Generic placeholder image

Current Analytical Chemistry

Editor-in-Chief

ISSN (Print): 1573-4110
ISSN (Online): 1875-6727

Mini-Review Article

A Review on Hyphenated Techniques in Analytical Chemistry

Author(s): Kajal Pratik Baviskar, Dipali Vivek Jain, Sushal Dilip Pingale, Shekhar Sudam Wagh, Swapnil Parashram Gangurde, Siddharth Ashok Shardul, Aditya Ravindra Dahale and Kishor Sanchalal Jain*

Volume 18, Issue 9, 2022

Published on: 06 September, 2022

Page: [956 - 976] Pages: 21

DOI: 10.2174/1573411018666220818103236

Price: $65

Open Access Journals Promotions 2
Abstract

Background: In chemical and pharmaceutical analysis, hyphenated techniques range from the combinations involving separation-separation, separation-identification and identification-identification techniques and are widely used nowadays, as they hold many advantages like fast accurate analysis, a higher degree of automation, higher sample throughput, better reproducibility, specificity and sensitivity. They also reduce contamination due to closed systems and offer simultaneous separation and quantification, leading to better analysis.

Objective: Though many reviews have appeared on hyphenated analytical techniques till date, in the past decade, their use has increased manifold and therefore, we thought it imperative to review the latest progress in this field. In the present article, an attempt has been made to cover the latest information on various hyphenated techniques like LC-MS (Liquid Chromatography-Mass Spectroscopy), GC-MS (Gas Chromatography-Mass Spectroscopy), LC-IR (Liquid Chromatography-Infra-Red Spectroscopy), as well as, LC-MS-MS (Liquid Chromatography-Mass Spectroscopy-Mass Spectroscopy), LC-NMR-MS (Liquid Chromatography-Nuclear Magnetic Resonance-Mass Spectroscopy), etc.

Conclusion: This review describes a total of seventeen different hyphenated techniques, comprising mainly of the combinations of chromatographic techniques with spectroscopic techniques. We have tried to cover the latest information on various double hyphenated techniques like LC-MS , LC-NMR, LC-IR, HPTLC-MS, HPTLC-IR, GC-MS, GC-IR, GC-TLC, GC-AES, MS-MS, CE-MS, GC-NMR, as well as, triple hyphenated techniques like LC-MS-MS, LC-NMR-MS, LC-UV-MS, GC-MS-MS, GC-IR-MS. Mainly the principle, instrumentation, applications, and advantages of each of the techniques are discussed in this review. Also, disadvantages of a few techniques have been mentioned.

Keywords: Hyphenated techniques, separation, identification, quantitative, qualitative, chromatography, spectroscopy.

Graphical Abstract
[1]
Hirschfeld, T. The hyphenated methods. Anal. Chem., 1980, 52(2), 297 A-312 A.
[2]
Londhe, S.V.; Mulgund, S.V.; Chitre, T.S.; Mallade, P.S.; Bariwal, J.B.; Jain, K.S. Hyphenated techniques in analytical world. Indian J. Pharm. Edu.Res, 2008, 42(4), 393-401.
[3]
Patel, K.N.; Patel, K.J.; Patel, M.P.; Rajput, G.C.; Hitesh, A.P. Hyphenated techniques and their applications in Pharmacy. Pharm. Methods, 2010, 2(1), 1-13.
[PMID: 23781410]
[4]
Joshi, R.R.; Gupta, K.R.; Patil, S.S. Hyphenated technique- a boon to analytical world. Int. J. Pharma Sci., 2022, 3(11), 4184-4191.
[5]
Nagajyothi, S.; Swetha, Y.; Neeharika, J.; Suresh, P.V.; Rama-rao, N. Hyphenated techniques- A comprehensive review. Int. J. Adv. Res. Dev., 2017, 2(4), 63-71.
[6]
Meena, P.L.; Sandilya, V.; Sharma, S. A review of singular and hyphenated analytical techniques in trace element analysis. Chem. Res. J, 2019, 4(1), 117-124.
[7]
Marvin, C. LC/MS: A practical user’s guide, 1st ed; Wiley Interscience: New Jersey, 2005.
[8]
Korfmacher, W.A. Principles and applications of LC-MS in new drug discovery. Drug Discov. Today, 2005, 10(20), 1357-1367.
[http://dx.doi.org/10.1016/S1359-6446(05)03620-2] [PMID: 16253874]
[9]
Niessen, W.M. Progress in liquid chromatography-mass spectrometry instrumentation and its impact on high-throughput screening. J. Chromatogr. A, 2003, 1000(1-2), 413-436.
[http://dx.doi.org/10.1016/S0021-9673(03)00506-5] [PMID: 12877182]
[10]
Hsieh, Y. APPI: A new ionization source for LC-MS/MS assays. Using mass spectrometry for drug metabolism studies; Korfmacher, W.A., Ed.; CRC Press: Boca Raton, 2005, pp. 253-276.
[11]
Syage, J.A. Mechanism of [M + H]+ formation in photoionization mass spectrometry. J. Am. Soc. Mass Spectrom., 2004, 15(11), 1521-1533.
[http://dx.doi.org/10.1016/j.jasms.2004.07.006] [PMID: 15519219]
[12]
Kauppila, T.J.; Kotiaho, T.; Kostiainen, R.; Bruins, A.P. Negative ion-atmospheric pressure photoionization-mass spectrometry. J. Am. Soc. Mass Spectrom., 2004, 15(2), 203-211.
[http://dx.doi.org/10.1016/j.jasms.2003.10.012] [PMID: 14766288]
[13]
Robb, D.B.; Covey, T.R.; Bruins, A.P. Atmospheric pressure photoionization: An ionization method for liquid chromatography-mass spectrometry. Anal. Chem., 2000, 72(15), 3653-3659.
[http://dx.doi.org/10.1021/ac0001636] [PMID: 10952556]
[14]
Ackermann, B.L.; Berna, M.J.; Murphy, A.T. Recent advances in use of LC/MS/MS for quantitative high-throughput bioanalytical support of drug discovery. Curr. Top. Med. Chem., 2002, 2(1), 53-66.
[http://dx.doi.org/10.2174/1568026023394605] [PMID: 11899065]
[15]
Korfmacher, W. Bioanalytical assays in a drug discovery environment in using mass spectrometry for drug metabolism studies; CRC Press: Boca Raton, 2005, pp. 1-34.
[16]
Cox, K.A.; Clarke, N.J.; Rindgen, D. Higher throughput metabolite identification in drug discovery: current capabilities and future trends. Am. Pharm. Rev., 2001, 4, 45-52.
[17]
Chen, G.; Pramanik, B.N.; Liu, Y.H.; Mirza, U.A.; Mirza, U.A. Applications of LC/MS in structure identifications of small molecules and proteins in drug discovery. J. Mass Spectrom., 2007, 42(3), 279-287.
[http://dx.doi.org/10.1002/jms.1184] [PMID: 17295416]
[18]
Bruning, P.F. Droloxifene, a new anti-oestrogen in postmeno-pausal advanced breast cancer: Preliminary results of a double-blind dose-finding phase II trial. Eur. J. Cancer, 1992, 28A(8-9), 1404-1407.
[http://dx.doi.org/10.1016/0959-8049(92)90530-F] [PMID: 1515258]
[19]
van Dongen, W.D.; Niessen, W.M. LC-MS systems for quantitative bioanalysis. Bioanalysis, 2012, 4(19), 2391-2399.
[http://dx.doi.org/10.4155/bio.12.221] [PMID: 23088465]
[20]
Wu, L.; Hao, H.; Wang, G. LC/MS based tools and strategies on qualitative and quantitative analysis of herbal components in complex matrixes. Curr. Drug Metab., 2012, 13(9), 1251-1265.
[http://dx.doi.org/10.2174/138920012803341285] [PMID: 22519370]
[21]
Wang, Y.L.; Liang, Y.Z.; Chen, B.M. High-performance liquid chromatography with atmospheric pressure chemical ionization and electrospray ionization mass spectrometry for analysis of Angelica sinensis. Phytochem. Anal., 2007, 18(4), 265-274.
[http://dx.doi.org/10.1002/pca.968] [PMID: 17623360]
[22]
Pitt, J.J. Principles and applications of liquid chromatography-mass spectrometry in clinical biochemistry. Clin. Biochem. Rev., 2009, 30(1), 19-34.
[PMID: 19224008]
[23]
Settle, F.A. Handbook of Instrumental Techniques for Analytical Chemistry; Prentice Hall PTR: New Jersey, 1997.
[24]
Grebe, S.K.; Singh, R.J. LC-MS/MS in the clinical laboratory - where to from here? Clin. Biochem. Rev., 2011, 32(1), 5-31.
[PMID: 21451775]
[25]
Ketha, H.; Kaur, S.; Grebe, S.K.; Singh, R.J. Clinical applications of LC-MS sex steroid assays: Evolution of methodologies in the 21st century. Curr. Opin. Endocrinol. Diabetes Obes., 2014, 21(3), 217-226.
[http://dx.doi.org/10.1097/MED.0000000000000068] [PMID: 24739314]
[26]
Rauh, M. Steroid measurement with LC-MS/MS. Application examples in pediatrics. J. Steroid Biochem. Mol., 2010, 121(3-5), 520-527.
[http://dx.doi.org/10.1016/j.jsbmb.2009.12.007] [PMID: 20036331]
[27]
Sreekumar, A.; Poisson, L.M.; Rajendiran, T.M.; Khan, A.P.; Cao, Q.; Yu, J.; Laxman, B.; Mehra, R.; Lonigro, R.J.; Li, Y.; Nyati, M.K.; Ahsan, A.; Kalyana-Sundaram, S.; Han, B.; Cao, X.; Byun, J.; Omenn, G.S.; Ghosh, D.; Pennathur, S.; Alexander, D.C.; Berger, A.; Shuster, J.R.; Wei, J.T.; Varambally, S.; Beecher, C.; Chinnaiyan, A.M. Metabolomic profiles delineate potential role for sarcosine in prostate cancer progression. Nature, 2009, 457(7231), 910-914.
[http://dx.doi.org/10.1038/nature07762] [PMID: 19212411]
[28]
Li, W.; Tse, F.L. Dried blood spot sampling in combination with LC-MS/MS for quantitative analysis of small molecules. Biomed. Chromatogr., 2010, 24(1), 49-65.
[http://dx.doi.org/10.1002/bmc.1367] [PMID: 20017122]
[29]
Strassburg, K.; Huijbrechts, A.M.; Kortekaas, K.A.; Linde-man, J.H.; Pedersen, T.L.; Dane, A.; Berger, R.; Brenkman, A.; Hankemeier, T.; van Duynhoven, J.; Kalkhoven, E.; Newman, J.W.; Vreeken, R.J. Quantitative profiling of oxylipins through comprehensive LC-MS/MS analysis: Application in cardiac surgery. Anal. Bioanal. Chem., 2012, 404(5), 1413-1426.
[http://dx.doi.org/10.1007/s00216-012-6226-x] [PMID: 22814969]
[30]
Vogeser, M.; Parhofer, K.G. Liquid chromatography tandem-mass spectrometry (LC-MS/MS)-technique and applications in endocrinology. Exp. Clin. Endocrinol. Diabetes, 2007, 115(9), 559-570.
[http://dx.doi.org/10.1055/s-2007-981458] [PMID: 17943689]
[31]
Himmelsbach, M. 10 years of MS instrumental developments-impact on LC-MS/MS in clinical chemistry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2012, 883-884, 3-17.
[http://dx.doi.org/10.1016/j.jchromb.2011.11.038] [PMID: 22177236]
[32]
Tode, C.; Maoka, T.; Sugiura, M. Application of LC-NMR to analysis of carotenoids in foods. J. Sep. Sci., 2009, 32(21), 3659-3663.
[http://dx.doi.org/10.1002/jssc.200900289] [PMID: 19810055]
[33]
News Medical Life Science. LC-NMR Applications., Available from: https://www.news-medical.net/life-sciences/LC-NMR-Applications aspx (Accessed on October 17, 2021)
[34]
Wolfender, J.L.; Ndjoko, K.; Hostettmann, K. The potential of LC-NMR in phytochemical analysis. Phytochem. Anal., 2001, 12(1), 2-22.
[http://dx.doi.org/10.1002/1099-1565(200101/02)12:1<2::AID-PCA552>3.0.CO;2-K] [PMID: 11704957]
[35]
Richard, T.; Temsamani, H.; Cantos-Villar, E.; Monti, J.P. Application of LC-MS and LC-NMR techniques for secondary metabolite identification. Adv. Bot. Res., 2013, 67, 67-98.
[http://dx.doi.org/10.1016/B978-0-12-397922-3.00002-2]
[36]
Walker, G.S.; O’Connell, T.N. Comparison of LC-NMR and conventional NMR for structure elucidation in drug metabolism studies. Expert Opin. Drug Metab. Toxicol., 2008, 4(10), 1295-1305.
[http://dx.doi.org/10.1517/17425255.4.10.1295] [PMID: 18798699]
[37]
Spring, O.; Buschmann, H.; Vogler, B.; Schilling, E.E.; Spraul, M.; Hoffmann, M. Sesquiterpene lactone chemistry of zaluzaniagrayana from on-line LC-NMR measurements. Phytochemistry, 1995, 39(3), 609-612.
[http://dx.doi.org/10.1016/0031-9422(95)00084-K]
[38]
Schenider, B. Natural products, liquid chromatography- nuclear magnetic resonance in encyclopedia of separation science; Wilson, I.D; Academic press, 2000, pp. 3434-3445.
[39]
Sharman, G.J.; Jones, I.C. Critical investigation of coupled liquid chromatography-NMR spectroscopy in pharmaceutical impurity identification. Magn. Reson. Chem., 2003, 41(6), 448-454.
[http://dx.doi.org/10.1002/mrc.1196]
[40]
Burton, K.I.; Everett, J.R.; Newman, M.J.; Pullen, F.S.; Richards, D.S.; Swanson, A.G. On-line liquid chromatography coupled with high field NMR and mass spectrometry (LC-NMR-MS): A new technique for drug metabolite structure elucidation. J. Pharm. Biomed. Anal., 1997, 15(12), 1903-1912.
[http://dx.doi.org/10.1016/S0731-7085(96)02034-1] [PMID: 9278896]
[41]
Corcoran, O.; Spraul, M. LC-NMR-MS in drug discovery. Drug Discov. Today, 2003, 8(14), 624-631.
[http://dx.doi.org/10.1016/S1359-6446(03)02749-1] [PMID: 12867148]
[42]
Steve, D. A primer on LC/NMR/MS., Wiley Analytical Science Magazine. Available from: science.wiley.com/do/10.1002/sepspec 10145education(Accessed on Oct 10, 2021).
[43]
John, P.S.; Steve, E.; Paul, S.; Jeremy, K.N.; John, C.L. Application of directly coupled LC-NMR-MS to the structural elucidation of metabolites of the HIV-1 reverse-transcriptase inhibitor. J. Chromatogr. B Biomed. Sci. Appl., 2000, 748, 269-279.
[http://dx.doi.org/10.1016/S0378-4347(00)00360-1] [PMID: 11092604]
[44]
Markus, D.; Frans, H.M.; Van, D.P.; Frans, V.S.; Christiaan, M.B.; Jan, F. On-line LC-NMR-MS characterization of sesame oil extracts and assessment of their antioxidant activity. Eur. J. Lipid Sci. Technol., 2003, 105, 488-496.
[http://dx.doi.org/10.1002/ejlt.200300835]
[45]
Martin, S.; Lam, H.P.; Karsten, L.; Alfred, P.; Clemens, M.; Gerold, W. Isolation and structural elucidation of steroid oli-goglycosides from the starfish asteriasrubens by means of direct online LC-NMR-MS hyphenation and one- and two-dimensional nmr investigations. Eur. J. Org. Chem., 2000, 1253-1262.
[46]
Somsen, G.W.; Gooijer, C.; Brinkman, U.A. Liquid chroma-tography-Fourier-transform infrared spectrometry. J. Chromatogr. A, 1999, 856(1-2), 213-242.
[http://dx.doi.org/10.1016/S0021-9673(99)00280-0] [PMID: 10526790]
[47]
Kuligowski, J.; Quintás, G.; Garrigues, S.; Lendl, B.; de la Guardia, M.; Lendl, B. Recent advances in on-line liquid chromatography - infrared spectrometry (LC-IR). Trends Analyt. Chem., 2010, 29(6), 544-552.
[http://dx.doi.org/10.1016/j.trac.2010.03.004]
[48]
Jinno, K. Infrared Detect in Encyclopedia of Chromatography; Cazes, J., Ed.; Marcel Dekker: New York, USA, 2001.
[49]
Jinno, K.; Fujimoto, C.; Hirata, Y. An interface for the combination of micro high performance liquid-chromatography and infrared spectrometry. Appl. Spectrosc., 1982, 36(1), 67-69.
[http://dx.doi.org/10.1366/0003702824638980]
[50]
Huffman, S.W.; Lukasiewicz, K.; Geldart, S.; Elliott, S.; Sper-ry, J.F.; Brown, C.W. Analysis of microbial components using LC-IR. Anal. Chem., 2003, 75(17), 4606-4611.
[http://dx.doi.org/10.1021/ac034571w] [PMID: 14632071]
[51]
Kumar, M.; Bhatia, R.; Rawal, R.K. Applications of various analytical techniques in quality control of pharmaceutical excipients. J. Pharm. Biomed., 2018, 157(157), 122-136.
[http://dx.doi.org/10.1016/j.jpba.2018.05.023] [PMID: 29787965]
[52]
Luoma, G.A.; Rowland, R.D. Combining GC/IR and LC/IR to determine compositional changes associated with aging in acrylic structural adhesives. J. Chromatogr. Sci., 1986, 24(5), 210-221.
[http://dx.doi.org/10.1093/chromsci/24.5.210]
[53]
News Medical Life Sciences. Available from: News-medical.net/life-sciences/What-is-High-Performance-Liquid-Chromatography Ultraviolet-(HPLC-UV).aspx (Accessed on November 7, 2021)
[54]
Schweikart, F.; Hulthe, G. HPLC-UV-MS analysis: A source for severe oxidation artifacts. Anal. Chem., 2019, 91(3), 1748-1751.
[http://dx.doi.org/10.1021/acs.analchem.8b05845] [PMID: 30673231]
[55]
Pelillo, M. An investigation in the use of HPLC with UV and MS-electrospray detection for the quantification of tea catechins. Food Chem., 2004, 87(3), 465-470.
[http://dx.doi.org/10.1016/j.foodchem.2003.12.034]
[56]
Tiberti, L.A.; Yariwake, J.A.; Ndjokob, K.; Hostettmann, K. On-Line LC/UV/MS analysis of flavonols in the three apple varieties most widely cultivated in Brazil. J. Braz. Chem. Soc., 2007, 18(1), 100-105.
[http://dx.doi.org/10.1590/S0103-50532007000100011]
[57]
Tiberti, L.A.; Yariwake, J.H.; Ndjoko, K.; Hostettmann, K. Identification of flavonols in leaves of Maytenus ilicifolia and M. aquifolium (Celastraceae) by LC/UV/MS analysis. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2007, 846(1-2), 378-384.
[http://dx.doi.org/10.1016/j.jchromb.2006.09.014] [PMID: 17011840]
[58]
Bhole, R.P.; Jagtap, S.R.; Chadar, K.B.; Zambare, Y.B. Review on hyphenation in HPTLC-MS. Res. J. Pharm. Tech., 2020, 13(2), 1028-1034.
[http://dx.doi.org/10.5958/0974-360X.2020.00189.4]
[59]
Prosek, M.; Milivojevic, L.; Krizman, M.; Fir, M. On-line TLC-MS. J. Planar Chromatogr. Mod. TLC, 2004, 17(100), 420-423.
[http://dx.doi.org/10.1556/JPC.17.2004.6.4]
[60]
Katerina, N.; Breda, S.; Alen, A.; Alen, A.; Vovk, I. TLC and TLC-MS screening of ursolic, oleanolic and betulinic acids in plant extracts. J. Planar Chromatogr. Mod. TLC, 2013, 26(2), 125-131.
[http://dx.doi.org/10.1556/JPC.26.2013.2.4]
[61]
Park, H.; Zhou, Y.; Costello, C.E. Direct analysis of sialylated or sulfated glycosphingolipids and other polar and neutral lipids using TLC-MS interfaces. J. Lipid Res., 2014, 55(4), 773-781.
[http://dx.doi.org/10.1194/jlr.D046128] [PMID: 24482490]
[62]
Hao, C.; Sousou, N.; Eikel, D.; Henion, J. Thin-layer chroma-tography/mass spectrometry analysis of sample mixtures using a compact mass spectrometer. Am. Lab., 2015, 47, 24-27.
[63]
Cimpoiu, C. Qualitative and quantitative analysis by hyphenated (HP)TLC‐FTIR technique. J. Liq. Chromatogr. Relat. Technol., 2005, 28(7-8), 1203-1213.
[http://dx.doi.org/10.1081/JLC-200053025]
[64]
Sanches, N.B.; Cassu, S.N.; Dutra, R.C.L.; Off-line, T.L.C-I.R. (UATR) characterization of additives in EPDM rubber. Polymer testing. Polímeros, 2015, 25(3), 247-255.
[http://dx.doi.org/10.1590/0104-1428.1819]
[65]
Murakami, L.M.S.; Azevedo, J.B.; Diniz, M.F.; Silva, L.M.; Dutra, R. de C. L. Characterization of additives in NR formulations by TLC-IR (UATR). Polímeros, 2018, 28(3), 205-214.
[http://dx.doi.org/10.1590/0104-1428.06317]
[66]
Cserháti, T.; Forgács, E.; Candeias, M.; Vilas-Boas, L.; Bronze, R.; Spranger, I. Separation and tentative identification of the main pigment fraction of raisins by thin-layer chroma-tography-Fourier transform infrared and high-performance liquid chromatography-ultraviolet detection. J. Chromatogr. Sci., 2000, 38(4), 145-150.
[http://dx.doi.org/10.1093/chromsci/38.4.145] [PMID: 10766480]
[67]
Cserhati, T.; Forgacs, E.; Candeias, M.; Vilas-Boas, L.; Bronze, R.; Spranger, I. TLC-FTIR of color pigments of chestnut sawdust. J. Liq. Chromatogr. Relat. Technol., 2001, 24(10), 1435-1445.
[http://dx.doi.org/10.1081/JLC-100103921]
[68]
Cimpoiu, C.; Miclaus, V.; Damian, G.; Puia, M.; Casoni, D.; Bele, C.; Hodisan, T. Identification of new phtalazine derivatives by HPTLC-FTIR and characterization of their separation using some molecular properties. J. Liq. Chromatogr. Relat. Technol., 2003, 26(16), 2687-2696.
[http://dx.doi.org/10.1081/JLC-120024538]
[69]
Gürkan, R.; Savasci, S. Investigation of separation and identification possibilities of some metal-DEDTC complexes by sequential TLC-IR system. J. Chromatogr. Sci., 2005, 43(6), 324-330.
[http://dx.doi.org/10.1093/chromsci/43.6.324] [PMID: 16053615]
[70]
Stahlmann, S.; Kovar, K.A. Analysis of impurities by high-performance thin-layer chromatography with fourier transform infrared spectroscopy and UV absorbance detection in situ measurement: Chlordiazepoxide in bulk powder and in tablets. J. Chromatogr. A, 1998, 813(1), 145-152.
[http://dx.doi.org/10.1016/S0021-9673(98)00334-3]
[71]
Kataria, S.; Beniwal, P.; Middha, A.; Sandhu, P.; Rathore, D.G.C-M.S. Applications. Int. J. Pharm. Biol. Arch., 2011, 2(6), 1544-1560.
[72]
Jenke, D.R. Chromatographic method validation: A review of current practices and procedures. I. general concepts and guidelines. J. Liq. Chrom. Rel. Technol., 1996, 19, 737-757.
[http://dx.doi.org/10.1080/10826079608005534]
[73]
Rowley, A.G. Evaluating uncertainty for laboratories: A practical hand book; Alan Rowley Associates, 2001.
[74]
Mark, J. Gas Chromatography-Mass Spectrometry. A National Historic Chemical Landmark: The Dow Chemical Company American Chemical Society. Available from: acs.org/content/acs/en/educa-tion/whatischemistry/landmarks/gas-chromatography-mass-spectrometry.html (Accessed October 18, 2021).
[75]
Kumar, P.R.; Dinesh, S.R.; Rini, R. LCMS-A review and a recent update. J. Pharm. Pharm. Sci., 2016, 5, 381-382.
[76]
Xinghua, G.; Ernst, L. Hyphenated techniques in gas chroma-tographyIn: advanced gas chromatography- progress in agricultural, biomedical and industrial applications; Mohd, M.A., Ed.; InTech: Croatia, 2012, pp. 13-16.
[77]
Grynbaum, M.D.; Kreidler, D.; Rehbein, J.; Purea, A.; Schuler, P.; Schaal, W.; Czesla, H.; Webb, A.; Schurig, V.; Albert, K. Hyphenation of gas chromatography to microcoil 1H nuclear magnetic resonance spectroscopy. Anal. Chem., 2007, 79(7), 2708-2713.
[http://dx.doi.org/10.1021/ac0617767] [PMID: 17319646]
[78]
Woźniak, M.K.; Wiergowski, M.; Aszyk, J.; Kubica, P.; Namieśnik, J.; Biziuk, M. Application of gas chromatography-tandem mass spectrometry for the determination of amphetamine-type stimulants in blood and urine. J. Pharm. Biomed., 2018, 148, 58-64.
[http://dx.doi.org/10.1016/j.jpba.2017.09.020] [PMID: 28957720]
[79]
GC/MS/MS. Tandem Mass Spectrometer. EAG Laboratories. Available from: https://www.eag.com/techniques/mass-spec/gc-msms/ (Accessed on Sep 8, 2021).
[80]
Hanna, A.; Marshall, J.C.; Isenhour, T.L. A GC/FT-IR compound identification system. J. Chromatogr. Sci., 1979, 17(8), 434-440.
[http://dx.doi.org/10.1093/chromsci/17.8.434]
[81]
Usman, M.R.M.; Badgujar, S.R.; Shaikh, T.Y. Hyphenated techniques of drug analysis. Sch. Acad. J. Pharm., 2017, 6(6), 263-272.
[82]
Schneider, J.F.; Demirgian, J.C.; Stickler, J.C. A comparison of GC/IR interfaces: The light pipe versus matrix isolation. J. Chromatogr. Sci., 1986, 24, 330-335.
[83]
Zavahir, J.S.; Smith, J.S.P.; Blundell, S.; Waktola, H.D.; Nolvachai, Y.; Wood, B.R.; Marriott, P.J. Relationships in gas chromatography-fourier transform infrared spectroscopy-comprehensive and multilinear analysis. Separations, 2020, 7(2), 27.
[http://dx.doi.org/10.3390/separations7020027]
[84]
Erickson, M.D. Gas chromatography/fourier transform infrared spectroscopy applications. Appl. Spectrosc. Rev., 1979, 15(2), 261-298.
[http://dx.doi.org/10.1080/05704927908060399]
[85]
Wilkins, C.L. Linked gas chromatography infrared mass spectrometry. Anal. Chem., 1987, 59(8), 571A-581A.
[PMID: 3592230]
[86]
Cassidy, R.M.; Elchuk, S.; McHugh, J.O. Determination of metals in ground waters by trace enrichment and liquid chromatography. Anal. Chem., 1982, 54(8), 901A-905A.
[87]
Clemente, R. H. Radiogenic isotopes and their applications in different research fields. GC IsoLink II™ IRMS System., Thermofischer Scientific, Available from: thermofish-er.com/order/catalog/product/IQLAAEGAATFAETMATA
[88]
Woo, J.S.; Kyung, S.K. First GC-IRMS in Korea and its application. Econ. Environ. Geol., 2007, 40, 699-703.
[89]
Chemistry & Crime. Applications of GC-IR-MS, Available from: http://wwwchem.uwimona.edu.jm/courses/CHEM2402/Crime/GC_IRMS.html
[90]
Meier-Augenstein, W. Applied gas chromatography coupled to isotope ratio mass spectrometry. J. Chromatogr. A, 1999, 842(1-2), 351-371.
[http://dx.doi.org/10.1016/S0021-9673(98)01057-7] [PMID: 10377971]
[91]
Stahl, E. Thin-Layer Chromatography A Laboratory Hand-book, 1st ed; Springer: Berlin, 2011.
[92]
Brame, E.G. Combining gas chromatography with nuclear magnetic resonance spectrometry. Anal. Chem., 1965, 37(9), 1183-1184.
[http://dx.doi.org/10.1021/ac60228a041]
[93]
Zuschneid, T.; Fischer, H.; Handel, T.; Albert, K.; Hafelinger, G. Experimental gas phase 1H NMR spectra and basis set dependence of ab initio GIAO MO calculations of 1H and 13C NMR absolute shieldings and chemical shifts of small hydro-carbons. Z. Naturforsch. B. J. Chem. Sci., 2004, 59b(10), 1153-1176.
[http://dx.doi.org/10.1515/znb-2004-1012]
[94]
Buddrus, J.; Herzog, H. Coupling of chromatography and NMR. 3. Study of flowing gas chromatographic fractions by proton magnetic-resonance. Org. Magn. Reson., 1981, 15(2), 211-213.
[http://dx.doi.org/10.1002/mrc.1270150219]
[95]
Herzog, H.; Buddrus, J. Coupling of chromatography and NMR. Part 5. Analysis of high-boiling gas-chromatographic fractions by online nuclear magnetic-resonance. Chromatographia, 1984, 18(1), 31-33.
[http://dx.doi.org/10.1007/BF02279461]
[96]
Kühnle, M.; Kreidler, D.; Holtin, K.; Czesla, H.; Schuler, P.; Schaal, W.; Schurig, V.; Albert, K. Online coupling of gas chromatography to nuclear magnetic resonance spectroscopy: Method for the analysis of volatile stereoisomers. Anal. Chem., 2008, 80(14), 5481-5486.
[http://dx.doi.org/10.1021/ac8004023] [PMID: 18533684]
[97]
Wu, K.; Luo, J.; Zeng, Q.; Dong, X.; Chen, J.; Zhan, C.; Chen, Z.; Lin, Y. Improvement in signal-to-noise ratio of liquid-state NMR spectroscopy via a deep neural network DN-Unet. Anal. Chem., 2021, 93(3), 1377-1382.
[http://dx.doi.org/10.1021/acs.analchem.0c03087] [PMID: 33377773]
[98]
Milazzo, B.; Petrakis, L.; Brown, P.M. Microsampling techniques for combined gas chromatography and high-resolution nuclear magnetic resonance spectroscopy.Spectroscopic Tricks; May, L., Ed.; Springer: Boston, USA, 1971, Vol. 2, pp. 250-255.
[http://dx.doi.org/10.1007/978-1-4684-1734-0_62]
[99]
Tsuda, T.; Ojika, Y.; Izuda, M.; Fujishima, I.; Ishii, D. The combination of gas chromatography and nuclear magnetic resonance spectroscopy. J. Chromatogr. A, 1972, 69(1), 194-197.
[http://dx.doi.org/10.1016/S0021-9673(00)83098-8]
[100]
Gummadi, S.; Siyyadri, D.S. Nuclear magnetic resonance and hyphenations - a review. Int. J. Pharm. Sci. Res., 2020, 11(12), 5932-5950.
[101]
Dirkx, W.M.R.; Lobinski, R.; Adams, F.C. Speciation analysis of organotin by GCAAS and GC-AES after extraction and derivatization. Tech. Instrum. Anal. Chem., 1995, 17, 357-409.
[http://dx.doi.org/10.1016/S0167-9244(06)80016-8]
[102]
Tandem mass spectrometer In: IUPAC, 2nd ed.; Compendium of Chemical Terminology, the "Gold Book, 2002; p. 1513.
[103]
De, H.; Vincent Stroobant, E. Mass Spectrometry Principles and Applications, 3rded; John Wiley & Sons Ltd, England, 2007, pp. 189-215.
[104]
McLafferty, F.W. Tandem mass spectrometry. Science, 1981, 214(4518), 280-287.
[http://dx.doi.org/10.1126/science.7280693] [PMID: 7280693]
[105]
De Hoffmann, E. Tandem mass spectrometry: A primer. J. Mass Spectrom., 1996, 31(2), 129-137.
[http://dx.doi.org/10.1002/(SICI)1096-9888(199602)31:2<129::AID-JMS305>3.0.CO;2-T]
[106]
Rashed, M.S. Clinical applications of tandem mass spectrometry: Ten years of diagnosis and screening for inherited metabolic diseases. J. Chromatogr. B Biomed. Sci. Appl., 2001, 758(1), 27-48.
[http://dx.doi.org/10.1016/S0378-4347(01)00100-1] [PMID: 11482732]
[107]
Rinaldo, P.; Tortorelli, S.; Matern, D. Recent developments and new applications of tandem mass spectrometry in new-born screening. Curr. Opin. Pediatr., 2004, 16(4), 427-433.
[http://dx.doi.org/10.1097/01.mop.0000133635.79661.84] [PMID: 15273505]
[108]
Kotretsou, S.I.; Koutsodimou, A. Overview of the applications of tandem mass spectrometry (MS/MS) in food analysis of nutritionally harmful compounds. Food Rev. Int., 2006, 22(2), 125-172.
[http://dx.doi.org/10.1080/87559120600574543]
[109]
You, J.; Mu, Y.H.; Wen, J.Z.; Pan, L.; Dan, G.; Xiang, F.; Wei, X. Recent advances of capillary electrophoresis-mass spectrometry instrumentation and methodology. Chin. Chem. Lett., 2017, 28(8), 1640-1652.
[http://dx.doi.org/10.1016/j.cclet.2017.05.008]
[110]
Stolz, A.; Jooß, K.; Höcker, O.; Römer, J.; Schlecht, J.; Neusüß, C. Recent advances in capillary electrophoresis-mass spectrometry: Instrumentation, methodology and applications. Electrophoresis, 2019, 40(1), 79-112.
[http://dx.doi.org/10.1002/elps.201800331] [PMID: 30260009]
[111]
Anna, T.; Vojtech, L.; Karel, K. Review Recent advances in CE-MS coupling: Instrumentation, methodology, and applications. Electrophoresis, 2016, 38, 1-20.
[112]
Moini, M. Capillary electrophoresis mass spectrometry and its application to the analysis of biological mixtures. Anal. Bioanal. Chem., 2002, 373(6), 466-480.
[http://dx.doi.org/10.1007/s00216-002-1283-1] [PMID: 12172682]
[113]
Park, E.; Lee, J.; Lee, J.; Lee, J.; Lee, H.S.; Shin, Y.; Kim, J.H. Method for the simultaneous analysis of 300 pesticide residues in hair by LC-MS/MS and GC-MS/MS, and its application to biomonitoring of agricultural workers. Chemosphere, 2021, 277, 130215.
[http://dx.doi.org/10.1016/j.chemosphere.2021.130215] [PMID: 33774252]
[114]
Lamaat, M.S.; Frederick, Q.B.; Philip, W.L. Application of thermospray LC/MS for residue analysis of sulfonylurea herbicides and their degradation products. J. Agric. Food Chem., 1992, 40(3), 513-517.
[http://dx.doi.org/10.1021/jf00015a031]
[115]
Yamamoto, A.; Terao, T.; Hisatomi, H.; Kawasaki, H.; Arakawa, R. Evaluation of river pollution of neonicotinoids in Osaka City (Japan) by LC/MS with dopant-assisted photoionisation. J. Environ. Monit., 2012, 14(8), 2189-2194.
[http://dx.doi.org/10.1039/c2em30296a] [PMID: 22767100]
[116]
Antic, N.; Radisic, M.; Radovic, T.; Vasiljevic, T.; Grujic, S.; Petkovic, A.; Dimkic, M.; Lausevic, M. Pesticide residues in the danube River Basin in Serbia - a Survey during 2009-2011. Clean (Weinh.), 2015, 43(2), 197-204.
[http://dx.doi.org/10.1002/clen.201200360]
[117]
Benoit, B.; William, A.; Catherine, D.; Yun, X.; Mickael, M.; Bertrand, B.; Warwick, B.D.; Daniel, J.; Royston, G.; Dominique, R.; Annick, M. 1H NMR, GC−EI-TOFMS, and data set correlation for fruit metabolomics: Application to spatial metabolite analysis in melon. Anal. Chem., 2009, 81(8), 2884-2894.
[http://dx.doi.org/10.1021/ac9001996] [PMID: 19298059]
[118]
Wafo, E.; Sarrazin, L.; Monod, J-L.; Rebouillon, P. Speciation analysis of butyltin compounds in sediments of the Theoule harbour (France) by GC/AES. Toxicol. Environ. Chem., 2004, 86(2), 117-126.
[http://dx.doi.org/10.1080/02772240410001713063]
[119]
Rodrigues, V.C.; Diniz, M.F.; Mattos, E.D.; Dutra, R.D. Separation and identification of additives in paint by TLC-IR/UATR and selective extraction. Polímeros, 2016, 26, 68-74.
[http://dx.doi.org/10.1590/0104-1428.1887]
[120]
Hiller, W.; Sinha, P.; Hehn, M.; Pasch, H. (). Online LC-NMR - From an expensive toy to a powerful tool in polymer analysis. Prog. Polym. Sci., 2014, 39(5), 979-1016.
[http://dx.doi.org/10.1016/j.progpolymsci.2013.10.001]
[121]
Ono, H.; Chuda, Y.; Ohnishi-Kameyama, M.; Yada, H.; Ishizaka, M.; Kobayashi, H.; Yoshida, M. Analysis of acrylamide by LC-MS/MS and GC-MS in processed Japanese foods. Food Addit. Contam., 2003, 20(3), 215-220.
[http://dx.doi.org/10.1080/0265203021000060887] [PMID: 12623644]
[122]
Steinborn, A.; Alder, L.; Michalski, B.; Zomer, P.; Bendig, P.; Martinez, S.A.; Mol, H.G.; Class, T.J.; Pinheiro, N.C. Determination of glyphosate levels in breast milk samples from Germany by LC-MS/MS and GC-MS/MS. J. Agric. Food Chem., 2016, 64(6), 1414-1421.
[http://dx.doi.org/10.1021/acs.jafc.5b05852] [PMID: 26808680]
[123]
Frenich, G.A.; Salvador, M.I.; Martínez Vidal, J.L.; López-López, T. Determination of multiclass pesticides in food commodities by pressurized liquid extraction using GC-MS/MS and LC-MS/MS. Anal. Bioanal. Chem., 2005, 383(7-8), 1106-1118.
[http://dx.doi.org/10.1007/s00216-005-0139-x] [PMID: 16267646]
[124]
Saraf, A.; Park, J.H.; Milton, D.K.; Larsson, L. Use of quadrupole GC-MS and ion trap GC-MS-MS for determining 3-hydroxy fatty acids in settled house dust: Relation to endotoxin activity. J. Environ. Monit., 1999, 1(2), 163-168.
[http://dx.doi.org/10.1039/a809019j] [PMID: 11529095]
[125]
Loos, R.; Riu, J.; Alonso, M.C.; Barceló, D. Analysis of polar hydrophilic aromatic sulfonates in waste water treatment plants by CE/MS and LC/MS. J. Mass Spectrom., 2000, 35(10), 1197-1206.
[http://dx.doi.org/10.1002/1096-9888(200010)35:10<1197::AID-JMS51>3.0.CO;2-O] [PMID: 11110092]
[126]
Ernst, M.; Silva, D.B.; Silva, R.R.; Vêncio, R.Z.N.; Lopes, N.P. Mass spectrometry in plant metabolomics strategies: From analytical platforms to data acquisition and processing. Nat. Prod. Rep., 2014, 31(6), 784-806.
[http://dx.doi.org/10.1039/c3np70086k] [PMID: 24671623]
[127]
Gathungu, R.M.; Kautz, R.; Kristal, B.S.; Bird, S.S.; Vourus, P. The integration of LC-MS and NMR for the analysis of low molecular weight trace analytes in complex matrices. Mass Spec. Rev., 2018, 39(1-2), 35-54.
[128]
Suneetha, A.; Raja, R.K. Comparison of LC-UV and LC-MS methods for simultaneous determination of teriflunomide, dimethyl fumarate and fampridine in human plasma: Application to rat pharmacokinetic study. Biomed. Chromatogr., 2016, 30(9), 1371-1377.
[http://dx.doi.org/10.1002/bmc.3694] [PMID: 26849839]
[129]
Gupta, A.P.; Gupta, S. HPTLC-MS coupling: New dimension of HPTLC, high-performance thin-layer chromatography (HPTLC) ; Springer: Verlag Berlin Heidelberg, 2011, pp. 311-333.
[130]
Schierbeek, H. You are what you eat - Mass spectrometry in paediatric kinetic studies using stable isotopes., Doctoral Thesis; Erasmus University: Rotterdam, The Netherlands, 2009.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy