Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Research Article

Evaluations of FDA-approved Drugs Targeting 3CLP of SARS-CoV-2 Employing a Repurposing Strategy

Author(s): Syed Sayeed Ahmad* and Mohammad Khalid

Volume 27, Issue 19, 2024

Published on: 15 April, 2024

Page: [2805 - 2815] Pages: 11

DOI: 10.2174/1386207325666220816125639

Price: $65

Open Access Journals Promotions 2
Abstract

Background: The SARS-CoV-2 coronavirus (COVID-19) has raised innumerable global concerns, and few effective treatment strategies have yet been permitted by the FDA to lighten the disease burden. SARS-CoV-2 3C-like proteinase (3CLP) is a crucial protease and plays a key role in the viral life cycle, as it controls replication, and thus, it is viewed as a target for drug design.

Methods: In this study, we performed structure-based virtual screening of FDA drugs approved during 2015-2019 (a total of 220 drugs) for interaction with the active site of 3CLP (PDB ID 6LU7) using AutoDock 4.2. We report the top ten drugs that outperform the reported drugs against 3CLP (Elbasvir and Nelfinavir), particularly Cefiderocol, having the highest affinity among the compounds tested, with a binding energy of -9.97 kcal/mol. H-bond (LYS102:HZ2-ligand: O49), hydrophobic (ligand-VAL104), and electrostatic (LYS102:NZ-ligand: O50) interactions were observed in the cefiderocol-3CLP complex. The docked complex was subjected to a 50 ns molecular dynamics study to check its stability, and stable RMSD and RMSF graphs were observed.

Results: Accordingly, we suggest cefiderocol might be effective against SARS-CoV-2 and urge that experimental validation be performed to determine the antiviral efficacy of cefiderocol against SARS-CoV-2.

Discussion: Along with these, cefiderocol is effective for treating respiratory tract pathogens and a wide range of gram-negative bacteria for whom there are limited therapeutic alternatives.

Conclusion: This article aimed to explore the FDA-approved drugs as a repurposing study against 3CLP for COVID-19 management.

Keywords: Virtual screening, molecular docking, MD simulation, drug re-purposing, COVID-19, 3CLP.

Graphical Abstract
[1]
She, J.; Jiang, J.; Ye, L.; Hu, L.; Bai, C.; Song, Y. 2019 novel coronavirus of pneumonia in Wuhan, China: Emerging attack and management strategies. Clin. Transl. Med., 2020, 9(1), 19.
[http://dx.doi.org/10.1186/s40169-020-00271-z] [PMID: 32078069]
[2]
Behera, B.C.; Mishra, R.R.; Thatoi, H. Recent biotechnological tools for diagnosis of corona virus disease: A review. Biotechnol. Prog., 2021, 37(1), e3078.
[http://dx.doi.org/10.1002/btpr.3078] [PMID: 32902193]
[3]
Zheng, J. SARS-CoV-2: An emerging coronavirus that causes a global threat. Int. J. Biol. Sci., 2020, 16(10), 1678-1685.
[http://dx.doi.org/10.7150/ijbs.45053] [PMID: 32226285]
[4]
Coronaviridae Study Group of the International Committee on Taxonomy of V. The species Severe acute respiratory syndrome-related coronavirus: Classifying 2019-nCoV and naming it SARS-CoV-2. Nat. Microbiol., 2020, 5(4), 536-544.
[http://dx.doi.org/10.1038/s41564-020-0695-z]
[5]
Gyebi, G.A.; Ogunyemi, O.M.; Ibrahim, I.M.; Afolabi, S.O.; Adebayo, J.O. Dual targeting of cytokine storm and viral replication in COVID-19 by plant-derived steroidal pregnanes: An in silico perspective. Comput. Biol. Med., 2021, 134, 104406.
[http://dx.doi.org/10.1016/j.compbiomed.2021.104406] [PMID: 33915479]
[6]
Krouse, H.J. COVID-19 and the widening gap in health inequity. Otolaryngol. Head Neck Surg., 2020, 163(1), 65-66.
[http://dx.doi.org/10.1177/0194599820926463] [PMID: 32366172]
[7]
Rodgers, F.; Pepperrell, T.; Keestra, S.; Pilkington, V. Missing clinical trial data: The evidence gap in primary data for potential COVID-19 drugs. Trials, 2021, 22(1), 59.
[http://dx.doi.org/10.1186/s13063-021-05024-y] [PMID: 33451350]
[8]
Ogando, N.S.; Ferron, F.; Decroly, E.; Canard, B.; Posthuma, C.C.; Snijder, E.J. The curious case of the nidovirus exoribonuclease: Its role in RNA synthesis and replication fidelity. Front. Microbiol., 2019, 10, 1813.
[http://dx.doi.org/10.3389/fmicb.2019.01813] [PMID: 31440227]
[9]
Zumla, A.; Chan, J.F.; Azhar, E.I.; Hui, D.S.; Yuen, K.Y. Coronaviruses - drug discovery and therapeutic options. Nat. Rev. Drug Discov., 2016, 15(5), 327-347.
[http://dx.doi.org/10.1038/nrd.2015.37] [PMID: 26868298]
[10]
Jin, Z.; Du, X.; Xu, Y.; Deng, Y.; Liu, M.; Zhao, Y.; Zhang, B.; Li, X.; Zhang, L.; Peng, C.; Duan, Y.; Yu, J.; Wang, L.; Yang, K.; Liu, F.; Jiang, R.; Yang, X.; You, T.; Liu, X.; Yang, X.; Bai, F.; Liu, H.; Liu, X.; Guddat, L.W.; Xu, W.; Xiao, G.; Qin, C.; Shi, Z.; Jiang, H.; Rao, Z.; Yang, H. Structure of M(pro) from SARS-CoV-2 and discovery of its inhibitors. Nature, 2020, 582(7811), 289-293.
[http://dx.doi.org/10.1038/s41586-020-2223-y]
[11]
Pillaiyar, T.; Manickam, M.; Namasivayam, V.; Hayashi, Y.; Jung, S.H. An overview of severe acute respiratory syndrome-coronavirus (SARS-CoV) 3CL Protease Inhibitors: Peptidomimetics and small molecule chemotherapy. J. Med. Chem., 2016, 59(14), 6595-6628.
[http://dx.doi.org/10.1021/acs.jmedchem.5b01461] [PMID: 26878082]
[12]
Ita, K. Coronavirus disease (COVID-19): Current status and prospects for drug and vaccine development. Arch. Med. Res., 2021, 52(1), 15-24.
[http://dx.doi.org/10.1016/j.arcmed.2020.09.010] [PMID: 32950264]
[13]
Wang, M.; Cao, R.; Zhang, L.; Yang, X.; Liu, J.; Xu, M.; Shi, Z.; Hu, Z.; Zhong, W.; Xiao, G. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res., 2020, 30(3), 269-271.
[http://dx.doi.org/10.1038/s41422-020-0282-0] [PMID: 32020029]
[14]
Najar Nobari, N.; Seirafianpour, F.; Mashayekhi, F.; Goodarzi, A. A systematic review on treatment-related mucocutaneous reactions in COVID-19 patients. Dermatol. Ther., 2021, 34(1), e14662.
[http://dx.doi.org/10.1111/dth.14662] [PMID: 33301232]
[15]
Narkhede, R.R.; Cheke, R.S.; Ambhore, J.P.; Shinde, S.D. The molecular docking study of potential drug candidates showing anti-COVID-19 activity by exploring of therapeutic targets of SARS-CoV-2. EJMO, 2020, 4(3), 185-195.
[16]
Joshi, S.; Parkar, J.; Ansari, A.; Vora, A.; Talwar, D.; Tiwaskar, M.; Patil, S.; Barkate, H. Role of favipiravir in the treatment of COVID-19. Int. J. Infect. Dis., 2021, 102, 501-508.
[http://dx.doi.org/10.1016/j.ijid.2020.10.069] [PMID: 33130203]
[17]
Choi, J.J.; McCarthy, M.W. Cefiderocol: A novel siderophore cephalosporin. Expert Opin. Investig. Drugs, 2018, 27(2), 193-197.
[http://dx.doi.org/10.1080/13543784.2018.1426745] [PMID: 29318906]
[18]
Nakamura, R.; Ito-Horiyama, T.; Takemura, M.; Toba, S.; Matsumoto, S.; Ikehara, T.; Tsuji, M.; Sato, T.; Yamano, Y. In vivo pharmacodynamic study of cefiderocol, a novel parenteral siderophore cephalosporin, in murine thigh and lung infection models. Antimicrob. Agents Chemother., 2019, 63(9), 63.
[http://dx.doi.org/10.1128/AAC.02031-18] [PMID: 31262762]
[19]
Ito, A.; Nishikawa, T.; Matsumoto, S.; Yoshizawa, H.; Sato, T.; Nakamura, R.; Tsuji, M.; Yamano, Y. Siderophore cephalosporin cefiderocol utilizes ferric iron transporter systems for antibacterial activity against Pseudomonas aeruginosa. Antimicrob. Agents Chemother., 2016, 60(12), 7396-7401.
[http://dx.doi.org/10.1128/AAC.01405-16] [PMID: 27736756]
[20]
Yamano, Y. In vitro activity of cefiderocol against a broad range of clinically important gram-negative bacteria. Clin. Infect. Dis., 2019, 69(Suppl. 7), S544-S551.
[http://dx.doi.org/10.1093/cid/ciz827] [PMID: 31724049]
[21]
Drakesmith, H.; Prentice, A. Viral infection and iron metabolism. Nat. Rev. Microbiol., 2008, 6(7), 541-552.
[http://dx.doi.org/10.1038/nrmicro1930] [PMID: 18552864]
[22]
Reiner, Ž.; Hatamipour, M.; Banach, M.; Pirro, M.; Al-Rasadi, K.; Jamialahmadi, T.; Radenkovic, D.; Montecucco, F.; Sahebkar, A. Statins and the COVID-19 main protease: in silico evidence on direct interaction. Arch. Med. Sci., 2020, 16(3), 490-496.
[http://dx.doi.org/10.5114/aoms.2020.94655] [PMID: 32399094]
[23]
Yuce, M.; Cicek, E.; Inan, T.; Dag, A.B.; Kurkcuoglu, O.; Sungur, F.A. Repurposing of FDA-approved drugs against active site and potential allosteric drug-binding sites of COVID-19 main protease. Proteins, 2021, 89(11), 1425-1441.
[http://dx.doi.org/10.1002/prot.26164] [PMID: 34169568]
[24]
Rarey, M.; Kramer, B.; Lengauer, T.; Klebe, G. A fast flexible docking method using an incremental construction algorithm. J. Mol. Biol., 1996, 261(3), 470-489.
[http://dx.doi.org/10.1006/jmbi.1996.0477] [PMID: 8780787]
[25]
Ahmad, S.S.; Akhtar, S. Danish Rizvi, S.M.; Kamal, M.A.; Sayeed, U.; Khan, M.K.A.; Siddiqui, M.H.; Arif, J.M. Screening and elucidation of selected natural compounds for anti- alzheimer’s potential targeting BACE-1 enzyme: A case computational study. Curr. Computeraided Drug Des., 2017, 13(4), 311-318.
[http://dx.doi.org/10.2174/1573409913666170414123825] [PMID: 28413992]
[26]
Morris, G.M.; Huey, R.; Olson, A.J. Using AutoDock for ligand-receptor docking. Curr. Protoc. Bioinformatics, 2008.
[http://dx.doi.org/10.1002/0471250953.bi0814s24]
[27]
Maurya, D.K.; Sharma, D. Evaluation of traditional ayurvedic Kadha for prevention and management of the novel Coronavirus (SARS-CoV-2) using in silico approach. J. Biomol. Struct. Dyn., 2020, 1-16.
[http://dx.doi.org/10.1080/07391102.2020.1852119] [PMID: 33251972]
[28]
Goodsell, D.S.; Morris, G.M.; Olson, A.J. Automated docking of flexible ligands: Applications of AutoDock. J. Mol. Recognit., 1996, 9(1), 1-5.
[http://dx.doi.org/10.1002/(SICI)1099-1352(199601)9:1<1:AID-JMR241>3.0.CO;2-6] [PMID: 8723313]
[29]
Liu, S.; Dang, M.; Lei, Y.; Ahmad, S.S.; Khalid, M.; Kamal, M.A.; Chen, L. Ajmalicine and its analogues against AChE and BuChE for the management of Alzheimer’s disease: An in-silico study. Curr. Pharm. Des., 2020, 26(37), 4808-4814.
[http://dx.doi.org/10.2174/1381612826666200407161842] [PMID: 32264807]
[30]
Ahmad, S.S.; Khan, H. Danish Rizvi, S.M.; Ansari, S.A.; Ullah, R.; Mahmood, H.M.; Siddiqui, M.H. Computational study of natural compounds for the clearance of amyloid-betaeta: A potential therapeutic management strategy for Alzheimer’s Disease. Molecules, 2019, 24.
[31]
Pronk, S.; Páll, S.; Schulz, R.; Larsson, P.; Bjelkmar, P.; Apostolov, R.; Shirts, M.R.; Smith, J.C.; Kasson, P.M.; van der Spoel, D.; Hess, B.; Lindahl, E. GROMACS 4.5: A high-throughput and highly parallel open source molecular simulation toolkit. Bioinformatics, 2013, 29(7), 845-854.
[http://dx.doi.org/10.1093/bioinformatics/btt055] [PMID: 23407358]
[32]
Schüttelkopf, A.W.; van Aalten, D.M. PRODRG: A tool for high-throughput crystallography of protein-ligand complexes. Acta Crystallogr. D Biol. Crystallogr., 2004, 60(Pt 8), 1355-1363.
[http://dx.doi.org/10.1107/S0907444904011679] [PMID: 15272157]
[33]
Hess, B.; Bekker, H.; Berendsen, H.J.; Fraaije, J.G. LINCS: A linear constraint solver for molecular simulations. J. Comput. Chem., 1997, 18(12), 1463-1472.
[http://dx.doi.org/10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H]
[34]
Pushpakom, S.; Iorio, F.; Eyers, P.A.; Escott, K.J.; Hopper, S.; Wells, A.; Doig, A.; Guilliams, T.; Latimer, J.; McNamee, C.; Norris, A.; Sanseau, P.; Cavalla, D.; Pirmohamed, M. Drug repurposing: Progress, challenges and recommendations. Nat. Rev. Drug Discov., 2019, 18(1), 41-58.
[http://dx.doi.org/10.1038/nrd.2018.168] [PMID: 30310233]
[35]
García, R.; Hussain, A.; Koduru, P.; Atis, M.; Wilson, K.; Park, J.Y.; Toby, I.; Diwa, K.; Vu, L.; Ho, S.; Adnan, F.; Nguyen, A.; Cox, A.; Kirtek, T.; García, P.; Li, Y.; Jones, H.; Shi, G.; Green, A.; Rosenbaum, D. Identification of potential antiviral compounds against SARS-CoV-2 structural and non structural protein targets: A pharmacoinformatics study of the CAS COVID-19 dataset. Comput. Biol. Med., 2021, 133, 104364.
[http://dx.doi.org/10.1016/j.compbiomed.2021.104364] [PMID: 33895457]
[36]
Alam, A.; Shaikh, S.; Ahmad, S.S.; Ansari, M.A.; Shakil, S.; Rizvi, S.M.; Shakil, S.; Imran, M.; Haneef, M.; Abuzenadah, A.M.; Kamal, M.A. Molecular interaction of human brain acetylcholinesterase with a natural inhibitor huperzine-B: An enzoinformatics approach. CNS Neurol. Disord. Drug Targets, 2014, 13(3), 487-490.
[http://dx.doi.org/10.2174/18715273113126660163] [PMID: 24059299]
[37]
Rehman, A.; Akhtar, S.; Siddiqui, M.H.; Sayeed, U.; Ahmad, S.S.; Arif, J.M.; Khan, M.K. Identification of potential leads against 4-hydroxytetrahydrodipicolinate synthase from Mycobacterium tuberculosis. Bioinformation, 2016, 12(11), 400-407.
[http://dx.doi.org/10.6026/97320630012400] [PMID: 28293071]
[38]
Weiss, M.S.; Brandl, M.; Sühnel, J.; Pal, D.; Hilgenfeld, R. More hydrogen bonds for the (structural) biologist. Trends Biochem. Sci., 2001, 26(9), 521-523.
[http://dx.doi.org/10.1016/S0968-0004(01)01935-1] [PMID: 11551776]
[39]
Ahmad, S.S.; Sinha, M.; Ahmad, K.; Khalid, M.; Choi, I. Study of caspase 8 inhibition for the management of Alzheimer’s disease: A molecular docking and dynamics simulation. Molecules, 2020, 25(9), 25.
[http://dx.doi.org/10.3390/molecules25092071] [PMID: 32365525]
[40]
Ahmad, S.S.; Khalid, M.; Younis, K. Interaction study of dietary fibers (pectin and cellulose) with meat proteins using bioinformatics analysis: An in-silico study. Lebensm. Wiss. Technol., 2020, 119, 108889.
[http://dx.doi.org/10.1016/j.lwt.2019.108889]
[41]
Khan, M.S.; Goswami, U.; Rojatkar, S.R.; Khan, M.I. A serine protease inhibitor from hemolymph of green mussel, Perna viridis. Bioorg. Med. Chem. Lett., 2008, 18(14), 3963-3967.
[http://dx.doi.org/10.1016/j.bmcl.2008.06.010] [PMID: 18572404]
[42]
Zhou, P.; Yang, X.L.; Wang, X.G.; Hu, B.; Zhang, L.; Zhang, W.; Si, H.R.; Zhu, Y.; Li, B.; Huang, C.L.; Chen, H.D.; Chen, J.; Luo, Y.; Guo, H.; Jiang, R.D.; Liu, M.Q.; Chen, Y.; Shen, X.R.; Wang, X.; Zheng, X.S.; Zhao, K.; Chen, Q.J.; Deng, F.; Liu, L.L.; Yan, B.; Zhan, F.X.; Wang, Y.Y.; Xiao, G.F.; Shi, Z.L. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature, 2020, 579(7798), 270-273.
[http://dx.doi.org/10.1038/s41586-020-2012-7] [PMID: 32015507]
[43]
Osman, E.E.A.; Toogood, P.L.; Neamati, N. COVID-19: Living through another pandemic. ACS Infect. Dis., 2020, 6(7), 1548-1552.
[http://dx.doi.org/10.1021/acsinfecdis.0c00224] [PMID: 32388976]
[44]
Glebov, O.O. Understanding SARS-CoV-2 endocytosis for COVID-19 drug repurposing. FEBS J., 2020, 287(17), 3664-3671.
[http://dx.doi.org/10.1111/febs.15369] [PMID: 32428379]
[45]
Yousefi, H.; Mashouri, L.; Okpechi, S.C.; Alahari, N.; Alahari, S.K. Repurposing existing drugs for the treatment of COVID-19/SARS-CoV-2 infection: A review describing drug mechanisms of action. Biochem. Pharmacol., 2021, 183, 114296.
[http://dx.doi.org/10.1016/j.bcp.2020.114296] [PMID: 33191206]
[46]
Singh, T.U.; Parida, S.; Lingaraju, M.C.; Kesavan, M.; Kumar, D.; Singh, R.K. Drug repurposing approach to fight COVID-19. Pharmacol. Rep., 2020, 72(6), 1479-1508.
[http://dx.doi.org/10.1007/s43440-020-00155-6] [PMID: 32889701]
[47]
Moza, B.; Buonpane, R.A.; Zhu, P.; Herfst, C.A.; Rahman, A.K.; McCormick, J.K.; Kranz, D.M.; Sundberg, E.J. Long-range cooperative binding effects in a T cell receptor variable domain. Proc. Natl. Acad. Sci. USA, 2006, 103(26), 9867-9872.
[http://dx.doi.org/10.1073/pnas.0600220103] [PMID: 16788072]
[48]
Bhinge, A.; Chakrabarti, P.; Uthanumallian, K.; Bajaj, K.; Chakraborty, K.; Varadarajan, R. Accurate detection of protein: Ligand binding sites using molecular dynamics simulations. Structure, 2004, 12(11), 1989-1999.
[http://dx.doi.org/10.1016/j.str.2004.09.005] [PMID: 15530363]
[49]
Valdar, W.S.; Thornton, J.M. Protein-protein interfaces: Analysis of amino acid conservation in homodimers. Proteins, 2001, 42(1), 108-124.
[http://dx.doi.org/10.1002/1097-0134(20010101)42:1<108:AID-PROT110>3.0.CO;2-O] [PMID: 11093265]
[50]
Mobley, D.L.; Dill, K.A. Binding of small-molecule ligands to proteins: “what you see” is not always “what you get”. Structure, 2009, 17(4), 489-498.
[http://dx.doi.org/10.1016/j.str.2009.02.010] [PMID: 19368882]
[51]
Patil, R.; Das, S.; Stanley, A.; Yadav, L.; Sudhakar, A.; Varma, A.K. Optimized hydrophobic interactions and hydrogen bonding at the target-ligand interface leads the pathways of drug-designing. PLoS One, 2010, 5(8), e12029.
[http://dx.doi.org/10.1371/journal.pone.0012029] [PMID: 20808434]
[52]
Ge, H.; Wang, Y.; Li, C.; Chen, N.; Xie, Y.; Xu, M.; He, Y.; Gu, X.; Wu, R.; Gu, Q.; Zeng, L.; Xu, J. Molecular dynamics-based virtual screening: Accelerating the drug discovery process by high-performance computing. J. Chem. Inf. Model., 2013, 53(10), 2757-2764.
[http://dx.doi.org/10.1021/ci400391s] [PMID: 24001302]
[53]
Liu, X.; Shi, D.; Zhou, S.; Liu, H.; Liu, H.; Yao, X. Molecular dynamics simulations and novel drug discovery. Expert Opin. Drug Discov., 2018, 13(1), 23-37.
[http://dx.doi.org/10.1080/17460441.2018.1403419] [PMID: 29139324]
[54]
Baig, M.H.; Ahmad, K.; Roy, S.; Ashraf, J.M.; Adil, M.; Siddiqui, M.H.; Khan, S.; Kamal, M.A.; Provazník, I.; Choi, I. Computer aided drug design: Success and limitations. Curr. Pharm. Des., 2016, 22(5), 572-581.
[http://dx.doi.org/10.2174/1381612822666151125000550] [PMID: 26601966]
[55]
Lane, T.J.; Shukla, D.; Beauchamp, K.A.; Pande, V.S. To milliseconds and beyond: Challenges in the simulation of protein folding. Curr. Opin. Struct. Biol., 2013, 23(1), 58-65.
[http://dx.doi.org/10.1016/j.sbi.2012.11.002] [PMID: 23237705]
[56]
De Paris, R.; Quevedo, C.V.; Ruiz, D.D.; Norberto de Souza, O. An effective approach for clustering InhA molecular dynamics trajectory using substrate-binding cavity features. PLoS One, 2015, 10(7), e0133172.
[http://dx.doi.org/10.1371/journal.pone.0133172] [PMID: 26218832]
[57]
Singh, V.K.; Chaurasia, H.; Kumari, P.; Som, A.; Mishra, R.; Srivastava, R.; Naaz, F.; Singh, A.; Singh, R.K. Design, synthesis, and molecular dynamics simulation studies of quinoline derivatives as protease inhibitors against SARS-CoV-2. J. Biomol. Struct. Dyn., 2021, 1-24.
[http://dx.doi.org/10.1080/07391102.2021.1946716] [PMID: 34253149]
[58]
Li, H.; Xie, Y.; Liu, C.; Liu, S. Physicochemical bases for protein folding, dynamics, and protein-ligand binding. Sci. China Life Sci., 2014, 57(3), 287-302.
[http://dx.doi.org/10.1007/s11427-014-4617-2] [PMID: 24554472]
[59]
Cooper, A.; Johnson, C.M. Introduction to microcalorimetry and biomolecular energetics. Methods Mol. Biol., 1994, 22, 109-124.
[PMID: 8312987]
[60]
Ross, P.D.; Subramanian, S. Thermodynamics of protein association reactions: Forces contributing to stability. Biochemistry, 1981, 20(11), 3096-3102.
[http://dx.doi.org/10.1021/bi00514a017] [PMID: 7248271]
[61]
Rehman, M.T.; Shamsi, H.; Khan, A.U. Insight into the binding mechanism of imipenem to human serum albumin by spectroscopic and computational approaches. Mol. Pharm., 2014, 11(6), 1785-1797.
[http://dx.doi.org/10.1021/mp500116c] [PMID: 24745377]
[62]
McCarthy, M.W. Cefiderocol to treat complicated urinary tract infection. Drugs Today (Barc), 2020, 56(3), 177-184.
[http://dx.doi.org/10.1358/dot.2020.56.3.3118466] [PMID: 32282864]
[63]
Dandachi, D.; Rodriguez-Barradas, M.C. Viral pneumonia: Etiologies and treatment. J. Investig. Med., 2018, 66(6), 957-965.
[http://dx.doi.org/10.1136/jim-2018-000712] [PMID: 29680828]
[64]
Jain, S.; Self, W.H.; Wunderink, R.G.; Fakhran, S.; Balk, R.; Bramley, A.M.; Reed, C.; Grijalva, C.G.; Anderson, E.J.; Courtney, D.M.; Chappell, J.D.; Qi, C.; Hart, E.M.; Carroll, F.; Trabue, C.; Donnelly, H.K.; Williams, D.J.; Zhu, Y.; Arnold, S.R.; Ampofo, K.; Waterer, G.W.; Levine, M.; Lindstrom, S.; Winchell, J.M.; Katz, J.M.; Erdman, D.; Schneider, E.; Hicks, L.A.; McCullers, J.A.; Pavia, A.T.; Edwards, K.M.; Finelli, L.; Team, C.E.S. Community-acquired pneumonia requiring hospitalization among U.S. adults. N. Engl. J. Med., 2015, 373(5), 415-427.
[http://dx.doi.org/10.1056/NEJMoa1500245] [PMID: 26172429]
[65]
Torres, A.; Zhong, N.; Pachl, J.; Timsit, J.F.; Kollef, M.; Chen, Z.; Song, J.; Taylor, D.; Laud, P.J.; Stone, G.G.; Chow, J.W. Ceftazidime-avibactam versus meropenem in nosocomial pneumonia, including ventilator-associated pneumonia (REPROVE): A randomised, double-blind, phase 3 non-inferiority trial. Lancet Infect. Dis., 2018, 18(3), 285-295.
[http://dx.doi.org/10.1016/S1473-3099(17)30747-8] [PMID: 29254862]
[66]
Nair, G.B.; Niederman, M.S. Nosocomial pneumonia: Lessons learned. Crit. Care Clin., 2013, 29(3), 521-546.
[http://dx.doi.org/10.1016/j.ccc.2013.03.007] [PMID: 23830652]
[67]
Ito, A.; Sato, T.; Ota, M.; Takemura, M.; Nishikawa, T.; Toba, S.; Kohira, N.; Miyagawa, S.; Ishibashi, N.; Matsumoto, S.; Nakamura, R.; Tsuji, M.; Yamano, Y. In vitro antibacterial properties of cefiderocol, a novel siderophore cephalosporin, against gram-negative bacteria. Antimicrob. Agents Chemother., 2017, 62(1), 62.
[PMID: 29061741]
[68]
Takemura, M.; Nakamura, R.; Sato, T.; Tsuji, M.; Yamano, Y. 28th European Congress of Clinical Microbiology and Infectious Diseases, Madrid, Spain2018, pp. 21-24.
[69]
Sato, T.; Yamawaki, K. Cefiderocol: Discovery, chemistry, and in vivo profiles of a novel siderophore cephalosporin. Clin. Infect. Dis., 2019, 69(Suppl. 7), S538-S543.
[http://dx.doi.org/10.1093/cid/ciz826] [PMID: 31724047]
[70]
Kazmierczak, K.M.; Tsuji, M.; Wise, M.G.; Hackel, M.; Yamano, Y.; Echols, R.; Sahm, D.F. In vitro activity of cefiderocol, a siderophore cephalosporin, against a recent collection of clinically relevant carbapenem-non-susceptible Gram-negative bacilli, including serine carbapenemase- and metallo-β-lactamase-producing isolates (SIDERO-WT-2014 Study). Int. J. Antimicrob. Agents, 2019, 53(2), 177-184.
[http://dx.doi.org/10.1016/j.ijantimicag.2018.10.007] [PMID: 30395986]
[71]
Wang, Y.; Cui, R.; Li, G.; Gao, Q.; Yuan, S.; Altmeyer, R.; Zou, G. Teicoplanin inhibits Ebola pseudovirus infection in cell culture. Antiviral Res., 2016, 125, 1-7.
[http://dx.doi.org/10.1016/j.antiviral.2015.11.003] [PMID: 26585243]
[72]
Colson, P.; Raoult, D. Fighting viruses with antibiotics: An overlooked path. Int. J. Antimicrob. Agents, 2016, 48(4), 349-352.
[http://dx.doi.org/10.1016/j.ijantimicag.2016.07.004] [PMID: 27546219]
[73]
Caly, L.; Druce, J.D.; Catton, M.G.; Jans, D.A.; Wagstaff, K.M. The FDA-approved drug ivermectin inhibits the replication of SARS-CoV-2 in vitro. Antiviral Res., 2020, 178, 104787.
[http://dx.doi.org/10.1016/j.antiviral.2020.104787] [PMID: 32251768]
[74]
Baron, S.A.; Devaux, C.; Colson, P.; Raoult, D.; Rolain, J.M. Teicoplanin: An alternative drug for the treatment of COVID-19? Int. J. Antimicrob. Agents, 2020, 55(4), 105944.
[http://dx.doi.org/10.1016/j.ijantimicag.2020.105944] [PMID: 32179150]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy