Generic placeholder image

Current Drug Delivery

Editor-in-Chief

ISSN (Print): 1567-2018
ISSN (Online): 1875-5704

Review Article

Regulatory Aspects, Types and Bioapplications of Metallic Nanoparticles: A Review

Author(s): Shrutee Pawar and Anjali Takke*

Volume 20, Issue 7, 2023

Published on: 26 September, 2022

Page: [857 - 883] Pages: 27

DOI: 10.2174/1567201819666220817110025

Price: $65

Open Access Journals Promotions 2
Abstract

Background: Nanotechnology is rapidly advancing in almost every area, such as the pharmaceutical industry, food industry, nano fabrics, electronics, wastewater treatment, and agriculture.

Introduction: Metallic nanoparticles are commonly used in various fields but are especially important in the pharmaceutical industry. Metallic nanoparticles have a size range of 10 nm to 100 nm.

Methods: Two techniques are used to synthesize metallic nanoparticles, the top-down approach and the bottom-up approach. These techniques can be synthesized using three different methods: physical, chemical, and biological. Chemical methods include coprecipitation, reduction, sonochemical, solvothermal, and others, while physical methods include discharge, milling, and ion implantation. Biological methods include plants and their extracts, agricultural wastes, microorganisms, and seaweeds. Scanning electron microscopy, transmission electron microscopy, dynamic light scanning, and other techniques are used to characterize them.

Results: All metallic nanoparticles are biocompatible and have special optical, electrical, magnetic, and chemical properties. They are used in various industries, including the pharmaceutical industry as an anticancer agent, antibacterial, antifungal, antioxidant, antidiabetic, and biosensors. Gold, silver, iron oxide, zinc oxide, platinum, copper oxide, and palladium nanoparticles are the most common metal nanoparticles used in the pharmaceutical industry. Monometallic and multimetallic nanoparticles are broadly classified under this.

Conclusion: This article focuses on the major metallic nanoparticle groups, including synthesis, applications, case studies, toxicity, regulatory aspects and innovative approaches to metallic nanomaterials.

Keywords: Metallic nanoparticle, zinc, gold, silver, palladium, copper, iron, platinum.

Graphical Abstract
[1]
Clayton, K.N.; Salameh, J.W.; Wereley, S.T.; Kinzer-Ursem, T.L. Physical characterization of nanoparticle size and surface modification using particle scattering diffusometry. Biomicrofluidics, 2016, 10, 054107.
[http://dx.doi.org/10.1063/1.4962992]
[2]
Shelar, A.; Singh, A.V.; Maharjan, R.S.; Laux, P.; Luch, A.; Gemmati, D.; Tissato, V.; Singh, S.P.; Santilli, M.F.; Shelar, A.; Chaskar, M.; Patil, R. Sustainable agriculture through multidisciplinary seed nanopriming: Prospects of opportunities and challenges. Cells, 2021, 10(9), 2428.
[http://dx.doi.org/10.3390/cells10092428]
[3]
Vikram Singh, A.; Sigloch, H.; Laux, P.; Luch, A.; Wagener, S.; Tentschert, J. Micro/nanoplastics: An emerging environmental concern for the future decade. Front. Nanosci. Nanotechnol., 2021, 7(1), 1-2.
[http://dx.doi.org/10.15761/FNN.1000191]
[4]
Mobasser, S.; Firoozi, A. Review of nanotechnology applications in science and engineering. J. Civil Eng. Urban., 2016, 6(4), 84-93.
[5]
Chandra, H.; Kumari, P.; Bontempi, E.; Yadav, S. Medicinal plants: Treasure trove for green synthesis of metallic nanoparticles and their biomedical applications. Biocatal. Agric. Biotechnol., 2020, 24, 101518.
[http://dx.doi.org/10.1016/j.bcab.2020.101518]
[6]
Shevchenko, V.Ya.; Madison, A.E. Structure of nanoparticles: I. Generalized crystallography 41. Glass Phys. Chem., 2002, 28(1), 40-43.
[http://dx.doi.org/10.1023/A:1014201530029]
[7]
Khandel, P.; Shahi, S.K. Microbes mediated synthesis of metal nanoparticles: Current status and future prospects. Int. J. Nanomater. Biostruct., 2016, 6, 1-24.
[8]
Ibragimov, T.D. Influence of fullerenes C60 and single-walled carbon nanotubes on the Carr - Helfrich effect in nematic liquid crystal. Optik (Stuttg.), 2021, 237, 166768.
[http://dx.doi.org/10.1016/j.ijleo.2021.166768]
[9]
Prasad Sekar, R.; Ram Prasad, S.; Damayanthi, D. Formulation and evaluation of azathioprine loaded silver nanoparticles for the treatment of rheumatoid arthritis. Asian J. Biomed. Pharm. Sci., 2013, 3(23), 28-32.
[10]
Ahmed, H.B.; Emam, H.E. Overview for multimetallic nanostructures with biomedical, environmental and industrial applications. J. Mol. Liq., 2021, 321, 114669.
[http://dx.doi.org/10.1016/j.molliq.2020.114669]
[11]
Basavegowda, N.; Baek, K.H. Multimetallic nanoparticles as alternative antimicrobial agents: Challenges and perspectives. Molecules, 2021, 26(4), 912-932.
[http://dx.doi.org/10.3390/molecules26040912] [PMID: 33572219]
[12]
Prasad Yadav, T.; Manohar Yadav, R.; Pratap Singh, D. Mechanical milling: A top down approach for the synthesis of nanomaterials and nanocomposites. Nanosci. Nanotechnol., 2012, 2(3), 22-48.
[http://dx.doi.org/10.5923/j.nn.20120203.01]
[13]
Ding, J.; Tsuzuki, T.; McCormick, E.; Street, R. Ultrafine Cu particles prepared by mechanochemical process. J. Alloys Compd., 1996, 234(2), L1-L3.
[http://dx.doi.org/10.1016/0925-8388(95)02138-8]
[14]
Simakin, A.; Voronov, V.; Kirichenko, N.; Shafeev, G.A. Nanoparticles produced by laser ablation of solids in liquid environment. Appl. Phys. , 2004, 79, 1127-1132.
[15]
Vanecht, E.; Binnemans, K.; Seo, J.W.; Stappers, L.; Fransaer, J. Growth of sputter-deposited gold nanoparticles in ionic liquids. Phys. Chem. Chem. Phys., 2011, 13(30), 13565-13571.
[http://dx.doi.org/10.1039/c1cp20552h] [PMID: 21674115]
[16]
Mahmoodian, M.; Hajihoseini, H.; Mohajerzadeh, S.; Fathipour, M. Nano patterning and fabrication of single polypyrrole nanowires by electron beam lithography. Synth. Met., 2019, 249, 14-24.
[http://dx.doi.org/10.1016/j.synthmet.2019.01.013]
[17]
Wang, J.; Yin, Z. SU-8 nano-nozzle fabrication for electrohydrodynamic jet printing using UV photolithography. Mater. Sci. Semicond. Process., 2018, 84, 144-150.
[http://dx.doi.org/10.1016/j.mssp.2018.05.028]
[18]
Fu, Q.; Kokalj, D.; Stangier, D.; Kruis, F.E.; Tillmann, W. Aerosol synthesis of titanium nitride nanoparticles by direct current arc discharge method. Adv. Powder Technol., 2020, 31(9), 4119-4128.
[http://dx.doi.org/10.1016/j.apt.2020.08.012]
[19]
Leroy, S.; Blach, J.F.; Huvé, M.; Léger, B.; Kania, N.; Henninot, J-F.; Ponchel, A.; Saitzek, S. Photocatalytic and sonophotocatalytic degradation of rhodamine B by nano-sized La2Ti2O7 oxides synthesized with sol-gel method. J. Photochem. Photobiol. Chem., 2020, 401, 112767.
[http://dx.doi.org/10.1016/j.jphotochem.2020.112767]
[20]
Chidurala, S.C.; Kalagadda, V.R.; Tambur, P. Antimicrobial activity of pure Cu nano particles synthesized by surfactant varied chemical reduction method. Environ. Nanotechnol. Monit. Manag., 2016, 6, 88-94.
[http://dx.doi.org/10.1016/j.enmm.2016.06.004]
[21]
Zhou, S-L.; Gong, L-G.; Zhao, X-Y.; Liang, Q-L.; Zhang, W-J.; Wang, L-Y.; Yu, K.; Zhou, B.B. Synthesis and photocatalytic performance of copper sulfide by a simple solvothermal method. Chem. Phys. Lett., 2020, 759, 138034.
[22]
Lee, G.J.; Hou, Y.H.; Liu, N.; Wu, J.J. Enhanced photocatalytic hydrogen and methane evolution using chalcogenide with metal ion modification via a microwave-assisted solvothermal method. Catal. Today, 2020, 355, 493-501.
[http://dx.doi.org/10.1016/j.cattod.2019.06.068]
[23]
Cao, Y.; Moniri Javadhesari, S.; Mohammadnejad, S.; Khodadustan, E.; Raise, A.; Akbarpour, M.R. Microstructural characterization and antibacterial activity of carbon nanotube decorated with Cu nanoparticles synthesized by a novel solvothermal method. Ceram. Int., 2021, 47(18), 25729-25737.
[http://dx.doi.org/10.1016/j.ceramint.2021.05.299]
[24]
Gurgenc, T. Structural characterization and dielectrical properties of Ag-doped nano-strontium apatite particles produced by hydrothermal method. J. Mol. Struct., 2021, 1223, 128990.
[http://dx.doi.org/10.1016/j.molstruc.2020.128990]
[25]
Fagundes, N.G.; Nobre, F.X.; Basilio, L.A.L.; Melo, A.D.; Bandeira, B.; Sales, J.C.C., Jr; Andrade, J.C.S.; Anglada-Rivera, J.; Aguilera, L.; Pérez de la Cruz, J.; Leyet, Y. Novel and simple way to synthesize Na2Ti6O13 nanoparticles by sonochemical method. Solid State Sci., 2019, 88, 63-66.
[http://dx.doi.org/10.1016/j.solidstatesciences.2018.11.014]
[26]
Yu, Y.; Mottaghi-Tabar, S.; Iqbal, M.W.; Yu, A.; Simakov, D.S.A. CO2 methanation over alumina-supported cobalt oxide and carbide synthesized by reverse microemulsion method. Catal. Today, 2021, 379, 250-261.
[http://dx.doi.org/10.1016/j.cattod.2020.08.017]
[27]
Tianimoghadam, S.; Salabat, A. A microemulsion method for preparation of thiol-functionalized gold nanoparticles. Particuology, 2018, 37, 33-36.
[http://dx.doi.org/10.1016/j.partic.2017.05.007]
[28]
Melvin David Kumar, M.; Devadason, S. Evidence for quantum confinement effects in CdSe/ZnSe multilayer thin films prepared by the physical vapor deposition method. Acta Mater., 2013, 61(11), 4135-4141.
[http://dx.doi.org/10.1016/j.actamat.2013.03.040]
[29]
Modekwe, H.U.; Mamo, M.; Moothi, K.; Daramola, M.O. Synthesis of bimetallic NiMo/MgO catalyst for catalytic conversion of waste plastics (polypropylene) to carbon nanotubes (CNTs) via chemical vapour deposition method. Mater. Today Proc., 2021, 38, 549-552.
[http://dx.doi.org/10.1016/j.matpr.2020.02.398]
[30]
Nkurikiyimfura, I.; Wang, Y.; Safari, B.; Nshingabigwi, E. Temperature-dependent magnetic properties of magnetite nanoparticles synthesized via coprecipitation method. J. Alloys Compd., 2020, 846, 156344.
[http://dx.doi.org/10.1016/j.jallcom.2020.156344]
[31]
Reza, H.; Ali, M.; Morad, A. Synthesis of ZnO nanoparticles by spray pyrolysis method. Iran. J. Chem. Chem. Eng., 2011, 30(1), 1-6.
[32]
Liu, J.; Qiao, Y.L.; Zhang, P.; Xue, Y.C.; Cai, Z. Synthesis of SiC ceramics from polysilazane by laser pyrolysis. Surf. Coat. Tech., 2017, 321, 491-495.
[http://dx.doi.org/10.1016/j.surfcoat.2017.05.021]
[33]
Saeed, S.; Iqbal, A.; Ashraf, M.A. Bacterial-mediated synthesis of silver nanoparticles and their significant effect against pathogens. Environ. Sci. Pollut. Res. Int., 2020, 27(30), 37347-37356.
[http://dx.doi.org/10.1007/s11356-020-07610-0] [PMID: 32130634]
[34]
Shelar, G.; Chavan, A.M. Fusarium semitectum mediated extracellular synthesis of silver nanoparticles and their antibacterial activity. Int. J. Biomed Adv. Res., 2014, 5(7), 348-351.
[http://dx.doi.org/10.7439/ijbar]
[35]
Velusamy, P.; Kumar, G.V.; Jeyanthi, V.; Das, J.; Pachaiappan, R. Bio-inspired green nanoparticles: Synthesis, mechanism, and antibacterial application. Toxicol. Res., 2016, 32(2), 95-102.
[http://dx.doi.org/10.5487/TR.2016.32.2.095] [PMID: 27123159]
[36]
Kuppusamy, P.; Yusoff, M.M.; Maniam, G.P.; Govindan, N. Biosynthesis of metallic nanoparticles using plant derivatives and their new avenues in pharmacological applications - An updated report. Saudi Pharm. J., 2016, 24(4), 473-484.
[http://dx.doi.org/10.1016/j.jsps.2014.11.013] [PMID: 27330378]
[37]
David, M-C.; Bahram, S.; Ada, V-C.; Alfonso, N-A.; Diana, L-M.; Lydia, Y.V-E.; Jorge, L.C-D.; José Miguel, G-M.; Thomas, W. Bimetallic nanoparticles for biomedical applications. A review. In: Racing for the Surface; Li, B.; Moriarty, T.; Webster, T.; Xing, M., Eds.; Springer: Cham, 2020; pp. 397-434.
[38]
Hurtado-Aviles, E.A.; Torres, J.A.; Trejo-Valdez, M.; Urriolagoitia-Sosa, G.; Villalpando, I.; Torres-Torres, C. Acousto-plasmonic sensing assisted by nonlinear optical interactions in bimetallic au-pt nanoparticles. Micromachines (Basel), 2017, 8(11), E321.
[http://dx.doi.org/10.3390/mi8110321] [PMID: 30400510]
[39]
Hurtado-Aviles, E.A.; Torres, J.A.; Trejo-Valdez, M.; Romero-Ángeles, B.; Villalpando, I.; Torres-Torres, C. Amplitude-modulated acoustic waves by nonlinear optical signals in bimetallic au-pt nanoparticles and ethanol based nanofluids. J. Mol. Liq., 2018, 263, 288-293.
[http://dx.doi.org/10.1016/j.molliq.2018.05.019]
[40]
Mahmoud, M.A.; O’Neil, D.; El-Sayed, M.A. Shape- and symmetry-dependent mechanical properties of metallic gold and silver on the nanoscale. Nano Lett., 2014, 14(2), 743-748.
[http://dx.doi.org/10.1021/nl4040362] [PMID: 24328338]
[41]
Nasrollahzadeh, M.; Sajjadi, M.; Iravani, S.; Varma, R.S. Trimetallic nanoparticles: Greener synthesis and their applications. Nanomaterials (Basel), 2020, 10(9), 1-27.
[http://dx.doi.org/10.3390/nano10091784] [PMID: 32916829]
[42]
Vyatskikh, A.; Delalande, S.; Kudo, A.; Zhang, X.; Portela, C.M.; Greer, J.R. Additive manufacturing of 3D nano-architected metals. Nat. Commun., 2018, 9(1), 593.
[http://dx.doi.org/10.1038/s41467-018-03071-9] [PMID: 29426947]
[43]
Thoniyot, P.; Tan, M.J.; Karim, A.A.; Young, D.J.; Loh, X.J. Nanoparticle-hydrogel composites: Concept, design, and applications of these promising, multi-functional materials. Adv. Sci. (Weinh.), 2015, 2(1-2), 1400010.
[http://dx.doi.org/10.1002/advs.201400010] [PMID: 27980900]
[44]
Clasky, A.J.; Watchorn, J.D.; Chen, P.Z.; Gu, F.X. From prevention to diagnosis and treatment: Biomedical applications of metal nanoparticle-hydrogel composites. Acta Biomater., 2021, 122, 1-25.
[http://dx.doi.org/10.1016/j.actbio.2020.12.030] [PMID: 33352300]
[45]
Wang, S.; McGuirk, C.M.; d’Aquino, A.; Mason, J.A.; Mirkin, C.A. Metal-organic framework nanoparticles. Adv. Mater., 2018, 30(37), e1800202.
[http://dx.doi.org/10.1002/adma.201800202] [PMID: 29862586]
[46]
Duan, M.; Jiang, L.; Zeng, G.; Wang, D.; Tang, W.; Liang, J.; Wang, H.; He, D.; Liu, Z.; Tang, L. Bimetallic nanoparticles/metal-organic frameworks: Synthesis, applications and challenges. Appl. Mater. Today, 2020, 19, 100564.
[http://dx.doi.org/10.1016/j.apmt.2020.100564]
[47]
He, S.; Wu, L.; Li, X.; Sun, H.; Xiong, T.; Liu, J.; Huang, C.; Xu, H.; Sun, H.; Chen, W.; Gref, R.; Zhang, J. Metal-organic frameworks for advanced drug delivery. Acta Pharm. Sin. B, 2021, 11(8), 2362-2395.
[http://dx.doi.org/10.1016/j.apsb.2021.03.019] [PMID: 34522591]
[48]
Echtermeyer, T.J.; Britnell, L.; Jasnos, P.K.; Lombardo, A.; Gorbachev, R.V.; Grigorenko, A.N.; Geim, A.K.; Ferrari, A.C.; Novoselov, K.S. Strong plasmonic enhancement of photovoltage in graphene. Nat. Commun., 2011, 2(1), 458.
[http://dx.doi.org/10.1038/ncomms1464] [PMID: 21878912]
[49]
Lung, J.K.; Huang, J.C.; Tien, D.C.; Liao, C-Y.; Tseng, K-H.; Tsung, T-T.; Kao, W-S.; Tsai, T-H.; Jwo, C-S.; Lin, H-M.; Stobinski, L. Preparation of gold nanoparticles by arc discharge in water. J. Alloys Compd., 2007, 434-435, 655-658.
[http://dx.doi.org/10.1016/j.jallcom.2006.08.213]
[50]
Wang, S.; Rogachev, A.A.; Yarmolenko, M.A.; Rogachev, A.V.; Xiaohong, J.; Gaur, M.S.; Luchnikov, P.A.; Galtseva, O.V.; Chizhik, S.A. Structure and properties of polyaniline nanocomposite coatings containing gold nanoparticles formed by low-energy electron beam deposition. Appl. Surf. Sci., 2018, 428, 1070-1078.
[http://dx.doi.org/10.1016/j.apsusc.2017.09.225]
[51]
Fu, Y.; Liang, F.; Tian, H.; Hu, J. Nonenzymatic glucose sensor based on ITO electrode modified with gold nanoparticles by ion implantation. Electrochim. Acta, 2014, 120, 314-318.
[http://dx.doi.org/10.1016/j.electacta.2013.12.082]
[52]
Lotfi, S.; Abbaspour, M. Investigation of temperature and pressure effects on thermodynamics and structural properties of gold nanoparticles formed during the gas condensation procedure. J. Mol. Liq., 2019, 281, 39-47.
[http://dx.doi.org/10.1016/j.molliq.2019.02.079]
[53]
Majerič, P.; Jenko, D.; Friedrich, B.; Rudolf, R. Formation mechanisms for gold nanoparticles in a redesigned ultrasonic spray pyrolysis. Adv. Powder Technol., 2017, 28(3), 876-883.
[http://dx.doi.org/10.1016/j.apt.2016.12.013]
[54]
Yamashita, M.; Ohashi, H.; Kobayashi, Y.; Okaue, Y.; Kurisaki, T.; Wakita, H.; Yokoyama, T. Coprecipitation of gold(III) complex ions with manganese(II) hydroxide and their stoichiometric reduction to atomic gold (Au(0)): Analysis by Mössbauer spectroscopy and XPS. J. Colloid Interface Sci., 2008, 319(1), 25-29.
[http://dx.doi.org/10.1016/j.jcis.2007.10.034] [PMID: 18067911]
[55]
Soliwoda, K.; Rosowski, M.; Tomaszewska, E.; Tkacz-Szczesna, B.; Celichowski, G.; Psarski, M.; Grobelny, J. Synthesis of monodisperse gold nanoparticles via electrospray-assisted chemical reduction method in cyclohexane. Colloids Surf. A Physicochem. Eng. Asp., 2015, 482, 148-153.
[http://dx.doi.org/10.1016/j.colsurfa.2015.04.040]
[56]
Salabat, A.; Mirhoseini, F. A novel and simple microemulsion method for synthesis of biocompatible functionalized gold nanoparticles. J. Mol. Liq., 2018, 268, 849-853.
[http://dx.doi.org/10.1016/j.molliq.2018.07.112]
[57]
Augustine, A.K.; Nampoori, V.P.N.; Kailasnath, M. Rapid synthesize of gold nanoparticles by microwave irradiation method and its application as an optical limiting material. Optik (Stuttg.), 2014, 125(22), 6696-6699.
[http://dx.doi.org/10.1016/j.ijleo.2014.08.075]
[58]
Jin, Y.; Wang, P.; Yin, D.; Liu, J.; Qin, L.; Yu, N.; Xie, G.; Li, B. Gold nanoparticles prepared by sonochemical method in thiol-functionalized ionic liquid. Colloids Surf. A Physicochem. Eng. Asp., 2007, 302(1-3), 366-370.
[http://dx.doi.org/10.1016/j.colsurfa.2007.02.060]
[59]
Ahmad, T.; Wani, I.A.; Lone, I.H.; Ganguly, A.; Manzoor, N.; Ahmad, A.; Ahmed, J.; Al-Shihri, A.S. Antifungal activity of gold nanoparticles prepared by solvothermal method. Mater. Res. Bull., 2013, 48(1), 12-20.
[http://dx.doi.org/10.1016/j.materresbull.2012.09.069]
[60]
Dykman, L.A.; Staroverov, S.A.; Fomin, A.S.; Khanadeev, V.A.; Khlebtsov, B.N.; Bogatyrev, V.A. Gold nanoparticles as an adjuvant: Influence of size, shape, and technique of combination with CpG on antibody production. Int. Immunopharmacol., 2018, 54, 163-168.
[http://dx.doi.org/10.1016/j.intimp.2017.11.008] [PMID: 29149704]
[61]
Dave, V.; Sharma, R.; Gupta, C.; Sur, S. Folic acid modified gold nanoparticle for targeted delivery of Sorafenib tosylate towards the treatment of diabetic retinopathy. Colloids Surf. B Biointerfaces, 2020, 194, 111151.
[http://dx.doi.org/10.1016/j.colsurfb.2020.111151] [PMID: 32540764]
[62]
Singh, R.K.; Behera, S.S.; Singh, K.R.; Mishra, S.; Panigrahi, B.; Sahoo, T.R.; Parhi, P.K.; Mandal, D. Biosynthesized gold nanoparticles as photocatalysts for selective degradation of cationic dye and their antimicrobial activity. J. Photochem. Photobiol. Chem., 2020, 400, 112704.
[http://dx.doi.org/10.1016/j.jphotochem.2020.112704]
[63]
He, Y.; Gao, Q.; Lv, C.; Liu, L. Improved photothermal therapy of brain cancer cells and photogeneration of reactive oxygen species by biotin conjugated gold photoactive nanoparticles. J. Photochem. Photobiol. B, 2021, 215, 112102.
[http://dx.doi.org/10.1016/j.jphotobiol.2020.112102] [PMID: 33388605]
[64]
Rahman, W.N.; Bishara, N.; Ackerly, T.; He, C.F.; Jackson, P.; Wong, C.; Davidson, R.; Geso, M. Enhancement of radiation effects by gold nanoparticles for superficial radiation therapy. Nanomedicine , 2009, 5(2), 136-142.
[http://dx.doi.org/10.1016/j.nano.2009.01.014] [PMID: 19480049]
[65]
Kong, T.; Zeng, J.; Wang, X.; Yang, X.; Yang, J.; McQuarrie, S.; McEwan, A.; Roa, W.; Chen, J.; Xing, J.Z. Enhancement of radiation cytotoxicity in breast-cancer cells by localized attachment of gold nanoparticles. Small, 2008, 4(9), 1537-1543.
[http://dx.doi.org/10.1002/smll.200700794] [PMID: 18712753]
[66]
Hainfeld, J.F.; Lin, L.; Slatkin, D.N.; Avraham Dilmanian, F.; Vadas, T.M.; Smilowitz, H.M. Gold nanoparticle hyperthermia reduces radiotherapy dose. Nanomedicine , 2014, 10(8), 1609-1617.
[http://dx.doi.org/10.1016/j.nano.2014.05.006] [PMID: 24990355]
[67]
Rajeshkumar, S.; Malarkodi, C.; Al Farraj, D.A.; Soliman Elshikh, M.; Mohana Roopan, S. Employing sulphated polysaccharide (fucoidan) as medium for gold nanoparticles preparation and its anticancer study against HepG2 cell lines. Mater. Today Commun., 2021, 26, 101975.
[http://dx.doi.org/10.1016/j.mtcomm.2020.101975]
[68]
Jeyarani, S.; Vinita, N.M.; Puja, P.; Senthamilselvi, S.; Devan, U.; Velangani, A.J.; Biruntha, M.; Pugazhendhi, A.; Kumar, P. Biomimetic gold nanoparticles for its cytotoxicity and biocompatibility evidenced by fluorescence-based assays in cancer (MDA-MB-231) and non-cancerous (HEK-293) cells. J. Photochem. Photobiol. B, 2020, 202, 111715.
[http://dx.doi.org/10.1016/j.jphotobiol.2019.111715] [PMID: 31790882]
[69]
Apaolaza, P.S.; Busch, M.; Asin-Prieto, E.; Peynshaert, K.; Rathod, R.; Remaut, K.; Dünker, N.; Göpferich, A. Hyaluronic acid coating of gold nanoparticles for intraocular drug delivery: Evaluation of the surface properties and effect on their distribution. Exp. Eye Res., 2020, 198, 108151.
[http://dx.doi.org/10.1016/j.exer.2020.108151] [PMID: 32721426]
[70]
ben Haddada, M.; Gerometta, E.; Chawech, R.; Sorres, J.; Bialecki, A.; Pesnel, S.; Spadavecchia, J.; Morel, A.-L. Assessment of antioxidant and dermoprotective activities of gold nanoparticles as safe cosmetic ingredient. Colloids Surf. B Biointerfaces, 2020, 189, 110855.
[71]
Al-Radadi, N.S. Facile one-step green synthesis of gold nanoparticles (AuNp) using licorice root extract: Antimicrobial and anticancer study against HepG2 cell line. Arab. J. Chem., 2021, 14(2), 102956.
[http://dx.doi.org/10.1016/j.arabjc.2020.102956]
[72]
Ebrahimzadeh, M.A.; Naghizadeh, A.; Mohammadi-Aghdam, S.; Khojasteh, H.; Ghoreishi, S.M.; Mortazavi-Derazkola, S. Enhanced catalytic and antibacterial efficiency of biosynthesized Convolvulus fruticosus extract capped gold nanoparticles (CFE@AuNPs). J. Photochem. Photobiol. B, 2020, 209, 111949.
[http://dx.doi.org/10.1016/j.jphotobiol.2020.111949] [PMID: 32659646]
[73]
Manuel Xavier, H.F.; Nadar, V.M.; Patel, P.; Umapathy, D.; Velanganni Joseph, A.; Manivannan, S.; Santhiyagu, P.; Pandi, B.; Muthusamy, G.; Rathinam, Y.; Ponnuchamy, K. Selective antibacterial and apoptosis-inducing effects of hybrid gold nanoparticles - A green approach. J. Drug Deliv. Sci. Technol., 2020, 59, 101890.
[http://dx.doi.org/10.1016/j.jddst.2020.101890]
[74]
Dhas, T.S.; Sowmiya, P.; Kumar, V.G.; Ravi, M.; Suthindhiran, K.; Borgio, J.F.; Narendrakumar, G.; Kumar, V.R.; Karthick, V.; Kumar, C.M.V. Antimicrobial effect of Sargassum plagiophyllum mediated gold nanoparticles on Escherichia coli and Salmonella typhi. Biocatal. Agric. Biotechnol., 2020, 26, 101627.
[http://dx.doi.org/10.1016/j.bcab.2020.101627]
[75]
Rai, A.; Prabhune, A.; Perry, C.C. Antibiotic mediated synthesis of gold nanoparticles with potent antimicrobial activity and their application in antimicrobial coatings. J. Mater. Chem., 2010, 20(32), 6789-6798.
[http://dx.doi.org/10.1039/c0jm00817f]
[76]
Abdelghany, A.M.; Oraby, A.H.; Farea, M.O. Influence of green synthesized gold nanoparticles on the structural, optical, electrical and dielectric properties of (PVP/SA) blend. Physica B, 2019, 560, 162-173.
[http://dx.doi.org/10.1016/j.physb.2019.02.029]
[77]
Govindaraju, K.; Vasantharaja, R.; Uma Suganya, K.S.; Anbarasu, S.; Revathy, K.; Pugazhendhi, A.; Karthickeyan, D.; Singaravelu, G. Unveiling the anticancer and antimycobacterial potentials of bioengineered gold nanoparticles. Process Biochem., 2020, 96, 213-219.
[http://dx.doi.org/10.1016/j.procbio.2020.06.016]
[78]
Blom van Staden, A.; Kovacs, D.; Cardinali, G.; Picardo, M.; Lebeko, M.; Khumalo, N.C.; Ray, S.S.; Lall, N. Synthesis and characterization of gold nanoparticles biosynthesised from Aspalathus linearis (Burm.f.) R.Dahlgren For progressive macular hypomelanosis. J. Herb. Med., 2021, 29, 100481.
[http://dx.doi.org/10.1016/j.hermed.2021.100481]
[79]
Li, X.; Wang, H.; Zou, X.; Su, H.; Li, C. Methotrexate-loaded folic acid of solid-phase synthesis conjugated gold nanoparticles targeted treatment for rheumatoid arthritis. Eur. J. Pharm. Sci., 2022, 170, 106101.
[http://dx.doi.org/10.1016/j.ejps.2021.106101] [PMID: 34936935]
[80]
Madhusudanan, P.; Jerard, C.; Katiyar, N.; Raju, G.; Shankarappa, S.A. Effect of gold nanoparticle treated dorsal root ganglion cells on peripheral neurite differentiation. Toxicol. In Vitro, 2021, 74, 105175.
[http://dx.doi.org/10.1016/j.tiv.2021.105175] [PMID: 33865945]
[81]
Jia, Y.P.; Ma, B.Y.; Wei, X.W.; Qian, Z-Y. The in vitro and in vivo toxicity of gold nanoparticles. Chin. Chem. Lett., 2017, 28(4), 691-702.
[http://dx.doi.org/10.1016/j.cclet.2017.01.021]
[82]
le Trong, H.; Kiryukhina, K.; Gougeon, M.; Baco-Carles, V.; Courtade, F.; Dareys, S.; Tailhades, P. Paramagnetic behaviour of silver nanoparticles generated by decomposition of silver oxalate. Solid State Sci., 2017, 69, 44-49.
[http://dx.doi.org/10.1016/j.solidstatesciences.2017.05.009]
[83]
Boutinguiza, M.; Comesaña, R.; Lusquiños, F.; Riveiro, A.; del Val, J.; Pou, J. Production of silver nanoparticles by laser ablation in open air. Appl. Surf. Sci., 2015, 336, 108-111.
[http://dx.doi.org/10.1016/j.apsusc.2014.09.193]
[84]
Miranzadeh, M.; Kassaee, M.Z. Solvent effects on arc discharge fabrication of durable silver nanopowder and its application as a recyclable catalyst for elimination of toxic p-nitrophenol. Chem. Eng. J., 2014, 257, 105-111.
[http://dx.doi.org/10.1016/j.cej.2014.06.088]
[85]
Montazer, M.; Alimohammadi, F.; Shamei, A.; Rahimi, M.K. In situ synthesis of nano silver on cotton using Tollens’ reagent. Carbohydr. Polym., 2012, 87(2), 1706-1712.
[http://dx.doi.org/10.1016/j.carbpol.2011.09.079]
[86]
Ashkarran, A.A. A novel method for synthesis of colloidal silver nanoparticles by arc discharge in liquid. Curr. Appl. Phys., 2010, 10(6), 1442-1447.
[http://dx.doi.org/10.1016/j.cap.2010.05.010]
[87]
Kibis, L.S.; Stadnichenko, A.I.; Pajetnov, E.M.; Koscheev, S.V.; Zaykovskii, V.I.; Boronin, A.I. The investigation of oxidized silver nanoparticles prepared by thermal evaporation and radio-frequency sputtering of metallic silver under oxygen. Appl. Surf. Sci., 2010, 257(2), 404-413.
[http://dx.doi.org/10.1016/j.apsusc.2010.07.002]
[88]
Davarpanah, J.; Kiasat, A.R. Catalytic application of silver nanoparticles immobilized to rice husk-SiO2-aminopropylsilane composite as recyclable catalyst in the aqueous reduction of nitroarenes. Catal. Commun., 2013, 41, 6-11.
[http://dx.doi.org/10.1016/j.catcom.2013.06.020]
[89]
Amooaghaie, R.; Saeri, M.R.; Azizi, M. Synthesis, characterization and biocompatibility of silver nanoparticles synthesized from Nigella sativa leaf extract in comparison with chemical silver nanoparticles. Ecotoxicol. Environ. Saf., 2015, 120, 400-408.
[http://dx.doi.org/10.1016/j.ecoenv.2015.06.025] [PMID: 26122733]
[90]
Yasin, H.M.; Ahmed, W.; Ali, A.; Bhatti, A.S.; Rehman, N.U. Micro-plasma assisted synthesis of multifunctional D-fructose coated silver nanoparticles Mater. Res. Express, 2019, 6(10), 1050a-2.
[http://dx.doi.org/10.1088/2053-1591/ab3fed]
[91]
Ramírez Aguirre, D.P.; Flores Loyola, E.; de la Fuente Salcido, N.M.; Rodríguez Sifuentes, L.; Ramírez Moreno, A.; Marszalek, J.E. Comparative antibacterial potential of silver nanoparticles prepared via chemical and biological synthesis. Arab. J. Chem., 2020, 13(12), 8662-8670.
[http://dx.doi.org/10.1016/j.arabjc.2020.09.057]
[92]
Jiménez, E.; Abderrafi, K.; Abargues, R.; Valdés, J.L.; Martínez-Pastor, J.P. Laser-ablation-induced synthesis of SiO2-capped noble metal nanoparticles in a single step. Langmuir, 2010, 26(10), 7458-7463.
[http://dx.doi.org/10.1021/la904179x] [PMID: 20187628]
[93]
Tailor, G.; Yadav, B.L.; Chaudhary, J.; Joshi, M.; Suvalka, C. Green synthesis of silver nanoparticles using Ocimum canum and their anti-bacterial activity. Biochem. Biophys. Rep., 2020, 24, 100848.
[http://dx.doi.org/10.1016/j.bbrep.2020.100848] [PMID: 33305022]
[94]
Harisha, K.S.; Parushuram, N.; Ranjana, R.; Martis, L.J.; Narayana, B.; Sangappa, Y. Characterization and antibacterial properties of biogenic spherical silver nanoparticles. Mater. Today Proc., 2021, 42(2), 405-409.
[http://dx.doi.org/10.1016/j.matpr.2020.09.654]
[95]
Kumar Panda, M.; Kumar Dhal, N.; Kumar, M.; Mishra, P.M.; Behera, R.K. Green synthesis of silver nanoparticles and its potential effect on phytopathogens. Mater. Today Proc., 2021, 35(2), 233-28.
[http://dx.doi.org/10.1016/j.matpr.2020.05.188]
[96]
Lava, M.B.; Muddapur, U.M.; Basavegowda, N.; More, S.S.; More, V.S. Characterization, anticancer, antibacterial, anti-diabetic and anti-inflammatory activities of green synthesized silver nanoparticles using Justica wynaadensis leaves extract. Mater. Today Proc., 2021, 46(13), 5942-5947.
[http://dx.doi.org/10.1016/j.matpr.2020.10.048]
[97]
Deepika, S.; Selvaraj, C.I.; Roopan, S.M. Screening bioactivities of Caesalpinia pulcherrima L. swartz and cytotoxicity of extract synthesized silver nanoparticles on HCT116 cell line. Mater. Sci. Eng. C, 2020, 106, 110279.
[http://dx.doi.org/10.1016/j.msec.2019.110279] [PMID: 31753355]
[98]
Jyoti, K.; Singh, A.; Fekete, G.; Singh, T. Cytotoxic and radiosensitizing potential of silver nanoparticles against HepG-2 cells prepared by biosynthetic route using Picrasma quassioides leaf extract. J. Drug Deliv. Sci. Technol., 2020, 55, 101479.
[http://dx.doi.org/10.1016/j.jddst.2019.101479]
[99]
Khan, T.; Yasmin, A.; Townley, H.E. An evaluation of the activity of biologically synthesized silver nanoparticles against bacteria, fungi and mammalian cell lines. Colloids Surf. B Biointerfaces, 2020, 194, 111156.
[http://dx.doi.org/10.1016/j.colsurfb.2020.111156] [PMID: 32512312]
[100]
Ponsanti, K.; Tangnorawich, B.; Ngernyuang, N.; Pechyen, C. A flower shape-green synthesis and characterization of silver nanoparticles (AgNPs) with different starch as a reducing agent. J. Mater. Res. Technol., 2020, 9(5), 11003-11012.
[http://dx.doi.org/10.1016/j.jmrt.2020.07.077]
[101]
Premkumar, J.; Sudhakar, T.; Dhakal, A.; Shrestha, J.B.; Krishnakumar, S.; Balashanmugam, P. Synthesis of silver nanoparticles (AgNPs) from cinnamon against bacterial pathogens. Biocatal. Agric. Biotechnol., 2018, 15, 311-316.
[http://dx.doi.org/10.1016/j.bcab.2018.06.005]
[102]
Koteswara Rao, P.; Srinivasulu, S.; Ravidra Nadh, M.; Vikram Babu, B.; Sushma Reddi, M.; Rama Krishna, A. Anticancer and antibacterial activity of green synthesized silver nanoparticles using Adina cordifolia. Mater. Today Proc., 2021, 43(2), 1700-1706.
[http://dx.doi.org/10.1016/j.matpr.2020.10.043]
[103]
Jalab, J.; Abdelwahed, W.; Kitaz, A.; Al-Kayali, R. Green synthesis of silver nanoparticles using aqueous extract of Acacia cyanophylla and its antibacterial activity. Heliyon, 2021, 7(9), e08033.
[http://dx.doi.org/10.1016/j.heliyon.2021.e08033] [PMID: 34611564]
[104]
Nadar Rajivgandhi, G.; Chackaravarthy, G.; Ramachandran, G.; Chelliah, C.K.; Maruthupanday, M.; Alharbi, M.S.; Alharbi, N.S.; Khaled, J.M.; Li, W-J. Morphological damage and increased ROS production of biosynthesized silver nanoparticle against MCF-7 breast cancer cells through in vitro approaches. J. King Saud Univ. Sci., 2021, 34(2), 101795.
[105]
Besenhard, M.O.; LaGrow, A.P.; Hodzic, A.; Kriechbaum, M.; Panariello, L.; Bais, G.; Loizou, K.; Damilos, S.; Margarida Cruz, M.; Thanh, N.T.K.; Gavriilidis, A. Co-precipitation synthesis of stable iron oxide nanoparticles with NaOH: New insights and continuous production via flow chemistry. Chem. Eng. J., 2020, 399, 125740.
[http://dx.doi.org/10.1016/j.cej.2020.125740]
[106]
Köçkar, H.; Karaagac, O.; Özel, F. Effects of biocompatible surfactants on structural and corresponding magnetic properties of iron oxide nanoparticles coated by hydrothermal process. J. Magn. Magn. Mater., 2019, 474, 332-336.
[http://dx.doi.org/10.1016/j.jmmm.2018.11.053]
[107]
Glasgow, W.; Fellows, B.; Qi, B.; Darroudi, T.; Kitchens, C.; Ye, L.; Crawford, T.M.; Mefford, O.T. Continuous synthesis of iron oxide (Fe3O4) nanoparticles via thermal decomposition. Particuology, 2016, 26, 47-53.
[http://dx.doi.org/10.1016/j.partic.2015.09.011]
[108]
Bumajdad, A.; Ali, S.; Mathew, A. Characterization of iron hydroxide/oxide nanoparticles prepared in microemulsions stabilized with cationic/non-ionic surfactant mixtures. J. Colloid Interface Sci., 2011, 355(2), 282-292.
[http://dx.doi.org/10.1016/j.jcis.2010.12.022] [PMID: 21232750]
[109]
Ben-Arfa, B.A.E.; Miranda Salvado, I.M.; Ferreira, J.M.F.; Pullar, R.C. Clove and cinnamon: Novel anti-oxidant fuels for preparing magnetic iron oxide particles by the sol-gel auto-ignition method. J. Alloys Compd., 2019, 786, 71-76.
[http://dx.doi.org/10.1016/j.jallcom.2019.01.306]
[110]
Singh, M.; Ulbrich, P.; Prokopec, V.; Svoboda, P.; Šantavá, E.; Štěpánek, F. Vapour phase approach for iron oxide nanoparticle synthesis from solid precursors. J. Solid State Chem., 2013, 200, 150-156.
[http://dx.doi.org/10.1016/j.jssc.2013.01.037]
[111]
Zhou, Y.; Ding, M.; Lyu, W.; Zhen, Q.; Chen, H.; Jiang, M.; Ding, Y.; Zhang, X. A sensitive electrochemical method for indole based on the signal amplification strategy by gold/iron-oxide composite nanoparticles. Anal. Chim. Acta, 2021, 1142, 56-64.
[http://dx.doi.org/10.1016/j.aca.2020.10.055] [PMID: 33280704]
[112]
Khoobi, A.; Soltani, N.; Aghaei, M. Computational design and multivariate statistical analysis for electrochemical sensing platform of iron oxide nanoparticles in sensitive detection of anti-inflammatory drug diclofenac in biological fluids. J. Alloys Compd., 2020, 831, 154715.
[http://dx.doi.org/10.1016/j.jallcom.2020.154715]
[113]
Rybka, J.D. Radiosensitizing properties of magnetic hyperthermia mediated by Superparamagnetic Iron Oxide Nanoparticles (SPIONs) on human cutaneous melanoma cell lines. Rep. Pract. Oncol. Radiother., 2019, 24(2), 152-157.
[http://dx.doi.org/10.1016/j.rpor.2019.01.002] [PMID: 30774558]
[114]
Xu, P.; Shen, Z.; Zhang, B.; Wang, J.; Wu, R. Synthesis and characterization of superparamagnetic iron oxide nanoparticles as calcium-responsive MRI contrast agents. Appl. Surf. Sci., 2016, 389, 560-566.
[http://dx.doi.org/10.1016/j.apsusc.2016.07.160]
[115]
Topel, S.D.; Topel, Ö.; Bostancıoğlu, R.B.; Koparal, A.T. Synthesis and characterization of Bodipy functionalized magnetic iron oxide nanoparticles for potential bioimaging applications. Colloids Surf. B Biointerfaces, 2015, 128, 245-253.
[http://dx.doi.org/10.1016/j.colsurfb.2015.01.043] [PMID: 25707751]
[116]
Singh, K.; Chopra, D.S.; Singh, D.; Singh, N. Optimization and ecofriendly synthesis of iron oxide nanoparticles as potential antioxidant. Arab. J. Chem., 2020, 13(12), 9034-9046.
[http://dx.doi.org/10.1016/j.arabjc.2020.10.025]
[117]
Hauser, A.K.; Mitov, M.I.; Daley, E.F.; McGarry, R.C.; Anderson, K.W.; Hilt, J.Z. Targeted iron oxide nanoparticles for the enhancement of radiation therapy. Biomaterials, 2016, 105, 127-135.
[http://dx.doi.org/10.1016/j.biomaterials.2016.07.032] [PMID: 27521615]
[118]
Yoon, J.; Cho, S.H.; Seong, H. Multifunctional ultrasmall superparamagnetic iron oxide nanoparticles as a theranostic agent. Colloids Surf. A Physicochem. Eng. Asp., 2017, 520, 892-902.
[http://dx.doi.org/10.1016/j.colsurfa.2017.02.080]
[119]
Bhuiyan, M.S.H.; Miah, M.Y.; Paul, S.C.; Aka, T.D.; Saha, O.; Rahaman, M.M.; Sharif, M.J.I.; Habiba, O.; Ashaduzzaman, M. Green synthesis of iron oxide nanoparticle using Carica papaya leaf extract: Application for photocatalytic degradation of remazol yellow RR dye and antibacterial activity. Heliyon, 2020, 6(8), e04603.
[http://dx.doi.org/10.1016/j.heliyon.2020.e04603] [PMID: 32775754]
[120]
Wu, L.; Chen, L.; Liu, F.; Qi, X.; Ge, Y.; Shen, S. Remotely controlled drug release based on iron oxide nanoparticles for specific therapy of cancer. Colloids Surf. B Biointerfaces, 2017, 152, 440-448.
[http://dx.doi.org/10.1016/j.colsurfb.2017.01.015] [PMID: 28183070]
[121]
Wang, Q.; Zhang, J.; Wang, A. Spray-dried magnetic chitosan/Fe3O4/halloysite nanotubes/ofloxacin microspheres for sustained release of ofloxacin. RSC Advances, 2013, 3(45), 23423-23431.
[http://dx.doi.org/10.1039/c3ra43874k]
[122]
Mukhopadhyay, A.; Joshi, N.; Chattopadhyay, K.; De, G. A facile synthesis of PEG-coated magnetite (Fe3O4) nanoparticles and their prevention of the reduction of cytochrome c. ACS Appl. Mater. Interfaces, 2012, 4(1), 142-149.
[http://dx.doi.org/10.1021/am201166m] [PMID: 22111689]
[123]
Makadia, H.K.; Siegel, S.J. Poly Lactic-co-Glycolic Acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers (Basel), 2011, 3(3), 1377-1397.
[http://dx.doi.org/10.3390/polym3031377] [PMID: 22577513]
[124]
Barbeta, V.B.; Jardim, R.F.; Kiyohara, P.K.; Effenberger, F.B.; Rossi, L.M. Magnetic properties of Fe3O4 nanoparticles coated with oleic and dodecanoic acids. J. Appl. Phys., 2010, 107(7), 073913.
[http://dx.doi.org/10.1063/1.3311611]
[125]
Zaloga, J.; Feoktystov, A.; Garamus, V.M.; Karawacka, W.; Ioffe, A.; Brückel, T.; Tietze, R.; Alexiou, C.; Lyer, S. Studies on the adsorption and desorption of mitoxantrone to lauric acid/albumin coated iron oxide nanoparticles. Colloids Surf. B Biointerfaces, 2018, 161, 18-26.
[http://dx.doi.org/10.1016/j.colsurfb.2017.09.057] [PMID: 29035747]
[126]
Silva, L.H.A.; da Silva, J.R.; Ferreira, G.A.; Silva, R.C.; Lima, E.C.; Azevedo, R.B.; Oliveira, D.M. Labeling mesenchymal cells with DMSA-coated gold and iron oxide nanoparticles: Assessment of biocompatibility and potential applications. J. Nanobiotechnology, 2016, 14(1), 59-73.
[http://dx.doi.org/10.1186/s12951-016-0213-x] [PMID: 27431051]
[127]
Cao, Z.; Yang, L.; Ye, Q.; Cui, Q.; Qi, D.; Ziener, U. Transition-metal salt-containing silica nanocapsules elaborated via salt-induced interfacial deposition in inverse miniemulsions as precursor to functional hollow silica particles. Langmuir, 2013, 29(22), 6509-6518.
[http://dx.doi.org/10.1021/la401468t] [PMID: 23679054]
[128]
Samanta, B.; Yan, H.; Fischer, N.O.; Shi, J.; Jerry, D.J.; Rotello, V.M. Protein-passivated Fe(3)O(4) nanoparticles: Low toxicity and rapid heating for thermal therapy. J. Mater. Chem., 2008, 18(11), 1204-1208.
[http://dx.doi.org/10.1039/b718745a] [PMID: 19122852]
[129]
Wei, Z.; Zhou, Z.; Yang, M.; Lin, C.; Zhao, Z.; Huang, D.; Chen, Z.; Gao, J. Multifunctional Ag@Fe2O3 yolk-shell nanoparticles for simultaneous capture, kill, and removal of pathogen. J. Mater. Chem., 2011, 21(41), 16344-16348.
[http://dx.doi.org/10.1039/c1jm13691g]
[130]
Luo, Y.; Luo, J.; Jiang, J.; Zhou, W.; Yang, H.; Qi, X.; Zhang, H.; Fan, H.J.; Yu, D.Y.W.; Li, C.M.; Yu, T. Seed-assisted synthesis of highly ordered TiO2α- Fe2O3 core/shell arrays on carbon textiles for lithium-ion battery applications. Energy Environ. Sci., 2012, 5(4), 6559-6566.
[http://dx.doi.org/10.1039/c2ee03396h]
[131]
Sperling, R.A.; Parak, W.J. Surface modification, functionalization and bioconjugation of colloidal inorganic nanoparticles. Philos. Trans.- Royal Soc., Math. Phys. Eng. Sci., 1915, 2010(368), 1333-1383.
[http://dx.doi.org/10.1098/rsta.2009.0273] [PMID: 20156828]
[132]
Caizer, C.; Savii, C.; Popovici, M. Magnetic behaviour of iron oxide nanoparticles dispersed in a silica matrix. Mater. Sci. Eng. B, 2003, 97(2), 129-134.
[http://dx.doi.org/10.1016/S0921-5107(02)00403-8]
[133]
Zhao, N.; Gao, M. Magnetic janus particles prepared by a flame synthetic approach: Synthesis, characterizations and properties. Adv. Mater., 2009, 21(2), 184-187.
[http://dx.doi.org/10.1002/adma.200800570]
[134]
Wang, C.; Daimon, H.; Sun, S. Dumbbell-like Pt-Fe3O4 nanoparticles and their enhanced catalysis for oxygen reduction reaction. Nano Lett., 2009, 9(4), 1493-1496.
[http://dx.doi.org/10.1021/nl8034724] [PMID: 19260706]
[135]
Hammad, M.; Hardt, S.; Mues, B.; Salamon, S.; Landers, J.; Slabu, I.; Wende, H.; Schulz, C.; Wiggers, H. Gas-phase synthesis of iron oxide nanoparticles for improved magnetic hyperthermia performance. J. Alloys Compd., 2020, 824, 153814.
[http://dx.doi.org/10.1016/j.jallcom.2020.153814]
[136]
Hedayatnasab, Z.; Dabbagh, A.; Abnisa, F.; Wan Daud, W.M.A. Synthesis and in vitro characterization of superparamagnetic iron oxide nanoparticles using a sole precursor for hyperthermia therapy. Mater. Res. Bull., 2020, 132, 110975.
[http://dx.doi.org/10.1016/j.materresbull.2020.110975]
[137]
Khosravi, A.; Hasani, A.; Rahimi, K.; Aliaghaei, A.; Pirani, M.; Azad, N.; Ramezani, F.; Tamimi, A.; Behnam, P.; Raoofi, A.; Fathabadi, F.F.; Abdi, S.; Abdollahifar, M.A.; Hejazi, F. Ameliorating effects of curcumin-loaded Superparamagnetic Iron Oxide Nanoparticles (SPIONs) on the mouse testis exposed to the transient hyperthermia: A molecular and stereological study. Acta Histochem., 2020, 122(8), 151632.
[http://dx.doi.org/10.1016/j.acthis.2020.151632] [PMID: 33128988]
[138]
Zuo, X.; Ding, H.; Zhang, J.; Fang, T.; Zhang, D. Carbothermal treated iron oxide nanoparticles with improving magnetic heating efficiency for hyperthermia. Results Phys., 2022, 32, 105095.
[http://dx.doi.org/10.1016/j.rinp.2021.105095]
[139]
Kirdat, P.N.; Dandge, P.B.; Hagwane, R.M.; Nikam, A.S.; Mahadik, S.P.; Jirange, S.T. Synthesis and characterization of ginger (Z. officinale) extract mediated iron oxide nanoparticles and its antibacterial activity. Mater. Today Proc., 2020, 43, 2826-2831.
[http://dx.doi.org/10.1016/j.matpr.2020.11.422]
[140]
Khadrawy, Y.A.; Hosny, E.N.; Magdy, M.; Mohammed, H.S. Antidepressant effects of curcumin-coated iron oxide nanoparticles in a rat model of depression. Eur. J. Pharmacol., 2021, 908, 174384.
[http://dx.doi.org/10.1016/j.ejphar.2021.174384] [PMID: 34324858]
[141]
Jagathesan, G.; Rajiv, P. Biosynthesis and characterization of iron oxide nanoparticles using Eichhornia crassipes leaf extract and assessing their antibacterial activity. Biocatal. Agric. Biotechnol., 2018, 13, 90-94.
[http://dx.doi.org/10.1016/j.bcab.2017.11.014]
[142]
Patil, R.M.; Thorat, N.D.; Shete, P.B.; Bedge, P.A.; Gavde, S.; Joshi, M.G.; Tofail, S.A.M.; Bohara, R.A. Comprehensive cytotoxicity studies of superparamagnetic iron oxide nanoparticles. Biochem. Biophys. Rep., 2018, 13, 63-72.
[http://dx.doi.org/10.1016/j.bbrep.2017.12.002] [PMID: 29349357]
[143]
Mirgane, N.A.; Shivankar, V.S.; Kotwal, S.B.; Wadhawa, G.C.; Sonawale, M.C. Waste pericarp of Ananas comosus in green synthesis zinc oxide nanoparticles and their application in waste water treatment. Mater. Today Proc., 2021, 37(2), 886-889.
[http://dx.doi.org/10.1016/j.matpr.2020.06.045]
[144]
Chen, D.; Ai, S.; Liang, Z.; Wei, F. Preparation and photocatalytic properties of zinc oxide nanoparticles by microwave-assisted ball milling. Ceram. Int., 2016, 42(2), 3692-3696.
[http://dx.doi.org/10.1016/j.ceramint.2015.10.123]
[145]
Salaün, A.; Hamilton, J.A.; Iacopino, D.; Newcomb, S.B.; Nolan, M.G.; Padmanabhan, S.C.; Povey, I.M.; Salaün, M.; Pemble, M.E. The incorporation of preformed metal nanoparticles in zinc oxide thin films using aerosol assisted chemical vapour deposition. Thin Solid Films, 2010, 518(23), 6921-6926.
[http://dx.doi.org/10.1016/j.tsf.2010.07.051]
[146]
Zamiri, R.; Zakaria, A.; Ahangar, H.A.; Darroudi, M.; Zak, A.K.; Drummen, G.P.C. Aqueous starch as a stabilizer in zinc oxide nanoparticle synthesis via laser ablation. J. Alloys Compd., 2012, 516, 41-48.
[http://dx.doi.org/10.1016/j.jallcom.2011.11.118]
[147]
Thambidurai, S.; Gowthaman, P.; Venkatachalam, M.; Suresh, S.; Kandasamy, M. Morphology dependent photovoltaic performance of zinc oxide-cobalt oxide nanoparticle/nanorod composites synthesized by simple chemical co-precipitation method. J. Alloys Compd., 2021, 852, 156997.
[http://dx.doi.org/10.1016/j.jallcom.2020.156997]
[148]
Kumar, A. Sol gel synthesis of zinc oxide nanoparticles and their application as nano-composite electrode material for supercapacitor. J. Mol. Struct., 2020, 1220, 128654.
[http://dx.doi.org/10.1016/j.molstruc.2020.128654]
[149]
Asha, A.; Madhavan Victor Antony Raj, J.M. Structural and optical analysis of 1d zinc oxide nanoparticles synthesized via hydrothermal method. Mater. Today Proc., 2019, 8, 412-418.
[http://dx.doi.org/10.1016/j.matpr.2019.02.130]
[150]
Yildirim, Ö.A.; Durucan, C. Synthesis of zinc oxide nanoparticles elaborated by microemulsion method. J. Alloys Compd., 2010, 506(2), 944-949.
[http://dx.doi.org/10.1016/j.jallcom.2010.07.125]
[151]
Valour, A.; Cheviré, F.; Tessier, F.; Grasset, F.; Dierre, B.; Jiang, T.; Faulques, E.; Cario, L.; Jobic, S. Preparation of nitrogen doped zinc oxide nanoparticles and thin films by colloidal route and low temperature nitridation process. Solid State Sci., 2016, 54, 30-36.
[152]
Šarić, A.; Despotović, I.; Štefanić, G. Solvothermal synthesis of zinc oxide nanoparticles: A combined experimental and theoretical study. J. Mol. Struct., 2019, 1178, 251-260.
[http://dx.doi.org/10.1016/j.molstruc.2018.10.025]
[153]
Padmanabhan, A.; Kaushik, M.; Niranjan, R.; Richards, J.S.; Ebright, B.; Venkatasubbu, G.D. Zinc Oxide nanoparticles induce oxidative and proteotoxic stress in ovarian cancer cells and trigger apoptosis Independent of p53-mutation status. Appl. Surf. Sci., 2019, 487, 807-818.
[http://dx.doi.org/10.1016/j.apsusc.2019.05.099] [PMID: 32042215]
[154]
Kiyani, M.M.; Butt, M.A.; Rehman, H.; Ali, H.; Hussain, S.A.; Obaid, S.; Arif Hussain, M.; Mahmood, T.; Bokhari, S.A.I. Antioxidant and anti-gout effects of orally administered zinc oxide nanoparticles in gouty mice. J. Trace Elem. Med. Biol., 2019, 56, 169-177.
[http://dx.doi.org/10.1016/j.jtemb.2019.08.012] [PMID: 31479800]
[155]
Jayarambabu, N.; Venkatappa Rao, T.; Rakesh Kumar, R.; Akshaykranth, A.; Shanker, K.; Suresh, V. Anti-hyperglycemic, pathogenic and anticancer activities of Bambusa arundinacea mediated Zinc Oxide nanoparticles. Mater. Today Commun., 2021, 26, 101688.
[http://dx.doi.org/10.1016/j.mtcomm.2020.101688]
[156]
Obeizi, Z.; Benbouzid, H.; Ouchenane, S.; Yılmaz, D.; Culha, M.; Bououdina, M. Biosynthesis of Zinc oxide nanoparticles from essential oil of Eucalyptus globulus with antimicrobial and anti-biofilm activities. Mater. Today Commun., 2020, 25, 101553.
[http://dx.doi.org/10.1016/j.mtcomm.2020.101553]
[157]
Pillai, A.M.; Sivasankarapillai, V.S.; Rahdar, A.; Joseph, J.; Sadeghfar, F.; Anuf, A.R.; Rajesh, K.; Kyzas, G.Z. Green synthesis and characterization of zinc oxide nanoparticles with antibacterial and antifungal activity. J. Mol. Struct., 2020, 1211, 128107.
[http://dx.doi.org/10.1016/j.molstruc.2020.128107]
[158]
Migliorini, F.L.; Sanfelice, R.C.; Mercante, L.A.; Andre, R.S.; Mattoso, L.H.C.; Correa, D.S. Urea impedimetric biosensing using electrospun nanofibers modified with zinc oxide nanoparticles. Appl. Surf. Sci., 2018, 443, 18-23.
[http://dx.doi.org/10.1016/j.apsusc.2018.02.168]
[159]
Khan, R.; Kaushik, A.; Solanki, P.R.; Ansari, A.A.; Pandey, M.K.; Malhotra, B.D. Zinc oxide nanoparticles-chitosan composite film for cholesterol biosensor. Anal. Chim. Acta, 2008, 616(2), 207-213.
[http://dx.doi.org/10.1016/j.aca.2008.04.010] [PMID: 18482605]
[160]
Agarwal, H.; Shanmugam, V.K. Synthesis and optimization of zinc oxide nanoparticles using Kalanchoe pinnata towards the evaluation of its anti-inflammatory activity. J. Drug Deliv. Sci. Technol., 2019, 54, 101291.
[http://dx.doi.org/10.1016/j.jddst.2019.101291]
[161]
Jeyabharathi, S.; Chandramohan, S.; Naveenkumar, S.; Sundar, K.; Muthukumaran, A. Synergistic effects of herbal zinc oxide nanoparticles (ZnONPs) and its anti-hyperglycemic and anti-bacterial effects. Mater. Today Proc., 2021, 36(2), 390-396.
[http://dx.doi.org/10.1016/j.matpr.2020.04.685]
[162]
Hatami, Z.; Ragheb, E.; Jalali, F.; Tabrizi, M.A.; Shamsipur, M. Zinc oxide-gold nanocomposite as a proper platform for label-free DNA biosensor. Bioelectrochemistry, 2020, 133, 107458.
[http://dx.doi.org/10.1016/j.bioelechem.2020.107458] [PMID: 32006859]
[163]
Tang, Q.; Xia, H.; Liang, W.; Huo, X.; Wei, X. Synthesis and characterization of zinc oxide nanoparticles from Morus nigra and its anticancer activity of AGS gastric cancer cells. J. Photochem. Photobiol. B, 2020, 202, 111698.
[http://dx.doi.org/10.1016/j.jphotobiol.2019.111698] [PMID: 31734436]
[164]
Zhang, H.; Liang, Z.; Zhang, J.; Wang, W.; Zhang, H.; Lu, Q. Zinc oxide nanoparticle synthesized from Euphorbia fischeriana root inhibits the cancer cell growth through modulation of apoptotic signaling pathways in lung cancer cells. Arab. J. Chem., 2020, 13(7), 6174-6183.
[http://dx.doi.org/10.1016/j.arabjc.2020.05.020]
[165]
Hemanth Kumar, N.K.; Andia, J.D.; Manjunatha, S.; Murali, M.; Amruthesh, K.N.; Jagannath, S. Antimitotic and DNA-binding potential of biosynthesized ZnO-NPs from leaf extract of Justicia wynaadensis (Nees) Heyne - A medicinal herb. Biocatal. Agric. Biotechnol., 2019, 18, 101024.
[http://dx.doi.org/10.1016/j.bcab.2019.101024]
[166]
Gur, T.; Meydan, I.; Seckin, H.; Bekmezci, M.; Sen, F. Green synthesis, characterization and bioactivity of biogenic zinc oxide nanoparticles. Environ. Res., 2022, 204(Pt A), 111897.
[http://dx.doi.org/10.1016/j.envres.2021.111897] [PMID: 34418450]
[167]
Agarwal, H.; Menon, S.; Shanmugam, V.K. Functionalization of zinc oxide nanoparticles using Mucuna pruriens and its antibacterial activity. Surf. Interfaces, 2020, 19, 100521.
[http://dx.doi.org/10.1016/j.surfin.2020.100521]
[168]
Cross, S.E.; Innes, B.; Roberts, M.S.; Tsuzuki, T.; Robertson, T.A.; McCormick, P. Human skin penetration of sunscreen nanoparticles: In vitro assessment of a novel micronized zinc oxide formulation. Skin Pharmacol. Physiol., 2007, 20(3), 148-154.
[http://dx.doi.org/10.1159/000098701] [PMID: 17230054]
[169]
Gulson, B.; McCall, M.; Korsch, M.; Gomez, L.; Casey, P.; Oytam, Y.; Taylor, A.; McCulloch, M.; Trotter, J.; Kinsley, L.; Greenoak, G. Small amounts of zinc from zinc oxide particles in sunscreens 3 applied outdoors are absorbed through human skin. Toxicol. Sci., 2010, 118(1), 140-149.
[170]
Mohammed, Y.H.; Holmes, A.; Haridass, I.N.; Sanchez, W.Y.; Studier, H.; Grice, J.E.; Benson, H.A.E.; Roberts, M.S. Support for the safe use of zinc oxide nanoparticle sunscreens: Lack of skin penetration or cellular toxicity after repeated application in volunteers. J. Invest. Dermatol., 2019, 139(2), 308-315.
[http://dx.doi.org/10.1016/j.jid.2018.08.024] [PMID: 30448212]
[171]
Uschakov, V.; Karpov, I.V.; Lepeshev, A.A.; Petrov, M.I. Plasma-chemical synthesis of copper oxide nanoparticles in a low-pressure arc discharge. Vacuum, 2016, 133, 25-30.
[http://dx.doi.org/10.1016/j.vacuum.2016.08.007]
[172]
Jafari, A.; Tahani, K.; Dastan, D.; Asgary, S.; Shi, Z.; Yin, X-T.; Zhou, W-D.; Garmestani, H.; Ţălu, Ş. Ion implantation of copper oxide thin films; statistical and experimental results. Surf. Interfaces, 2020, 18, 100463.
[http://dx.doi.org/10.1016/j.surfin.2020.100463]
[173]
Kusior, A.; Kollbek, K.; Kowalski, K.; Borysiewicz, M.; Wojciechowski, T.; Adamczyk, A.; Trenczek-Zajac, A.; Radecka, M.; Zakrzewska, K. Sn and Cu oxide nanoparticles deposited on TiO 2 nanoflower 3D substrates by Inert Gas Condensation technique. Appl. Surf. Sci., 2016, 380, 193-202.
[http://dx.doi.org/10.1016/j.apsusc.2016.01.204]
[174]
Khayati, G.R.; Nourafkan, E.; Karimi, G.; Moradgholi, J. Synthesis of cuprous oxide nanoparticles by mechanochemical oxidation of copper in high planetary energy ball mill. Adv. Powder Technol., 2013, 24(1), 301-305.
[http://dx.doi.org/10.1016/j.apt.2012.07.006]
[175]
Chiang, C.Y.; Aroh, K.; Franson, N.; Satsangi, V.R.; Dass, S.; Ehrman, S. Copper oxide nanoparticle made by flame spray pyrolysis for photoelectrochemical water splitting - Part II. Photoelectrochemical study. Int. J. Hydrogen Energy, 2011, 36(24), 15519-15526.
[http://dx.doi.org/10.1016/j.ijhydene.2011.09.041]
[176]
Rangel, W.M.; Boca, Santa R.A.A.; Riella, H.G. A facile method for synthesis of nanostructured copper (II) oxide by coprecipitation. J. Mater. Res. Technol., 2020, 9(1), 994-1004.
[http://dx.doi.org/10.1016/j.jmrt.2019.11.039]
[177]
Cheon, J.; Lee, J.; Kim, J. Inkjet printing using copper nanoparticles synthesized by electrolysis. Thin Solid Films, 2012, 520(7), 2639-2643.
[http://dx.doi.org/10.1016/j.tsf.2011.11.021]
[178]
Solanki, J.N.; Sengupta, R.; Murthy, Z.V.P. Synthesis of copper sulphide and copper nanoparticles with microemulsion method. Solid State Sci., 2010, 12(9), 1560-1566.
[http://dx.doi.org/10.1016/j.solidstatesciences.2010.06.021]
[179]
Wongpisutpaisan, N.; Charoonsuk, P.; Vittayakorn, N.; Pecharapa, W. Sonochemical synthesis and characterization of copper oxide nanoparticles. Energy Procedia, 2011, 9, 404-409.
[http://dx.doi.org/10.1016/j.egypro.2011.09.044]
[180]
Naveen Kumar, J.; Ashok Reddy, V.; Roji Marjorie, S.; Thanikaikarasan, S. Structural, compositional and optical properties of copper oxide nanoparticles by sol-gel method. Mater. Today Proc., 2020, 33(7), 2961-2963.
[181]
Thi, T.V.; Rai, A.K.; Gim, J.; Kim, J. Potassium-doped copper oxide nanoparticles synthesized by a solvothermal method as an anode material for high-performance lithium ion secondary battery. Appl. Surf. Sci., 2014, 305, 617-625.
[http://dx.doi.org/10.1016/j.apsusc.2014.03.144]
[182]
Selvaraj, S.P. Enhanced surface morphology of copper oxide (CuO) nanoparticles and its antibacterial activities. Mater. Today Proc., 2022, 50(7), 2865-2868.
[http://dx.doi.org/10.1016/j.matpr.2020.09.574]
[183]
Sunitha, M.; Dinesh Karthik, A.; Geetha, K. Eco synthesis, spectral and antimicrobial studies of copper oxide (cuo) nanoparticles. Mater. Today Proc., 2020, 29(4), 1229-1234.
[http://dx.doi.org/10.1016/j.matpr.2020.05.563]
[184]
Murugappan, G.; Sreeram, K.J. Nano-biocatalyst: Bi-functionalization of protease and amylase on copper oxide nanoparticles. Colloids Surf. B Biointerfaces, 2021, 197, 111386.
[http://dx.doi.org/10.1016/j.colsurfb.2020.111386] [PMID: 33099145]
[185]
Ramalechume, C.; Shamili, P.; Krishnaveni, R. Synthesis of copper oxide nanoparticles using tree gum extract, its spectral characterization, and a study of its anti- bactericidal properties. Mater. Today Proc., 2020, 33(7), 4151-4155.
[186]
Zhang, Y.; Li, N.; Xiang, Y.; Wang, D.; Zhang, P.; Wang, Y.; Lu, S.; Xu, R.; Zhao, J. A flexible non-enzymatic glucose sensor based on copper nanoparticles anchored on laser-induced graphene. Carbon, 2020, 156, 506-513.
[http://dx.doi.org/10.1016/j.carbon.2019.10.006]
[187]
Zangeneh, M.M.; Ghaneialvar, H.; Akbaribazm, M.; Ghanimatdan, M.; Abbasi, N.; Goorani, S.; Pirabbasi, E.; Zangeneh, A. Novel synthesis of Falcaria vulgaris leaf extract conjugated copper nanoparticles with potent cytotoxicity, antioxidant, antifungal, antibacterial, and cutaneous wound healing activities under in vitro and in vivo condition. J. Photochem. Photobiol. B, 2019, 197, 111556.
[http://dx.doi.org/10.1016/j.jphotobiol.2019.111556] [PMID: 31326842]
[188]
Mariadoss, A.V.A.; Saravanakumar, K.; Sathiyaseelan, A.; Venkatachalam, K.; Wang, M.H. Folic acid functionalized starch encapsulated green synthesized copper oxide nanoparticles for targeted drug delivery in breast cancer therapy. Int. J. Biol. Macromol., 2020, 164, 2073-2084.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.08.036] [PMID: 32784027]
[189]
Yang, Q.; Wang, Y.; Yang, Q.; Gao, Y.; Duan, X.; Fu, Q.; Chu, C.; Pan, X.; Cui, X.; Sun, Y. Cuprous oxide nanoparticles trigger ER stress-induced apoptosis by regulating copper trafficking and overcoming resistance to sunitinib therapy in renal cancer. Biomaterials, 2017, 146, 72-85.
[http://dx.doi.org/10.1016/j.biomaterials.2017.09.008] [PMID: 28898759]
[190]
Li, J.H.; Tang, J.X.; Wei, L.; He, S.; Ma, L.; Shen, W.; Kang, F.; Huang, Z. Preparation and performance of electrochemical glucose sensors based on copper nanoparticles loaded on flexible graphite sheet. Xinxing Tan Cailiao. N. Carbon Mater., 2020, 35(4), 410-419.
[http://dx.doi.org/10.1016/S1872-5805(20)60498-X]
[191]
Yang, M.; He, J.; Hu, X.; Yan, C.; Cheng, Z.; Zhao, Y.; Zuo, G. Copper oxide nanoparticle sensors for hydrogen cyanide detection: Unprecedented selectivity and sensitivity. Sens. Actuators B Chem., 2011, 155(2), 692-698.
[http://dx.doi.org/10.1016/j.snb.2011.01.031]
[192]
Anreddy, R.N.R. Copper oxide nanoparticles induces oxidative stress and liver toxicity in rats following oral exposure. Toxicol. Rep., 2018, 5, 903-904.
[http://dx.doi.org/10.1016/j.toxrep.2018.08.022] [PMID: 30191135]
[193]
Singh, A.V.; Maharjan, R.S.; Jungnickel, H.; Romanowski, H.; Hachenberger, Y.U.; Reichardt, P.; Bierkandt, F.; Siewert, K.; Gadicherla, A.; Laux, P.; Luch, A. Evaluating particle emissions and toxicity of 3d pen printed filaments with metal nanoparticles as additives: In vitro and in silico discriminant function analysis. ACS Sustain. Chem. Eng., 2021, 9(35), 11724-11737.
[http://dx.doi.org/10.1021/acssuschemeng.1c02589]
[194]
Saravanakumar, K.; Shanmugam, S.; Varukattu, N.B. MubarakAli, D.; Kathiresan, K.; Wang, M.H. Biosynthesis and characterization of copper oxide nanoparticles from indigenous fungi and its effect of photothermolysis on human lung carcinoma. J. Photochem. Photobiol. B, 2019, 190, 103-109.
[http://dx.doi.org/10.1016/j.jphotobiol.2018.11.017] [PMID: 30508758]
[195]
Tavakoli, A.; Hashemzadeh, M.S. Inhibition of herpes simplex virus type 1 by copper oxide nanoparticles. J. Virol. Methods, 2020, 275, 113688.
[http://dx.doi.org/10.1016/j.jviromet.2019.113688] [PMID: 31271792]
[196]
Fahmy, H.M.; Ebrahim, N.M.; Gaber, M.H. In vitro evaluation of copper/copper oxide nanoparticles cytotoxicity and genotoxicity in normal and cancer lung cell lines. J. Trace Elem. Med. Biol., 2020, 60, 126481.
[http://dx.doi.org/10.1016/j.jtemb.2020.126481] [PMID: 32135445]
[197]
Hemmati, S.; Ahmeda, A.; Salehabadi, Y.; Zangeneh, A.; Zangeneh, M.M. Synthesis, characterization, and evaluation of cytotoxicity, antioxidant, antifungal, antibacterial, and cutaneous wound healing effects of copper nanoparticles using the aqueous extract of Strawberry fruit and L-Ascorbic acid. Polyhedron, 2020, 180, 114425.
[http://dx.doi.org/10.1016/j.poly.2020.114425]
[198]
Gnanavel, V.; Palanichamy, V.; Roopan, S.M. Biosynthesis and characterization of copper oxide nanoparticles and its anticancer activity on human colon cancer cell lines (HCT-116). J. Photochem. Photobiol. B, 2017, 171, 133-138.
[http://dx.doi.org/10.1016/j.jphotobiol.2017.05.001] [PMID: 28501691]
[199]
Dey, A.; Manna, S.; Chattopadhyay, S.; Mondal, D.; Chattopadhyay, D.; Raj, A.; Das, S.; Bag, B.G.; Roy, S. Azadirachta indica leaves mediated green synthesized copper oxide nanoparticles induce apoptosis through activation of TNF-α and caspases signaling pathway against cancer cells. J. Saudi Chem. Soc., 2019, 23(2), 222-238.
[http://dx.doi.org/10.1016/j.jscs.2018.06.011]
[200]
Dey, A.; Manna, S.; Kumar, S.; Chattopadhyay, S.; Saha, B.; Roy, S. Immunostimulatory effect of chitosan conjugated green copper oxide nanoparticles in tumor immunotherapy. Cytokine, 2020, 127, 154958.
[http://dx.doi.org/10.1016/j.cyto.2019.154958] [PMID: 31923815]
[201]
Zhang, Z.; Chinnathambi, A.; Ali Alharbi, S.; Bai, L. Copper oxide nanoparticles from Rabdosia rubescens attenuates the complete Freund’s adjuvant (CFA) induced rheumatoid arthritis in rats via suppressing the inflammatory proteins COX-2/PGE2. Arab. J. Chem., 2020, 13(6), 5639-5650.
[http://dx.doi.org/10.1016/j.arabjc.2020.04.005]
[202]
Siddiqui, V.U.; Ansari, A.; Chauhan, R.; Siddiqi, W.A. Green synthesis of copper oxide (CuO) nanoparticles by Punica granatum peel extract. Mater. Today Proc., 2021, 36(3), 751-755.
[http://dx.doi.org/10.1016/j.matpr.2020.05.504]
[203]
Ramzan, M.; Obodo Raphael, M.; Mukhtar, S.; Ilyas, S.Z.; Aziz, F.; Thovhogi, N. Green synthesis of copper oxide nanoparticles using Cedrus deodara aqueous extract for antibacterial activity. Mater. Today Proc., 2021, 36(2), 576-581.
[http://dx.doi.org/10.1016/j.matpr.2020.05.472]
[204]
Kiriyanthan, R.M.; Sharmili, S.A.; Balaji, R.; Jayashree, S.; Mahboob, S.; Al-Ghanim, K.A.; Al-Misned, F.; Ahmed, Z.; Govindarajan, M.; Vaseeharan, B. Photocatalytic, antiproliferative and antimicrobial properties of copper nanoparticles synthesized using Manilkara zapota leaf extract: A photodynamic approach. Photodiagn. Photodyn. Ther., 2020, 32, 102058.
[http://dx.doi.org/10.1016/j.pdpdt.2020.102058] [PMID: 33065306]
[205]
Guo, J.; Wang, X.; Xu, B. One-step synthesis of carbon-onion-supported platinum nanoparticles by arc discharge in an aqueous solution. Mater. Chem. Phys., 2009, 113(1), 179-182.
[http://dx.doi.org/10.1016/j.matchemphys.2008.07.039]
[206]
Thakar, M.A.; Saurabh Jha, S.; Phasinam, K. X Ray Diffraction (XRD) analysis and evaluation of antioxidant activity of copper oxide nanoparticles synthesized from leaf extract of Cissus vitiginea. Mater. Today Proc., 2021.
[http://dx.doi.org/10.1016/j.matpr.2021.05.410]
[207]
Miyazawa, K.; Shimomura, S.; Yoshitake, M.; Tanaka, Y. HRTEM structural characterization of platinum nanoparticles loaded on carbon black particles using focused ion beam milling. Mater. Lett., 2019, 237, 96-100.
[http://dx.doi.org/10.1016/j.matlet.2018.11.086]
[208]
Bornacelli, J.; Silva-Pereyra, H.G.; Rodríguez-Fernández, L.; Avalos-Borja, M.; Oliver, A. From photoluminescence emissions to plasmonic properties in platinum nanoparticles embedded in silica by ion implantation. J. Lumin., 2016, 179, 8-15.
[http://dx.doi.org/10.1016/j.jlumin.2016.06.032]
[209]
Němec, T.; Šonský, J.; Gruber, J.; de Prado, E.; Kupčík, J.; Klementová, M. Platinum and platinum oxide nanoparticles generated by unipolar spark discharge. J. Aerosol Sci., 2020, 141, 105502.
[http://dx.doi.org/10.1016/j.jaerosci.2019.105502]
[210]
Ho, P.Y.; Yiu, S.C.; Wu, D.Y.; Ho, C-L.; Wong, W-Y. One-step synthesis of platinum nanoparticles by pyrolysis of a polyplatinyne polymer. J. Organomet. Chem., 2017, 849-850, 4-9.
[http://dx.doi.org/10.1016/j.jorganchem.2017.06.016]
[211]
Aritonang, H.F.; Onggo, D.; Ciptati, C.; Radiman, C.L. Synthesis of platinum nanoparticles from K2PtCl4 solution using bacterial cellulose matrix. J. Nanoparticles, 2014, 2014, 285954.
[http://dx.doi.org/10.1155/2014/285954]
[212]
Mizukoshi, Y.; Takagi, E.; Okuno, H.; Oshima, R.; Maeda, Y.; Nagata, Y. Preparation of platinum nanoparticles by sonochemical reduction of the Pt(IV) ions: Role of surfactants. Ultrason. Sonochem., 2001, 8(1), 1-6.
[http://dx.doi.org/10.1016/S1350-4177(00)00027-4] [PMID: 11105315]
[213]
Yadav, O.P.; Palmqvist, A.; Cruise, N.; Holmberg, K. Synthesis of platinum nanoparticles in microemulsions and their catalytic activity for the oxidation of carbon monoxide. Colloids Surf. A Physicochem. Eng. Asp., 2003, 221(1-3), 131-134.
[http://dx.doi.org/10.1016/S0927-7757(03)00141-9]
[214]
Li, C.; Li, D.; Zhao, Z.S.; Duan, X-M.; Hou, W. Platinum nanoparticles from hydrosilylation reaction: Carbosilane dendrimer as capping agent. Colloids Surf. A Physicochem. Eng. Asp., 2010, 366(1-3), 45-49.
[http://dx.doi.org/10.1016/j.colsurfa.2010.05.013]
[215]
Zhang, L.M.; Sui, X.L.; Zhao, L.; Zhang, J-J.; Gu, D-M.; Wang, Z-B. Nitrogen-doped carbon nanotubes for high-performance platinum-based catalysts in methanol oxidation reaction. Carbon, 2016, 108, 561-567.
[http://dx.doi.org/10.1016/j.carbon.2016.07.059]
[216]
Koebel, M.M.; Jones, L.C.; Somorjai, G.A. Preparation of size-tunable, highly monodisperse PVP-protected Pt-nanoparticles by seed-mediated growth. J. Nanopart. Res., 2008, 10(6), 1063-1069.
[http://dx.doi.org/10.1007/s11051-008-9370-7]
[217]
Gu, J.; Zhang, Z.; Ding, L.; Huang, K.; Xue, N.; Peng, L.; Guo, X.; Ding, W. Platinum nanoparticles encapsulated in HZSM-5 crystals as an efficient catalyst for green production of p-aminophenol. Catal. Commun., 2017, 97, 98-101.
[http://dx.doi.org/10.1016/j.catcom.2017.04.028]
[218]
Barman, S.C.; Hossain, M.F.; Park, J.Y. Soft surfactant-assisted uniformly dispersed platinum nanoparticles for high performance electrochemical non-enzymatic glucose sensing platform. J. Electroanal. Chem. (Lausanne), 2018, 824, 121-127.
[http://dx.doi.org/10.1016/j.jelechem.2018.07.028]
[219]
Eramabadi, P.; Masoudi, M.; Makhdoumi, A.; Mashreghi, M. Microbial Cell Lysate Supernatant (CLS) alteration impact on platinum nanoparticles fabrication, characterization, antioxidant and antibacterial activity. Mater. Sci. Eng. C, 2020, 117, 111292.
[http://dx.doi.org/10.1016/j.msec.2020.111292] [PMID: 32919653]
[220]
Gurunathan, S.; Jeyaraj, M.; La, H.; Yoo, H.; Choi, Y.; Do, J.T.; Park, C.; Kim, J.H.; Hong, K. Anisotropic platinum nanoparticle-induced cytotoxicity, apoptosis, inflammatory response, and transcriptomic and molecular pathways in human acute monocytic leukemia cells. Int. J. Mol. Sci., 2020, 21(2), 440.
[http://dx.doi.org/10.3390/ijms21020440] [PMID: 31936679]
[221]
Jiang, Y.; Sun, D.; Liang, Z.; Chen, L.; Zhang, Y.; Chen, Z. Label-free and competitive aptamer cytosensor based on layer-by-layer assembly of DNA-platinum nanoparticles for ultrasensitive determination of tumor cells. Sens. Actuators B Chem., 2018, 262, 35-43.
[http://dx.doi.org/10.1016/j.snb.2018.01.194]
[222]
Jawaid, P.; Rehman, M.U.; Hassan, M.A.; Zhao, Q.L.; Li, P.; Miyamoto, Y.; Misawa, M.; Ogawa, R.; Shimizu, T.; Kondo, T. Effect of platinum nanoparticles on cell death induced by ultrasound in human lymphoma U937 cells. Ultrason. Sonochem., 2016, 31, 206-215.
[http://dx.doi.org/10.1016/j.ultsonch.2015.12.013] [PMID: 26964942]
[223]
Huff, C.; Biehler, E.; Quach, Q.; Long, J.M.; Abdel-Fattah, T.M. Synthesis of highly dispersive platinum nanoparticles and their application in a hydrogen generation reaction. Colloids Surf. A Physicochem. Eng. Asp., 2021, 610, 125734.
[http://dx.doi.org/10.1016/j.colsurfa.2020.125734]
[224]
Fu, B.; Dang, M.; Tao, J.; Li, Y.; Tang, Y. Mesoporous platinum nanoparticle-based nanoplatforms for combined chemo-photothermal breast cancer therapy. J. Colloid Interface Sci., 2020, 570, 197-204.
[http://dx.doi.org/10.1016/j.jcis.2020.02.051] [PMID: 32151829]
[225]
Dobrucka, R. Biofabrication of platinum nanoparticles using Fumariae herba extract and their catalytic properties. Saudi J. Biol. Sci., 2019, 26(1), 31-37.
[http://dx.doi.org/10.1016/j.sjbs.2016.11.012] [PMID: 30622404]
[226]
Manikandan, M.; Hasan, N.; Wu, H.F. Platinum nanoparticles for the photothermal treatment of Neuro 2A cancer cells. Biomaterials, 2013, 34(23), 5833-5842.
[http://dx.doi.org/10.1016/j.biomaterials.2013.03.077] [PMID: 23642996]
[227]
Eltaweil, A.S.; Fawzy, M.; Hosny, M.; Abd El-Monaem, E.M.; Tamer, T.M.; Omer, A.M. Green synthesis of platinum nanoparticles using Atriplex halimus leaves for potential antimicrobial, antioxidant, and catalytic applications. Arab. J. Chem., 2022, 15(1), 103517.
[http://dx.doi.org/10.1016/j.arabjc.2021.103517]
[228]
Selvi, A.M.; Palanisamy, S.; Jeyanthi, S.; Vinosha, M.; Mohandoss, S.; Tabarsa, M.; You, S.G.; Kannapiran, E.; Prabhu, N.M. Synthesis of Tragia involucrata mediated platinum nanoparticles for comprehensive therapeutic applications: Antioxidant, antibacterial and mitochondria-associated apoptosis in HeLa cells. Process Biochem., 2020, 98, 21-33.
[http://dx.doi.org/10.1016/j.procbio.2020.07.008]
[229]
Nadaroglu, H.; Gungor, A.A.; Ince, S.; Babagil, A. Green synthesis and characterisation of platinum nanoparticles using quail egg yolk. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2017, 172, 43-47.
[http://dx.doi.org/10.1016/j.saa.2016.05.023] [PMID: 27238411]
[230]
Daneshvar, F.; Salehi, F.; Karimi, M.; Vais, R.D.; Mosleh-Shirazi, M.A.; Sattarahmady, N. Combined X-ray radiotherapy and laser photothermal therapy of melanoma cancer cells using dual-sensitization of platinum nanoparticles. J. Photochem. Photobiol. B, 2020, 203, 111737.
[http://dx.doi.org/10.1016/j.jphotobiol.2019.111737] [PMID: 31862636]
[231]
Ullah, S.; Ahmad, A.; Wang, A.; Raza, M.; Jan, A.U.; Tahir, K.; Rahman, A.U.; Qipeng, Y. Bio-fabrication of catalytic platinum nanoparticles and their in vitro efficacy against lungs cancer cells line (A549). J. Photochem. Photobiol. B, 2017, 173, 368-375.
[http://dx.doi.org/10.1016/j.jphotobiol.2017.06.018] [PMID: 28646755]
[232]
Tahir, K.; Nazir, S.; Ahmad, A.; Li, B.; Khan, A.U.; Khan, Z.U.; Khan, F.U.; Khan, Q.U.; Khan, A.; Rahman, A.U. Facile and green synthesis of phytochemicals capped platinum nanoparticles and in vitro their superior antibacterial activity. J. Photochem. Photobiol. B, 2017, 166, 246-251.
[http://dx.doi.org/10.1016/j.jphotobiol.2016.12.016] [PMID: 28011434]
[233]
Al-Radadi, N.S. Green synthesis of platinum nanoparticles using Saudi’s Dates extract and their usage on the cancer cell treatment. Arab. J. Chem., 2019, 12(3), 330-349.
[http://dx.doi.org/10.1016/j.arabjc.2018.05.008]
[234]
Yamagishi, Y.; Watari, A.; Hayata, Y.; Li, X.; Kondoh, M.; Yoshioka, Y.; Tsutsumi, Y.; Yagi, K. Acute and chronic nephrotoxicity of platinum nanoparticles in mice. Nanoscale Res. Lett., 2013, 8(1), 395.
[http://dx.doi.org/10.1186/1556-276X-8-395] [PMID: 24059288]
[235]
Wolfson, A.; Levy-Ontman, O. Development and application of palladium nanoparticles on renewable polysaccharides as catalysts for the Suzuki cross-coupling of halobenzenes and phenylboronic acids. Molecular Catalysis, 2020, 493, 111048.
[http://dx.doi.org/10.1016/j.mcat.2020.111048]
[236]
Das, P.; Linert, W. Schiff base-derived homogeneous and heterogeneous palladium catalysts for the Suzuki-Miyaura reaction. Coord. Chem. Rev., 2016, 311, 1-23.
[http://dx.doi.org/10.1016/j.ccr.2015.11.010]
[237]
Li, Y.; Boone, E.; El-Sayed, M.A. Size effects of PVP-Pd nanoparticles on the catalytic Suzuki reactions in aqueous solution. Langmuir, 2002, 18(12), 4921-4925.
[http://dx.doi.org/10.1021/la011469q]
[238]
Lichtenberger, J.; Lee, D.; Iglesia, E. Catalytic oxidation of methanol on Pd metal and oxide clusters at near-ambient temperatures. Phys. Chem. Chem. Phys., 2007, 9(35), 4902-4906.
[http://dx.doi.org/10.1039/b707465d] [PMID: 17912420]
[239]
Pramanik, S.; Das, M.R.; Das, D.; Das, P. Sustainable redox chemistry route to multifaceted fe-pd heteronanostructure: Delving into the synergistic influence in catalysis. ChemistrySelect, 2017, 2(16), 4577-4585.
[http://dx.doi.org/10.1002/slct.201700714]
[240]
Nandi, D.; Siwal, S.; Choudhary, M.; Mallick, K. Carbon nitride supported palladium nanoparticles: An active system for the reduction of aromatic nitro-compounds. Appl. Catal. A Gen., 2016, 523, 31-38.
[http://dx.doi.org/10.1016/j.apcata.2016.04.004]
[241]
Horwat, D.; Zakharov, D.I.; Endrino, J.L.; Soldera, F.; Anders, A.; Migot, S.; Karoum, R.; Vernoux, P.; Pierson, J.F. Chemistry, phase formation, and catalytic activity of thin palladium-containing oxide films synthesized by plasma-assisted physical vapor deposition. Surf. Coat. Tech., 2011, 205, S171-S177.
[http://dx.doi.org/10.1016/j.surfcoat.2010.12.021]
[242]
Ismail, A.M.; El-Newehy, M.H.; El-Naggar, M.E.; Meera Moydeen, A.; Menazea, A.A. Enhancement the electrical conductivity of the synthesized polyvinylidene fluoride/polyvinyl chloride composite doped with palladium nanoparticles via laser ablation. J. Mater. Res. Technol., 2020, 9(5), 11178-11188.
[http://dx.doi.org/10.1016/j.jmrt.2020.08.013]
[243]
Sathishkumar, M.; Sneha, K.; Kwak, I.S.; Mao, J.; Tripathy, S.J.; Yun, Y.S. Phyto-crystallization of palladium through reduction process using Cinnamom zeylanicum bark extract. J. Hazard. Mater., 2009, 171(1-3), 400-404.
[http://dx.doi.org/10.1016/j.jhazmat.2009.06.014] [PMID: 19576689]
[244]
Seku, K.; Sulaiman Hussaini, S.; Golla, N.; Mangatayaru, K. G.; D, S.M.V.; Rapolu, S.; Bandi, R.; Reddy G, B. Microwave-assisted synthesis of palladium nanoparticles using Frankincense resin and evaluation of their catalytic properties. Mater. Lett., 2020, 278, 128427.
[http://dx.doi.org/10.1016/j.matlet.2020.128427]
[245]
Kumar, R.; da Silva, E.T.S.G.; Singh, R.K.; Savu, R.; Alaferdov, A.V.; Fonseca, L.C.; Carossi, L.C.; Singh, A.; Khandka, S.; Kar, K.K.; Alves, O.L.; Kubota, L.T.; Moshkalev, S.A. Microwave-assisted synthesis of palladium nanoparticles intercalated nitrogen doped reduced graphene oxide and their electrocatalytic activity for direct-ethanol fuel cells. J. Colloid Interface Sci., 2018, 515, 160-171.
[http://dx.doi.org/10.1016/j.jcis.2018.01.028] [PMID: 29335183]
[246]
Kim, H.S.; Kim, J.D.; Choi, H.C.; Lee, S. UV-irradiation-mediated palladium nanoparticle catalytic system: Heck and decarboxylative coupling reactions. Molecular Catalysis, 2017, 441, 21-27.
[http://dx.doi.org/10.1016/j.mcat.2017.07.015]
[247]
Nemamcha, A.; Moumeni, H.; Rehspringer, J.L. PVP Protective mechanism of palladium nanoparticles obtained by sonochemical process. Phys. Procedia, 2009, 2(3), 713-717.
[http://dx.doi.org/10.1016/j.phpro.2009.11.015]
[248]
Bonet, F.; Grugeon, S.; Herrera Urbina, R. In situ deposition of silver and palladium nanoparticles prepared by the polyol process, and their performance as catalytic converters of automobile exhaust gases. Solid State Sciences, 2002, 4, 665-670.
[249]
Liang, C.; Han, J.; Shen, K.; Wang, L.; Zhao, D.; Freeman, H.S. Palladium nanoparticle microemulsions: Formation and use in catalytic hydrogenation of o-chloronitrobenzene. Chem. Eng. J., 2010, 165(2), 709-713.
[http://dx.doi.org/10.1016/j.cej.2010.10.022]
[250]
Ding, K.; Yang, G. HCl-assisted pyrolysis of PdCl2 to immobilize palladium nanoparticles on multi-walled carbon nanotubes. Mater. Chem. Phys., 2010, 123(2-3), 498-501.
[http://dx.doi.org/10.1016/j.matchemphys.2010.05.003]
[251]
Bisson, L.; Boissiere, C.; Nicole, L.; Grosso, D.; Jolivet, J.P.; Thomazeau, C.; Uzio, D.; Berhault, G.; Sanchez, C. Formation of palladium nanostructures in a seed-mediated synthesis through an oriented-attachment-directed aggregation. Chem. Mater., 2009, 21(13), 2668-2678.
[http://dx.doi.org/10.1021/cm803421v]
[252]
Chen, H.; Wei, G.; Ispas, A.; Hickey, S.G.; Eychmüller, A. Synthesis of palladium nanoparticles and their applications for surface-enhanced Raman scattering and electrocatalysis. J. Phys. Chem. C, 2010, 114(50), 21976-21981.
[http://dx.doi.org/10.1021/jp106623y]
[253]
Téllez, V.C.; Portillo, M.C.; Santiesteban, H.J.; Castillo, M.P.; Santiago, A.C.; Mora-Ramírez, M.A.; Coyotecatl, H.A.; Moreno, O.P. Green synthesis of palladium mixed with PdO nanoparticles by chemical bath deposition. Opt. Mater., 2021, 112, 110747.
[http://dx.doi.org/10.1016/j.optmat.2020.110747]
[254]
Yang, X.; Li, Q.; Wang, H.; Huang, J.; Lin, L.; Wang, W.; Sun, D.; Su, Y.; Opiyo, J.B.; Hong, L.; Wang, Y.; He, N.; Jia, L. Green synthesis of palladium nanoparticles using broth of Cinnamomum camphora leaf. J. Nanopart. Res., 2010, 12(5), 1589-1598.
[http://dx.doi.org/10.1007/s11051-009-9675-1]
[255]
Jamwal, N.; Sodhi, R.K.; Gupta, P.; Paul, S. Nano Pd(0) supported on cellulose: A highly efficient and recyclable heterogeneous catalyst for the Suzuki coupling and aerobic oxidation of benzyl alcohols under liquid phase catalysis. Int. J. Biol. Macromol., 2011, 49(5), 930-935.
[http://dx.doi.org/10.1016/j.ijbiomac.2011.08.013] [PMID: 21871916]
[256]
Khajeh Dangolani, S.; Sharifat, S.; Panahi, F.; Khalafi-Nezhad, A. Immobilized palladium nanoparticles on a cyclodextrin-polyurethane nanosponge (Pd-CD-PU-NS): An efficient catalyst for cyanation reaction in aqueous media. Inorg. Chim. Acta, 2019, 494, 256-265.
[http://dx.doi.org/10.1016/j.ica.2019.05.021]
[257]
Bhardwaj, P.; Barman, P.B.; Hazra, S.K. Shape dependent hydrogen response in palladium nanoparticle based sensors. Mater. Today Proc., 2020, 28, 218-222.
[http://dx.doi.org/10.1016/j.matpr.2020.01.585]
[258]
Ullah, S.; Ahmad, A.; Khan, A.; Zhang, J.; Raza, M.; Rahman, A.U.; Tariq, M.; Ali Khan, U.; Zada, S.; Yuan, Q. Palladium nanoparticles synthesis, characterization using glucosamine as the reductant and stabilizing agent to explore their antibacterial & catalytic applications. Microb. Pathog., 2018, 125, 150-157.
[http://dx.doi.org/10.1016/j.micpath.2018.09.020] [PMID: 30217515]
[259]
Rokade, S.S.; Joshi, K.A.; Mahajan, K. Glob j nanomed novel anticancer platinum and palladium nanoparticles from Barleria prionitis. Glob. J. Nanomed., 2017, 2, 00102-00110.
[260]
Jia, L.; Zhang, Q.; Li, Q.; Song, H. The biosynthesis of palladium nanoparticles by antioxidants in Gardenia jasminoides Ellis: Long lifetime nanocatalysts for p-nitrotoluene hydrogenation. Nanotechnology, 2009, 20(38), 385601.
[http://dx.doi.org/10.1088/0957-4484/20/38/385601] [PMID: 19713585]
[261]
Sharmila, G.; Haries, S.; Farzana Fathima, M.; Geetha, S.; Manoj Kumar, N.; Muthukumaran, C. Enhanced catalytic and antibacterial activities of phytosynthesized palladium nanoparticles using Santalum album leaf extract. Powder Technol., 2017, 320, 22-26.
[http://dx.doi.org/10.1016/j.powtec.2017.07.026]
[262]
Sharmila, G.; Farzana Fathima, M.; Haries, S.; Geetha, S.; Manoj Kumar, N.; Muthukumaran, C. Green synthesis, characterization and antibacterial efficacy of palladium nanoparticles synthesized using Filicium decipiens leaf extract. J. Mol. Struct., 2017, 1138, 35-40.
[http://dx.doi.org/10.1016/j.molstruc.2017.02.097]
[263]
Gnanasekar, S.; Murugaraj, J.; Dhivyabharathi, B.; Krishnamoorthy, V.; Jha, P.K.; Seetharaman, P.; Vilwanathan, R.; Sivaperumal, S. Antibacterial and cytotoxicity effects of biogenic palladium nanoparticles synthesized using fruit extract of Couroupita guianensis Aubl. J. Appl. Biomed., 2018, 16(1), 59-65.
[http://dx.doi.org/10.1016/j.jab.2017.10.001]
[264]
Rabiee, N.; Bagherzadeh, M.; Kiani, M.; Ghadiri, A.M. Rosmarinus officinalis directed palladium nanoparticle synthesis: Investigation of potential anti-bacterial, anti-fungal and Mizoroki-Heck catalytic activities. Adv. Powder Technol., 2020, 31(4), 1402-1411.
[http://dx.doi.org/10.1016/j.apt.2020.01.024]
[265]
Dogra, V.; Kaur, G.; Kumar, R.; Kumar, S. Toxicity assessment of palladium oxide nanoparticles derived from metallosurfactants using multi assay techniques in Allium sativum. Colloids Surf. B Biointerfaces, 2020, 187, 110752.
[http://dx.doi.org/10.1016/j.colsurfb.2019.110752] [PMID: 31911039]
[266]
Hussain, N. Regulatory aspects in the pharmaceutical development of nanoparticle drug delivery systems designed to cross the intestinal epithelium and M-cells. Int. J. Pharm., 2016, 514(1), 15-23.
[http://dx.doi.org/10.1016/j.ijpharm.2016.07.053] [PMID: 27863658]
[267]
On, E.; Kara, M. Analytical approach to the waste management of nanomaterials in developing countries. Frontiers Drug Chemistry Clinical Res., 2019, 2(1), 1-5.
[http://dx.doi.org/10.15761/FDCCR.1000117]
[268]
Bérubé, K.A.; Aufderheide, M.; Breheny, D.; Clothier, R.; Combes, R.; Duffin, R.; Forbes, B.; Gaca, M.; Gray, A.; Hall, I.; Kelly, M.; Lethem, M.; Liebsch, M.; Merolla, L.; Morin, J-P.; Seagrave, J.C.; Swartz, M.A.; Tetley, T.D.; Umachandran, M. In vitro models of inhalation toxicity and disease. Altern. Lab. Anim., 2009, 37, 89-141.
[269]
Artzy-Schnirman, A.; Hobi, N.; Schneider-Daum, N.; Guenat, O.T.; Lehr, C.M.; Sznitman, J. Advanced in vitro lung-on-chip platforms for inhalation assays: From prospect to pipeline. Eur. J. Pharm. Biopharm., 2019, 144, 11-17.
[http://dx.doi.org/10.1016/j.ejpb.2019.09.006] [PMID: 31499161]
[270]
Singh, A.V.; Romeo, A.; Scott, K.; Wagener, S.; Leibrock, L.; Laux, P.; Luch, A.; Kerkar, P.; Balakrishnan, S.; Dakua, S.P.; Park, B.W. Emerging technologies for in vitro inhalation toxicology. Adv. Healthc. Mater., 2021, 10(18), e2100633.
[http://dx.doi.org/10.1002/adhm.202100633] [PMID: 34292676]
[271]
Singh, A.V.; Maharjan, R.S.; Kromer, C.; Laux, P.; Luch, A.; Vats, T.; Chandrasekar, V.; Dakua, S.P.; Park, B.W. Advances in smoking related in vitro inhalation toxicology: A perspective case of challenges and opportunities from progresses in lung-on-chip technologies. Chem. Res. Toxicol., 2021, 34(9), 1984-2002.
[http://dx.doi.org/10.1021/acs.chemrestox.1c00219] [PMID: 34397218]
[272]
Drug Products, Including Biological Products, that Contain Nanomaterials- Guidance for Industry. Available from: https://www.fda.gov/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/default.htm
[273]
Amoabediny, H.; Naderi, A.; Malakootikhah, J.; Koohi, M.K.; Mortazavi, S.A.; Naderi, M.; Rashedi, H. Guidelines for safe handling, use and disposal of nanoparticles. J. Phys. Conf. Ser., 2009, 170, 012037.
[http://dx.doi.org/10.1088/1742-6596/170/1/012037]
[274]
Sooklert, K.; Wongjarupong, A.; Cherdchom, S.; Wongjarupong, N.; Jindatip, D.; Phungnoi, Y.; Rojanathanes, R.; Sereemaspun, A. Molecular and morphological evidence of hepatotoxicity after silver nanoparticle exposure: A systematic review, in silico, and ultrastructure investigation. Toxicol. Res., 2019, 35(3), 257-270.
[http://dx.doi.org/10.5487/TR.2019.35.3.257] [PMID: 31341555]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy