[1]
D.P. Kingma, and M. Welling, "Auto-encoding variational bayes", arXiv preprint arXiv: 1312.6114, 2013.
[3]
A. Chivukula, X. Yang, W. Liu, T. Zhu, and W. Zhou, "Game the- oretical adversarial deep learning with variational adversaries", IEEE Trans. Knowl. Data Eng., vol. 33, no. 11, pp. 3568-3581, 2021.
[4]
I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio, "Generative adversarial nets", Adv. Neural Inf. Process. Syst., pp. 2672-2680, 2014.
[5]
M.D. Ansari, E. Rashid, S.S. Skandha, and S.K. Gupta, "A comprehensive analysis of image forensics techniques: Challenges and future direction", Rec. Pat. Eng., pp. 458-467, 2020.
[8]
D. Afchar, V. Nozick, J. Yamagishi, and I. Echizen, "Mesonet: A compact facial video forgery detection network", IEEE international workshop on information forensics and security (WIFS), 11-13 December 2018, Hong Kong, China, pp. 1-7, 2019.
[9]
K. Xu, M. Qin, F. Sun, Y. Wang, Y-K. Chen, and F. Ren, "Learning in the frequency domain", In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition June, 2020, Seattle, WA, 2020, pp. 1740-1749
[12]
J. Frank, T. Eisenhofer, L. Schönherr, A. Fischer, D. Kolossa, and T. Holz, "Leveraging frequency analysis for deep fake image recognition", In Proceedings of the 37th International Conference on Machine Learning, ICML 2020, 13-18 July 2020, Virtual Event, 2020, pp. 3247-3258
[13]
Y. Li, M-C. Chang, and S Lyu, "In ictu oculi: Exposing ai generated fake face videos by detecting eye blinking", arXiv preprint arXiv:1806.02877, 2018.
[15]
H. Qi, Q. Guo, F. Juefei-Xu, X. Xie, L. Ma, W. Feng, Y. Liu, and J. Zhao, "Deeprhythm: Exposing deepfakes with attentional visual heartbeat rhythms", Proceedings of the 28th ACM International Conference on Multimedia, pp. 4318-4327, 2020.
[16]
J. Hernandez-Ortega, R. Tolosana, J. Fierrez, and A Morales, "Deepfakeson-phys: Deepfakes detection based on heart rate estimation", arXiv preprint arXiv:2010.00400, 2020.
[18]
S. Chen, T-P. Yao, Y. Chen, S-H. Ding, J-L. Li, and R.G. Ji, "Local relation learning for face forgery detection", In: The Thirty-Fifth AAAI Conference on Artificial Intelligence (AAAI-21), 2021, pp. 1081-1088.
[21]
A. Radford, L. Metz, and S. Chintala, "Unsupervised representation learning with deep convolutional generative adversarial networks", In 9th Conference on Artificial Intelligence and Robotics and 2nd Asia-Pacific International Symposium, 10-10 December 2018, Kish Island, Iran, IEEE, 2018.
[22]
M. Mirza, and S. Osindero, "Conditional generative adversarial nets", Comput. Sci., pp. 2672-2680, 2014.
[23]
X. Chen, Y. Duan, R. Houthooft, J. Schulman, I. Sutskever, and P. Abbeel, "InfoGAN: Interpretable representation learning by information maximizing generative adversarial nets", In NIPS’16: Proceedings of the 30th International Conference on Neural Information Processing Systems, December 2016, pp. 2180-2188
[34]
G. Wang, J. Zhou, and Y Wu, "Exposing deep-faked videos by anomalous co-motion pattern detection", arXiv preprint arXiv:2008.04848, 2020.
[35]
R. Andreas, D. Cozzolino, L. Verdoliva, C. Riess, J. Thies, and N. Matthias, "Faceforensics: A large-scale video dataset for forgery detection in human faces", arXiv preprint arXiv, 2018.
[36]
A. Rossler, D. Cozzolino, L. Verdoliva, C. Riess, J. Thies, and M. Nießner, "Faceforensics++: Learning to detect manipulated facial images", Proceedings of the IEEE International Conference on Computer Vision, pp. 1-11, 2019.
[37]
Y. Li, X. Yang, P. Sun, H. Qi, and S. Lyu, "Celeb-df: A large-scale challenging dataset for deep- fake forensics", Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3207-3216, 2020.
[38]
B. Dolhansky, J. Bitton, B. Pflaum, J. Lu, R. Howes, M. Wang, and C.C Ferrer, "The deepfake detection challenge dataset", arXiv preprint arXiv: 2006.07397, 2020.
[41]
O.D. Lima, S. Franklin, S. Basu, B. Karwoski, and A. George, "Deepfake detection using spatiotemporal convolutional networks", arXiv preprint arXiv, p. 2006.14749, 2020.
[42]
E. Sabir, J. Cheng, and A. Jaiswal, "W. AbdAlmageed, I. Masi, and P. Natarajan, “Recurrent convolutional strategies for face manipulation detection in videos", CVPR Workshop, 2019.
[44]
T. Karras, T. Aila, S. Laine, and J. Lehtinen, "Progressive growing of gans for improved quality, stability, and variation", Neural and Evolutionary Computing, ariv, 2017.
[47]
B. Han, X. Han, H. Zhang, J. Li, and X. Cao, "Fighting fake news: Two stream network for deepfake detection via learnable SRM", IEEE Trans. Biometrics Behav. Identity Sci., vol. 3, no. 3, pp. 320-331, 2021.
[49]
H. Zhao, W. Zhou, D. Chen, T. Wei, W. Zhang, and N. Yu, "Multi-attentional deepfake detection", Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2185-2194, 2021.
[52]
X. Zhu, H. Wang, H. Fei, Z. Lei, and S-Z. Li, "Face forgery detection by 3D decomposition", Proc. IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2929-2939, 2020.
[55]
I. Masi, A. Killekar, R.M. Mascarenhas, S.P. Gurudatt, and W. AbdAlmageed, "Two-branch recurrent network for isolating deepfakes in videos", European Conference on Computer Vision, pp. 667-684, 2020.