that PL quenching occurs because self-absorption phenomena influence the energy transfer mechanism.

Keywords: P3OT, photodegradation, photoluminescence, energy transfer, quenching luminescence, electrochemically synthesis, photophysics.

Graphical Abstract
[1]
Lapkowski, M.; Motyka, R.; Suwiński, J.; Data, P. Photoluminescent polytellurophene derivatives of conjugated polymers as a new perspective for molecular electronics. Macromol. Chem. Phys., 2012, 213(1), 29-35.
[http://dx.doi.org/10.1002/macp.201100384]
[2]
de Fátima Curcino da Silva, S.; Turchetti, D.A.; Therézio, E.M.; Tozoni, J.R.; Akcelrud, L.; Marletta, A. Temperature effect on the electron-vibrational mode coupling of a fully conjugated polyfluorene derivative. Phys. Chem. Chem. Phys., 2019, 21(30), 16779-16784.
[http://dx.doi.org/10.1039/C9CP02814E] [PMID: 31328207]
[3]
Ohmori, Y.; Uchida, M.; Muro, K.; Yoshino, K. Visible-light electroluminescent diodes utilizing poly (3-alkylthiophene). Jpn. J. Appl. Phys., 1991, 30(Part 2, No. 11B), L1938-L1940.
[http://dx.doi.org/10.1143/JJAP.30.L1938]
[4]
Zarazúa, I.; De la Rosa, E.; López-Luke, T.; Reyes-Gomez, J.; Ruiz, S.; Chavez, Á. C.; Zhang, J.Z. Photovoltaic conversion enhancement of CdSe quantum dot-sensitized TiO2 decorated with Au nanoparticles and P3OT. J. Phys. Chem. C, 2011, 115(46), 23209-23220.
[http://dx.doi.org/10.1021/jp207744n]
[5]
Qi, Z.; Feng, W.; Sun, Y.; Yan, D.; He, Y.; Yu, J. Synthesis and characterization of new 3-alkylthiophene copolymer that exhibit orange-red photoluminescence and electroluminescence. J. Mater. Sci. Mater. Electron., 2007, 18(8), 869-875.
[http://dx.doi.org/10.1007/s10854-007-9149-0]
[6]
Wang, G.; Yuan, C.; Lu, Z.; Wei, Y. Enhancement of organic electroluminescent intensity by charge transfer from guest to host. J. Lumin., 1996, 68(1), 49-54.
[http://dx.doi.org/10.1016/0022-2313(95)00092-5]
[7]
Jarosz, T.; Data, P.; Domagala, W.; Kuznik, W.; Kotwica, K.; Lapkowski, M. Solubility controlled electropolymerisation and study of the impact of regioregularity on the spectroelectrochemical properties of thin films of poly(3-octylthiophenes). Electrochim. Acta, 2014, 122, 66-71.
[http://dx.doi.org/10.1016/j.electacta.2013.10.021]
[8]
Nicho, M.E.; Hu, H.; Lopez, C.; Sanchez, A.; Escalante, J. Synthesis and characterization of 3-octylthiophene. In: Sistesis y caracterizacion de poli-3 alquil-Tiofenos; ; Spain, 2004.
[9]
Nascimento, C.A.; Schura, A.B.; Chagas, E.F.; Ramos, R.J.; de Santana, H.; Marletta, A.; Therézio, E.M. Inter- and intrachain transition analyses by photoluminescence and Raman Spectroscopy of electrochemically synthesized P3OT films. J. Mater. Sci. Mater. Electron., 2020, 31(9), 6629-6635.
[http://dx.doi.org/10.1007/s10854-020-03218-9]
[10]
Therézio, E.M.; Duarte, J.L.; Laureto, E.; Di Mauro, E.; Dias, I.L.; Marletta, A.; de Santana, H. Analysis of the optical properties of poly(3-octylthiophene) partially dedoped. J. Phys. Org. Chem., 2011, 24(8), 640-645.
[http://dx.doi.org/10.1002/poc.1802]
[11]
Therézio, E.M.; Franchello, F.; Dias, I.F.L.; Laureto, E.; Foschini, M.; Bottecchia, O.L.; de Santana, H.; Duarte, J.L.; Marletta, A. Emission ellipsometry as a tool for optimizing the electrosynthesis of conjugated polymers thin films. Thin Solid Films, 2013, 527, 255-260.
[http://dx.doi.org/10.1016/j.tsf.2012.11.093]
[12]
Singh, J.; Gupta, H.; Singh, R.G.; Ojha, S.; Kulriya, P.K.; Singh, F. Photoluminescence quenching and photo-induced charge transfer processes in poly(3-octylthiophene) polymer based hybrid nano-composites by ion irradiation for possible optoelectronic applications. J. Electron. Mater., 2020, 50(1), 85-99.
[http://dx.doi.org/10.1007/s11664-020-08545-5]
[13]
Bento, D.C.; Maia, E.C.R.; Fernandes, R.V.; Laureto, E.; Louarn, G.; de Santana, H. Photoluminescence and Raman spectroscopy studies of the photodegradation of poly(3-octylthiophene). J. Mater. Sci. Mater. Electron., 2013, 25(1), 185-189.
[http://dx.doi.org/10.1007/s10854-013-1571-x]
[14]
Cervantes, T.N.M.; Bento, D.C.; Maia, E.C.R.; Fernandes, R.V.; Laureto, E.; Moore, G.J.; Louarn, G.; de Santana, H. The influence of different electrolytes on the electrical and optical properties of polymer films electrochemically synthesized from 3-alkylthiophenes. J. Mater. Sci. Mater. Electron., 2014, 25(4), 1703-1715.
[http://dx.doi.org/10.1007/s10854-014-1787-4]
[15]
López-Mata, C.; Nicho, M.E.; Hu, H.; Cadenas-Pliego, G.; García-Hernández, E. Optical and morphological properties of chemically synthesized poly3-octylthiophene thin films. Thin Solid Films, 2005, 490(2), 189-195.
[http://dx.doi.org/10.1016/j.tsf.2005.04.059]
[16]
Hayes, G.R.; Samuel, I.D.W.; Phillips, R.T. Exciton dynamics in electroluminescent polymers studied by femtosecond time-resolved photoluminescence spectroscopy. Phys. Rev. B Condens. Matter, 1995, 52(16), 11569-11572.
[http://dx.doi.org/10.1103/PhysRevB.52.R11569] [PMID: 9980271]
[17]
Kanemoto, K.; Shishido, M.; Sudo, T.; Akai, I.; Hashimoto, H.; Karasawa, T. Concentration-dependence of photoluminescence properties in polythiophene diluted in an inactive polymer matrix. Chem. Phys. Lett., 2005, 402(4-6), 549-553.
[http://dx.doi.org/10.1016/j.cplett.2004.12.100]
[18]
Wong, K.S.; Sun, T.; Liu, X.L.; Pei, J.; Huang, W. Optical properties and time-resolved photoluminescence of conjugated polymers with europium complex side chain as an emitter. Thin Solid Films, 2002, 417(1-2), 85-89.
[http://dx.doi.org/10.1016/S0040-6090(02)00568-0]
[19]
Whitehead, K.S.; Grell, M.; Bradley, D.D.C.; Inbasekaran, M.; Woo, E.P. Polarized emission from liquid crystal polymers. Synth. Met., 2000, 111-112, 181-185.
[http://dx.doi.org/10.1016/S0379-6779(99)00342-2]
[20]
Shaw, P.E.; Ruseckas, A.; Samuel, I.D.W. Distance dependence of excitation energy transfer between spacer-separated conjugated polymer films. Phys. Rev. B Condens. Matter Mater. Phys., 2008, 78(24), 245201.
[http://dx.doi.org/10.1103/PhysRevB.78.245201]
[21]
Basilio, F.C.; Campana, P.T.; Therézio, E.M.; Barbosa Neto, N.M.; Serein-Spirau, F.; Silva, R.A.; Oliveira, O.N., Jr; Marletta, A. Ellipsometric raman spectroscopy. J. Phys. Chem. C, 2016, 120(43), 25101-25109.
[http://dx.doi.org/10.1021/acs.jpcc.6b08809]
[22]
Dalkiranis, G.G.; Therézio, E.M.; Conte, G.; Gallardo, H.; Bechtold, I.H.; Marletta, A. Emission ellipsometry as a tool for luminescent liquid crystal phase transition identification. Phys. Rev. E., 2018, 98(2-1), 022702.
[http://dx.doi.org/10.1103/PhysRevE.98.022702] [PMID: 30253482 ]
[23]
Alliprandini-Filho, P.; da Silva, G.B.; Barbosa Neto, N.M.; Silva, R.A.; Marletta, A. Induced secondary structure in nanostructured films of poly(p-phenylene vinylene). J. Nanosci. Nanotechnol., 2009, 9(10), 5981-5989.
[http://dx.doi.org/10.1166/jnn.2009.1293] [PMID: 19908484]
[24]
Raoof, J-B.; Ojani, R.; Rashid-Nadimi, S. Preparation of polypyrrole/ferrocyanide films modified carbon paste electrode and its application on the electrocatalytic determination of ascorbic acid. Electrochim. Acta, 2004, 49(2), 271-280.
[http://dx.doi.org/10.1016/j.electacta.2003.08.009]
[25]
Dejeu, J.; Taouil, A.E.; Rougeot, P.; Lakard, S.; Lallemand, F.; Lakard, B. Morphological and adhesive properties of polypyrrole films synthesized by sonoelectrochemical technique. Synth. Met., 2010, 160(23-24), 2540-2545.
[http://dx.doi.org/10.1016/j.synthmet.2010.10.002]
[26]
Imae, I.; Akazawa, R.; Ooyama, Y.; Harima, Y. Investigation of organic thermoelectric materials using potential‐step chronocoulometry: Effect of polymerization methods on thermoelectric properties of poly(3‐hexylthiophene). J. Polym. Sci., 2020, 58(21), 3004-3008.
[http://dx.doi.org/10.1002/pol.20200506]
[27]
Kahlert, H. Reference electrodes. In: Electroanalytical methods; Scholz, F., Ed.; Springer: Verlag Berlin Heidelberg, 2010; pp. 291-308.
[http://dx.doi.org/10.1007/978-3-642-02915-8_15]
[28]
Anson, F.C. Innovations in the study of adsorbed reactants by chronocoulometry. Anal. Chem., 1966, 38(1), 54-57.
[http://dx.doi.org/10.1021/ac60233a014]
[29]
Kalita, G.; Adhikari, S.; Aryal, H.R.; Wakita, K.; Umeno, M. Poly(3-octylthiophene)/fullerene heterojunction solar cell incorporating carbon nanotubes. J. Nanosci. Nanotechnol., 2010, 10(6), 3844-3848.
[http://dx.doi.org/10.1166/jnn.2010.1974] [PMID: 20355377]
[30]
Nicho, M.; Hernandez, F.; Hu, H.; Medrano, G.; Güizado, M.; Guerrero, J. Physicochemical and morphological properties of spin-coated poly (3-alkylthiophene) thin films. Sol. Energy Mater. Sol. Cells, 2009, 93(1), 37-40.
[http://dx.doi.org/10.1016/j.solmat.2008.02.016]
[31]
Singh, R.; Kumar, J.; Singh, R.K.; Kaur, A.; Sood, K.; Rastogi, R. Effect of thermal annealing on surface morphology and physical properties of poly (3-octylthiophene) films. Polymer (Guildf.), 2005, 46(21), 9126-9132.
[http://dx.doi.org/10.1016/j.polymer.2005.07.032]
[32]
Palacios, R.E.; Barbara, P.F. Single molecule spectroscopy of poly 3-octyl-thiophene (P3OT). J. Fluoresc., 2007, 17(6), 749-757.
[http://dx.doi.org/10.1007/s10895-007-0186-0] [PMID: 17457664]
[33]
Mallajosyula, A.T.; Iyer, S.S.K.; Mazhari, B. A comparative study of poly(3-octylthiophene) and poly(3-hexylthiophene) solar cells blended with single walled carbon nanotubes. Jpn. J. Appl. Phys., 2009, 48(1), 011503.
[http://dx.doi.org/10.1143/JJAP.48.011503]
[34]
de Sá, S.S.; Basílio, F.C.; de Santana, H.; Marletta, A.; Therézio, E.M. Electrochemical deposition of P3AT films used as a probe of optical properties in polymeric system. In: Modern Technologies for Creating the Thin-film Systems and Coatings; Nikitenkov, N.N., Ed.; IntechOpen: London, 2017; pp. 101-119.
[http://dx.doi.org/10.5772/66921]
[35]
Silva, R.A.; Cury, L.A.; Guimarães, P.S.S.; Marletta, A.; Serein-Spirau, F.; Bouachrine, M.; Moreau, J.J.E.; Lère-Porte, J-P. Exchange with a temperature of the electron-vibrational mode interaction between thienylene-phenylene copolymer rings. J. Polym. Sci., B, Polym. Phys., 2010, 48(9), 964-971.
[http://dx.doi.org/10.1002/polb.21984]
[36]
Pankove, J.I. Optical Process in Semiconductors, 1st ed; Dover Publications: New York, 1971.
[37]
Schura, A.B.; de Sá, S.S.; Silva, R.A.; de Santana, H.; Marletta, A.; Therézio, E.M. Energy transfer processes in electrochemical P3HT thin films. J. Mater. Sci. Mater. Electron., 2019, 30(4), 4289-4295.
[http://dx.doi.org/10.1007/s10854-019-00721-6]
[38]
Therézio, E.M.; Dalkiranis, G.G.; Vieira, A.A.; Gallardo, H.; Bechtold, I.H.; Campana, P.T.; Marletta, A. Achromatic ellipsometry: Theory and applications. In: Ellipsometry-Principles and Techniques for Materials Characterization; Wahaia, F., Ed.; IntechOpen: London, 2017; pp. 21-40.
[http://dx.doi.org/10.5772/intechopen.70089]
[39]
Goldstein, D.H. Polarized light, 3rd ed; CRC press: Boca Raton, 2017.
[http://dx.doi.org/10.1201/b10436]
[40]
Azzam, R.M.A.; Bashara, N.M. Ellipsometry and Polarized Light, 1st ed; North-Holland: Amsterdam, New York, 1987.
[http://dx.doi.org/10.1016/S0003-2670(00)82849-4]
[41]
Lakowicz, J.R. Principles of fluorescence spectroscopy, 3rd ed; Springer science & business media: New York, 2006.
[http://dx.doi.org/10.1007/978-0-387-46312-4]

© 2024 Bentham Science Publishers | Privacy Policy