Review Article

肿瘤氧化还原平衡中的半胱氨酸代谢

卷 30, 期 16, 2023

发表于: 22 September, 2022

页: [1813 - 1823] 页: 11

弟呕挨: 10.2174/0929867329666220817141227

价格: $65

摘要

半胱氨酸(Cys)是一种半必需的营养氨基酸,通过内源性生产和各种运输系统在细胞中发挥重要作用。细胞内Cys可作为蛋白质合成的前体,以维持细胞内稳态并生成含硫物质,包括谷胱甘肽(GSH)、硫化氢(H2S)和牛磺酸。已有相当多的报道表明Cys与肿瘤的发生和发展有关,其水平与肿瘤的增殖、侵袭和转移密切相关。此外,它有助于维持肿瘤氧化还原平衡和增加耐药性。本文综述了胱氨酸的产生、代谢及其在肿瘤中的作用,特别强调了胱胺酸在肿瘤中对提高癌症患者生活质量的潜在治疗价值。

关键词: 半胱氨酸、代谢、肿瘤、氧化还原稳态、肿瘤治疗、谷胱甘肽。

[1]
Zhang, T.; Bauer, C.; Newman, A.C.; Uribe, A.H.; Athineos, D.; Blyth, K.; Maddocks, O.D.K. Polyamine pathway activity promotes cysteine essentiality in cancer cells. Nat. Metab., 2020, 2(10), 1062-1076.
[http://dx.doi.org/10.1038/s42255-020-0253-2] [PMID: 32747794]
[2]
Alvarez, S.W.; Sviderskiy, V.O.; Terzi, E.M.; Papagiannakopoulos, T.; Moreira, A.L.; Adams, S.; Sabatini, D.M.; Birsoy, K.; Possemato, R. NFS1 undergoes positive selection in lung tumours and protects cells from ferroptosis. Nature, 2017, 551(7682), 639-643.
[http://dx.doi.org/10.1038/nature24637] [PMID: 29168506]
[3]
Wu, G.; Fang, Y.Z.; Yang, S.; Lupton, J.R.; Turner, N.D. Glutathione metabolism and its implications for health. J. Nutr., 2004, 134(3), 489-492.
[http://dx.doi.org/10.1093/jn/134.3.489] [PMID: 14988435]
[4]
Cramer, S.L.; Saha, A.; Liu, J.; Tadi, S.; Tiziani, S.; Yan, W.; Triplett, K.; Lamb, C.; Alters, S.E.; Rowlinson, S.; Zhang, Y.J.; Keating, M.J.; Huang, P.; DiGiovanni, J.; Georgiou, G.; Stone, E. Systemic depletion of L-cyst(e)ine with cyst(e)inase increases reactive oxygen species and suppresses tumor growth. Nat. Med., 2017, 23(1), 120-127.
[http://dx.doi.org/10.1038/nm.4232] [PMID: 27869804]
[5]
Zhu, J.; Berisa, M.; Schwörer, S.; Qin, W.; Cross, J.R.; Thompson, C.B. Transsulfuration activity can support cell growth upon extracellular cysteine limitation. Cell Metab., 2019, 30(5), 865-876.e5.
[http://dx.doi.org/10.1016/j.cmet.2019.09.009] [PMID: 31607565]
[6]
Xu, Q.; Li, Y.; Gao, X.; Kang, K.; Williams, J.G.; Tong, L.; Liu, J.; Ji, M.; Deterding, L.J.; Tong, X.; Locasale, J.W.; Li, L.; Shats, I.; Li, X. HNF4α regulates sulfur amino acid metabolism and confers sensitivity to methionine restriction in liver cancer. Nat. Commun., 2020, 11(1), 3978.
[http://dx.doi.org/10.1038/s41467-020-17818-w] [PMID: 32770044]
[7]
Yu, X.; Long, Y.C. Crosstalk between cystine and glutathione is critical for the regulation of amino acid signaling pathways and ferroptosis. Sci. Rep., 2016, 6(1), 30033.
[http://dx.doi.org/10.1038/srep30033] [PMID: 27425006]
[8]
Scalise, M.; Pochini, L.; Console, L.; Losso, M.A.; Indiveri, C. The human slc1a5 (asct2) amino acid transporter: From function to structure and role in cell biology. Front. Cell Dev. Biol., 2018, 6, 96.
[http://dx.doi.org/10.3389/fcell.2018.00096] [PMID: 30234109]
[9]
Watts, S.D.; Torres-Salazar, D.; Divito, C.B.; Amara, S.G. Cysteine transport through excitatory amino acid transporter 3 (EAAT3). PLoS One, 2014, 9(10), e109245.
[http://dx.doi.org/10.1371/journal.pone.0109245] [PMID: 25275463]
[10]
Bonifácio, V.D.B.; Pereira, S.A.; Serpa, J.; Vicente, J.B. Cysteine metabolic circuitries: Druggable targets in cancer. Br. J. Cancer, 2021, 124(5), 862-879.
[http://dx.doi.org/10.1038/s41416-020-01156-1] [PMID: 33223534]
[11]
McBean, G.J. The transsulfuration pathway: A source of cysteine for glutathione in astrocytes. Amino Acids, 2012, 42(1), 199-205.
[http://dx.doi.org/10.1007/s00726-011-0864-8] [PMID: 21369939]
[12]
Paul, B.D.; Snyder, S.H. H 2 S: A novel gasotransmitter that signals by sulfhydration. Trends Biochem. Sci., 2015, 40(11), 687-700.
[http://dx.doi.org/10.1016/j.tibs.2015.08.007] [PMID: 26439534]
[13]
Banerjee, R.; Zou, C. Redox regulation and reaction mechanism of human cystathionine-β-synthase: A PLP-dependent hemesensor protein. Arch. Biochem. Biophys., 2005, 433(1), 144-156.
[http://dx.doi.org/10.1016/j.abb.2004.08.037] [PMID: 15581573]
[14]
Jones, C.L.; Stevens, B.M.; D’Alessandro, A.; Culp-Hill, R.; Reisz, J.A.; Pei, S.; Gustafson, A.; Khan, N.; DeGregori, J.; Pollyea, D.A.; Jordan, C.T. Cysteine depletion targets leukemia stem cells through inhibition of electron transport complex II. Blood, 2019, 134(4), 389-394.
[http://dx.doi.org/10.1182/blood.2019898114] [PMID: 31101624]
[15]
Ghasemitarei, M.; Yusupov, M.; Razzokov, J.; Shokri, B.; Bogaerts, A. Transport of cystine across x C − antiporter. Arch. Biochem. Biophys., 2019, 664, 117-126.
[http://dx.doi.org/10.1016/j.abb.2019.01.039] [PMID: 30738038]
[16]
Martis, R.M.; Knight, L.J.; Donaldson, P.J.; Lim, J.C. Identification, expression, and roles of the cystine/glutamate antiporter in ocular tissues. Oxid. Med. Cell. Longev., 2020, 2020, 1-10.
[http://dx.doi.org/10.1155/2020/4594606] [PMID: 32655769]
[17]
Dixon, S.J.; Patel, D.N.; Welsch, M.; Skouta, R.; Lee, E.D.; Hayano, M.; Thomas, A.G.; Gleason, C.E.; Tatonetti, N.P.; Slusher, B.S.; Stockwell, B.R. Pharmacological inhibition of cystine–glutamate exchange induces endoplasmic reticulum stress and ferroptosis. eLife, 2014, 3, e02523.
[http://dx.doi.org/10.7554/eLife.02523] [PMID: 24844246]
[18]
Lewerenz, J.; Hewett, S.J.; Huang, Y.; Lambros, M.; Gout, P.W.; Kalivas, P.W.; Massie, A.; Smolders, I.; Methner, A.; Pergande, M.; Smith, S.B.; Ganapathy, V.; Maher, P. The cystine/glutamate antiporter system x(c)(-) in health and disease: From molecular mechanisms to novel therapeutic opportunities. Antioxid. Redox Signal., 2013, 18(5), 522-555.
[http://dx.doi.org/10.1089/ars.2011.4391] [PMID: 22667998]
[19]
Koppula, P.; Zhang, Y.; Zhuang, L.; Gan, B. Amino acid transporter SLC7A11/xCT at the crossroads of regulating redox homeostasis and nutrient dependency of cancer. Cancer Commun. (Lond.), 2018, 38(1), 12.
[http://dx.doi.org/10.1186/s40880-018-0288-x] [PMID: 29764521]
[20]
Hanigan, M.H. Gamma-glutamyl transpeptidase. Adv. Cancer Res., 2014, 122, 103-141.
[http://dx.doi.org/10.1016/B978-0-12-420117-0.00003-7] [PMID: 24974180]
[21]
Zhang, H.; Jay Forman, H.; Choi, J. Gamma-glutamyl transpeptidase in glutathione biosynthesis. Methods Enzymol., 2005, 401, 468-483.
[http://dx.doi.org/10.1016/S0076-6879(05)01028-1] [PMID: 16399403]
[22]
Ndrepepa, G.; Colleran, R.; Kastrati, A. Gamma-glutamyl transferase and the risk of atherosclerosis and coronary heart disease. Clin. Chim. Acta, 2018, 476, 130-138.
[http://dx.doi.org/10.1016/j.cca.2017.11.026] [PMID: 29175647]
[23]
Lieberman, M.W.; Wiseman, A.L.; Shi, Z.Z.; Carter, B.Z.; Barrios, R.; Ou, C.N.; Chévez-Barrios, P.; Wang, Y.; Habib, G.M.; Goodman, J.C.; Huang, S.L.; Lebovitz, R.M.; Matzuk, M.M. Growth retardation and cysteine deficiency in gamma-glutamyl transpeptidase-deficient mice. Proc. Natl. Acad. Sci. USA, 1996, 93(15), 7923-7926.
[http://dx.doi.org/10.1073/pnas.93.15.7923] [PMID: 8755578]
[24]
Terzyan, S.S.; Burgett, A.W.G.; Heroux, A.; Smith, C.A.; Mooers, B.H.M.; Hanigan, M.H. Human γ-glutamyl transpeptidase 1. J. Biol. Chem., 2015, 290(28), 17576-17586.
[http://dx.doi.org/10.1074/jbc.M115.659680] [PMID: 26013825]
[25]
Combs, J.A.; DeNicola, G.M. The non-essential amino acid cysteine becomes essential for tumor proliferation and survival. Cancers (Basel), 2019, 11(5), 678.
[http://dx.doi.org/10.3390/cancers11050678] [PMID: 31100816]
[26]
Paul, B.D.; Sbodio, J.I.; Snyder, S.H. Cysteine metabolism in neuronal redox homeostasis. Trends Pharmacol. Sci., 2018, 39(5), 513-524.
[http://dx.doi.org/10.1016/j.tips.2018.02.007] [PMID: 29530337]
[27]
Yin, J.; Ren, W.; Yang, G.; Duan, J.; Huang, X.; Fang, R.; Li, C.; Li, T.; Yin, Y.; Hou, Y.; Kim, S.W.; Wu, G. L-Cysteine metabolism and its nutritional implications. Mol. Nutr. Food Res., 2016, 60(1), 134-146.
[http://dx.doi.org/10.1002/mnfr.201500031] [PMID: 25929483]
[28]
Peter, E.A.; Shen, X.; Shah, S.H.; Pardue, S.; Glawe, J.D.; Zhang, W.W.; Reddy, P.; Akkus, N.I.; Varma, J.; Kevil, C.G. Plasma free H2S levels are elevated in patients with cardiovascular disease. J. Am. Heart Assoc., 2013, 2(5), e000387.
[http://dx.doi.org/10.1161/JAHA.113.000387] [PMID: 24152982]
[29]
Bełtowski, J. Synthesis, metabolism, and signaling mechanisms of hydrogen sulfide: An overview. Methods Mol. Biol., 2019, 2007, 1-8.
[http://dx.doi.org/10.1007/978-1-4939-9528-8_1] [PMID: 31148102]
[30]
Cuevasanta, E.; Möller, M.N.; Alvarez, B. Biological chemistry of hydrogen sulfide and persulfides. Arch. Biochem. Biophys., 2017, 617, 9-25.
[http://dx.doi.org/10.1016/j.abb.2016.09.018] [PMID: 27697462]
[31]
Stipanuk, M.H. Sulfur amino acid metabolism: Pathways for production and removal of homocysteine and cysteine. Annu. Rev. Nutr., 2004, 24(1), 539-577.
[http://dx.doi.org/10.1146/annurev.nutr.24.012003.132418] [PMID: 15189131]
[32]
Shibuya, N.; Kimura, H. Production of hydrogen sulfide from d-cysteine and its therapeutic potential. Front. Endocrinol. (Lausanne), 2013, 4, 87.
[http://dx.doi.org/10.3389/fendo.2013.00087] [PMID: 23882260]
[33]
Al-Awadi, F.; Yang, M.; Tan, Y.; Han, Q.; Li, S.; Hoffman, R.M. Human tumor growth in nude mice is associated with decreased plasma cysteine and homocysteine. Anticancer Res., 2008, 28(5A), 2541-2544.
[PMID: 19035276]
[34]
Nunes, S.C.; Ramos, C.; Lopes-Coelho, F.; Sequeira, C.O.; Silva, F.; Gouveia-Fernandes, S.; Rodrigues, A.; Guimarães, A.; Silveira, M.; Abreu, S.; Santo, V.E.; Brito, C.; Félix, A.; Pereira, S.A.; Serpa, J. Cysteine allows ovarian cancer cells to adapt to hypoxia and to escape from carboplatin cytotoxicity. Sci. Rep., 2018, 8(1), 9513.
[http://dx.doi.org/10.1038/s41598-018-27753-y] [PMID: 29934500]
[35]
Badgley, M.A.; Kremer, D.M.; Maurer, H.C.; DelGiorno, K.E.; Lee, H.J.; Purohit, V.; Sagalovskiy, I.R.; Ma, A.; Kapilian, J.; Firl, C.E.M.; Decker, A.R.; Sastra, S.A.; Palermo, C.F.; Andrade, L.R.; Sajjakulnukit, P.; Zhang, L.; Tolstyka, Z.P.; Hirschhorn, T.; Lamb, C.; Liu, T.; Gu, W.; Seeley, E.S.; Stone, E.; Georgiou, G.; Manor, U.; Iuga, A.; Wahl, G.M.; Stockwell, B.R.; Lyssiotis, C.A.; Olive, K.P. Cysteine depletion induces pancreatic tumor ferroptosis in mice. Science, 2020, 368(6486), 85-89.
[http://dx.doi.org/10.1126/science.aaw9872] [PMID: 32241947]
[36]
Bansal, A.; Simon, M.C. Glutathione metabolism in cancer progression and treatment resistance. J. Cell Biol., 2018, 217(7), 2291-2298.
[http://dx.doi.org/10.1083/jcb.201804161] [PMID: 29915025]
[37]
Harris, I.S.; Treloar, A.E.; Inoue, S.; Sasaki, M.; Gorrini, C.; Lee, K.C.; Yung, K.Y.; Brenner, D.; Knobbe-Thomsen, C.B.; Cox, M.A.; Elia, A.; Berger, T.; Cescon, D.W.; Adeoye, A.; Brüstle, A.; Molyneux, S.D.; Mason, J.M.; Li, W.Y.; Yamamoto, K.; Wakeham, A.; Berman, H.K.; Khokha, R.; Done, S.J.; Kavanagh, T.J.; Lam, C.W.; Mak, T.W. Glutathione and thioredoxin antioxidant pathways synergize to drive cancer initiation and progression. Cancer Cell, 2015, 27(2), 211-222.
[http://dx.doi.org/10.1016/j.ccell.2014.11.019] [PMID: 25620030]
[38]
Geck, R.C.; Toker, A. Nonessential amino acid metabolism in breast cancer. Adv. Biol. Regul., 2016, 62, 11-17.
[http://dx.doi.org/10.1016/j.jbior.2016.01.001] [PMID: 26838061]
[39]
Eagle, H. The specific amino acid requirements of a human carcinoma cell (Stain HeLa) in tissue culture. J. Exp. Med., 1955, 102(1), 37-48.
[http://dx.doi.org/10.1084/jem.102.1.37] [PMID: 14392239]
[40]
Eagle, H. Nutrition needs of mammalian cells in tissue culture. Science, 1955, 122(3168), 501-504.
[http://dx.doi.org/10.1126/science.122.3168.501] [PMID: 13255879]
[41]
Noda, T.; Iwakiri, R.; Fujimoto, K.; Rhoads, C.A.; Aw, T.Y. Exogenous cysteine and cystine promote cell proliferation in CaCo-2 cells. Cell Prolif., 2002, 35(2), 117-129.
[http://dx.doi.org/10.1046/j.1365-2184.2002.00229.x] [PMID: 11952646]
[42]
Sayin, V.I.; Ibrahim, M.X.; Larsson, E.; Nilsson, J.A.; Lindahl, P.; Bergo, M.O. Antioxidants accelerate lung cancer progression in mice. Sci. Transl. Med., 2014, 6(221), 221ra15.
[http://dx.doi.org/10.1126/scitranslmed.3007653] [PMID: 24477002]
[43]
Hirschhorn, T.; Stockwell, B.R. The development of the concept of ferroptosis. Free Radic. Biol. Med., 2019, 133, 130-143.
[http://dx.doi.org/10.1016/j.freeradbiomed.2018.09.043] [PMID: 30268886]
[44]
Raj, L.; Ide, T.; Gurkar, A.U.; Foley, M.; Schenone, M.; Li, X.; Tolliday, N.J.; Golub, T.R.; Carr, S.A.; Shamji, A.F.; Stern, A.M.; Mandinova, A.; Schreiber, S.L.; Lee, S.W. Selective killing of cancer cells by a small molecule targeting the stress response to ROS. Nature, 2011, 475(7355), 231-234.
[http://dx.doi.org/10.1038/nature10167] [PMID: 21753854]
[45]
Tardiolo, G.; Bramanti, P.; Mazzon, E. Overview on the effects of n-acetylcysteine in neurodegenerative diseases. Molecules, 2018, 23(12), 3305.
[http://dx.doi.org/10.3390/molecules23123305] [PMID: 30551603]
[46]
Le Gal, K.; Ibrahim, M.X.; Wiel, C.; Sayin, V.I.; Akula, M.K.; Karlsson, C.; Dalin, M.G.; Akyürek, L.M.; Lindahl, P.; Nilsson, J.; Bergo, M.O. Antioxidants can increase melanoma metastasis in mice. Sci. Transl. Med., 2015, 7(308), 308re8.
[http://dx.doi.org/10.1126/scitranslmed.aad3740] [PMID: 26446958]
[47]
Piskounova, E.; Agathocleous, M.; Murphy, M.M.; Hu, Z.; Huddlestun, S.E.; Zhao, Z.; Leitch, A.M.; Johnson, T.M.; DeBerardinis, R.J.; Morrison, S.J. Oxidative stress inhibits distant metastasis by human melanoma cells. Nature, 2015, 527(7577), 186-191.
[http://dx.doi.org/10.1038/nature15726] [PMID: 26466563]
[48]
Klaunig, J.E. Oxidative stress and cancer. Curr. Pharm. Des., 2019, 24(40), 4771-4778.
[http://dx.doi.org/10.2174/1381612825666190215121712] [PMID: 30767733]
[49]
Kang, Y.P.; Mockabee-Macias, A.; Jiang, C.; Falzone, A.; Prieto-Farigua, N.; Stone, E.; Harris, I.S.; DeNicola, G.M. Non-canonical glutamate-cysteine ligase activity protects against ferroptosis. Cell Metab., 2021, 33(1), 174-189.e7.
[http://dx.doi.org/10.1016/j.cmet.2020.12.007] [PMID: 33357455]
[50]
Cross, J.V.; Templeton, D.J. Regulation of signal transduction through protein cysteine oxidation. Antioxid. Redox Signal., 2006, 8(9-10), 1819-1827.
[http://dx.doi.org/10.1089/ars.2006.8.1819] [PMID: 16987034]
[51]
Li, Y.; Zhao, P.; Gong, T.; Wang, H.; Jiang, X.; Cheng, H.; Liu, Y.; Wu, Y.; Bu, W. Redox dyshomeostasis strategy for hypoxic tumor therapy based on dnazyme‐loaded electrophilic ZIFs. Angew. Chem. Int. Ed., 2020, 59(50), 22537-22543.
[http://dx.doi.org/10.1002/anie.202003653] [PMID: 32856362]
[52]
Sosa, V.; Moliné, T.; Somoza, R.; Paciucci, R.; Kondoh, H.; LLeonart, M.E. Oxidative stress and cancer: An overview. Ageing Res. Rev., 2013, 12(1), 376-390.
[http://dx.doi.org/10.1016/j.arr.2012.10.004] [PMID: 23123177]
[53]
Kim, E.H.; Shin, D.; Lee, J.; Jung, A.R.; Roh, J.L. CISD2 inhibition overcomes resistance to sulfasalazine-induced ferroptotic cell death in head and neck cancer. Cancer Lett., 2018, 432, 180-190.
[http://dx.doi.org/10.1016/j.canlet.2018.06.018] [PMID: 29928961]
[54]
Ji, X.; Qian, J.; Rahman, S.M.J.; Siska, P.J.; Zou, Y.; Harris, B.K.; Hoeksema, M.D.; Trenary, I.A.; Heidi, C.; Eisenberg, R.; Rathmell, J.C.; Young, J.D.; Massion, P.P. xCT (SLC7A11)-mediated metabolic reprogramming promotes non-small cell lung cancer progression. Oncogene, 2018, 37(36), 5007-5019.
[http://dx.doi.org/10.1038/s41388-018-0307-z] [PMID: 29789716]
[55]
Sbodio, J.I.; Snyder, S.H.; Paul, B.D. Regulators of the transsulfuration pathway. Br. J. Pharmacol., 2019, 176(4), 583-593.
[http://dx.doi.org/10.1111/bph.14446] [PMID: 30007014]
[56]
Guo, H.; Gai, J.W.; Wang, Y.; Jin, H.F.; Du, J.B.; Jin, J. Characterization of hydrogen sulfide and its synthases, cystathionine β-synthase and cystathionine γ-lyase, in human prostatic tissue and cells. Urology, 2012, 79(2), 483.e1-483.e5.
[http://dx.doi.org/10.1016/j.urology.2011.10.013] [PMID: 22310774]
[57]
Akihiko, T.; Yoshiko, M.; Nobuhiko, K. Characterization of human serum γ-glutamyltranspeptidase. Clin. Chim. Acta, 1980, 104(3), 361-366.
[http://dx.doi.org/10.1016/0009-8981(80)90394-0] [PMID: 6104548]
[58]
Pompella, A.; Corti, A.; Paolicchi, A.; Giommarelli, C.; Zunino, F. γ-Glutamyltransferase, redox regulation and cancer drug resistance. Curr. Opin. Pharmacol., 2007, 7(4), 360-366.
[http://dx.doi.org/10.1016/j.coph.2007.04.004] [PMID: 17613273]
[59]
Wang, Q.; Shu, X.; Dong, Y.; Zhou, J.; Teng, R.; Shen, J.; Chen, Y.; Dong, M.; Zhang, W.; Huang, Y.; Xie, S.; Wei, Q.; Zhao, W.; Chen, W.; Yuan, X.; Qi, X.; Wang, L. Tumor and serum gamma-glutamyl transpeptidase, new prognostic and molecular interpretation of an old biomarker in gastric cancer. Oncotarget, 2017, 8(22), 36171-36184.
[http://dx.doi.org/10.18632/oncotarget.15609] [PMID: 28404903]
[60]
Hong, T.C.; Yang, H.C.; Chen, C.L.; Kao, J.H.; Liu, C.J.; Chen, M.J.; Wang, H.Y.; Kuo, Y.C.; Yu, L.Y.; Hu, K.C. Relationship between serum gamma-glutamyl transferase level and colorectal adenoma. PLoS One, 2020, 15(10), e0240445.
[http://dx.doi.org/10.1371/journal.pone.0240445] [PMID: 33048943]
[61]
Wei, J.R.; Dong, J.; Li, L. Cancer-associated fibroblasts-derived gamma-glutamyltransferase 5 promotes tumor growth and drug resistance in lung adenocarcinoma. Aging (Albany NY), 2020, 12(13), 13220-13233.
[http://dx.doi.org/10.18632/aging.103429] [PMID: 32640421]
[62]
Hanigan, M.H.; Gallagher, B.C.; Townsend, D.M.; Gabarra, V. γ-glutamyl transpeptidase accelerates tumor growth and increases the resistance of tumors to cisplatin in vivo. Carcinogenesis, 1999, 20(4), 553-559.
[http://dx.doi.org/10.1093/carcin/20.4.553] [PMID: 10223181]
[63]
Alanazi, A.M.; Mostafa, G.A.E.; Al-Badr, A.A. Glutathione. Profiles Drug Subst. Excip. Relat. Methodol., 2015, 40, 43-158.
[http://dx.doi.org/10.1016/bs.podrm.2015.02.001] [PMID: 26051685]
[64]
Akaike, T.; Ida, T.; Wei, F.Y.; Nishida, M.; Kumagai, Y.; Alam, M.M.; Ihara, H.; Sawa, T.; Matsunaga, T.; Kasamatsu, S.; Nishimura, A.; Morita, M.; Tomizawa, K.; Nishimura, A.; Watanabe, S.; Inaba, K.; Shima, H.; Tanuma, N.; Jung, M.; Fujii, S.; Watanabe, Y.; Ohmuraya, M.; Nagy, P.; Feelisch, M.; Fukuto, J.M.; Motohashi, H. Cysteinyl-tRNA synthetase governs cysteine polysulfidation and mitochondrial bioenergetics. Nat. Commun., 2017, 8(1), 1177.
[http://dx.doi.org/10.1038/s41467-017-01311-y] [PMID: 29079736]
[65]
Dixon, S.J.; Lemberg, K.M.; Lamprecht, M.R.; Skouta, R.; Zaitsev, E.M.; Gleason, C.E.; Patel, D.N.; Bauer, A.J.; Cantley, A.M.; Yang, W.S.; Morrison, B., III; Stockwell, B.R. Ferroptosis: An iron-dependent form of nonapoptotic cell death. Cell, 2012, 149(5), 1060-1072.
[http://dx.doi.org/10.1016/j.cell.2012.03.042] [PMID: 22632970]
[66]
Gout, P.W.; Buckley, A.R.; Simms, C.R.; Bruchovsky, N. Sulfasalazine, a potent suppressor of lymphoma growth by inhibition of the xc − cystine transporter: A new action for an old drug. Leukemia, 2001, 15(10), 1633-1640.
[http://dx.doi.org/10.1038/sj.leu.2402238] [PMID: 11587223]
[67]
Louandre, C.; Ezzoukhry, Z.; Godin, C.; Barbare, J.C.; Mazière, J.C.; Chauffert, B.; Galmiche, A. Iron-dependent cell death of hepatocellular carcinoma cells exposed to sorafenib. Int. J. Cancer, 2013, 133(7), 1732-1742.
[http://dx.doi.org/10.1002/ijc.28159] [PMID: 23505071]
[68]
Shin, S.S.; Jeong, B.S.; Wall, B.A.; Li, J.; Shan, N.L.; Wen, Y.; Goydos, J.S.; Chen, S. Participation of xCT in melanoma cell proliferation in vitro and tumorigenesis in vivo. Oncogenesis, 2018, 7(11), 86.
[http://dx.doi.org/10.1038/s41389-018-0098-7] [PMID: 30425240]
[69]
Cao, X.; Ding, L.; Xie, Z.; Yang, Y.; Whiteman, M.; Moore, P.K.; Bian, J.S. A review of hydrogen sulfide synthesis, metabolism, and measurement: Is modulation of hydrogen sulfide a novel therapeutic for cancer? Antioxid. Redox Signal., 2019, 31(1), 1-38.
[http://dx.doi.org/10.1089/ars.2017.7058] [PMID: 29790379]
[70]
Tong, X.; Li, T.; Long, R.; Guo, Y.; Wu, L.; Shi, S. Determination of the activity of γ-glutamyl transpeptidase and of its inhibitors by using the inner filter effect on the fluorescence of nitrogen-doped carbon dots. Mikrochim. Acta, 2020, 187(3), 182.
[http://dx.doi.org/10.1007/s00604-020-4160-8] [PMID: 32086563]
[71]
Zou, T.; Lum, C.T.; Lok, C.N.; Zhang, J.J.; Che, C.M. Chemical biology of anticancer gold( III ) and gold( I ) complexes. Chem. Soc. Rev., 2015, 44(24), 8786-8801.
[http://dx.doi.org/10.1039/C5CS00132C] [PMID: 25868756]
[72]
Liu, J.; Zhang, B.; Chai, Y.; Xu, Y.; Xing, C.; Wang, X. Fluvastatin attenuated the effect of expression of β1 integrin in PAN-treated podocytes by inhibiting reactive oxygen species. Mol. Cell. Biochem., 2015, 398(1-2), 207-215.
[http://dx.doi.org/10.1007/s11010-014-2220-2] [PMID: 25240415]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy